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Polymer unfolding and motion synchronization induced by spatially correlated noise
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The problem of a spatially correlated noise affecting a complex system is studied in this paper. We present a
comprehensive analysis of a two-dimensional model polymer chain, driven by the spatially correlated Gaussian
noise, for which we have varied the amplitude and the correlation length. The chain model is based on a
bead-spring approach, enriched with a global Lennard-Jones potential and angular interactions. We show that
spatial correlations in the noise inhibit the chain geometry dynamics, enhancing the preservation of the polymer
shape. This is supported by the analysis of correlation functions of both the module length and angles between
neighboring modules, which have been measured for the noise amplitude ranging over three orders of magnitude.
Moreover, we have observed the correlation length dependent bead motion synchronization and the spontaneous
polymer unfolding, resulting from an interplay between chain potentials and the spatially structured noise.
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I. INTRODUCTION

The understanding of diffusion in complex media is crucial
for both modeling conformation transitions in biomolecules
and intracellular transport. It is also well known that vari-
ous systems organize spontaneously in response to random
forcing [1] and that the introduction of temporal correlations
into the noise can lead to synchronization effects [2]. A
well-established framework to simulate these phenomena
is provided by Langevin equations, which introduce the
concept of stochastic force mimicking the molecular collisions
[3]. An important advance in this formalism has been the
introduction of the generalized Langevin equation (GLE),
which reproduces the anomalous diffusion thanks to the
time-correlated stochastic force and the corresponding integral
memory kernel, which represents the friction [4]. Recently,
Kou [4] derived the GLE from a microscopic model of
a particle coupled to a large number of oscillators, thus
showing that the particle-environment interaction is essential
for the occurrence of temporal correlations in thermal noise.
However, it is remarkable that this theory explains solely the
temporal aspect of diffusion, while little work has been done to
understand its spatial counterpart. This has led us to investigate
the problem of a spatially correlated noise affecting a complex
system.

The collective media behavior, which is random but charac-
terized by a certain correlation length λ, occurs at a length scale
of micrometers in the context of hydrodynamic interactions,
e.g., in colloid sedimentation [5,6] or in the study of active
particle motion [7]. However, the spatial correlations at the
lower length scale play a fundamental role in the theory of
phase transitions [8], among which the liquid-glass transition
is of special interest. During this transition, the particles
suffer a dramatic drop of mobility without the emergence of
structural ordering [9]. This phenomenon has been intensively
researched for the past two decades, and according to extensive
simulations [10,11], it is characterized by the occurrence of
spatial correlations in the particles’ motion [11], which is
recognized as the formation of different-sized clusters [10,12].
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Choosing a single moment in time, one could interpret these
clusters as a source of a disturbance which is random at the
large length scale (�λ) but ordered at the length scale of λ.
Figure 1 illustrates this idea. The temporal evolution of this
system is still indeterministic, as it “randomly reorders.” We
propose that this behavior could be imitated by the spatially
correlated noise, which is affecting a subsystem, in our case,
a model two-dimensional polymeric chain.

We have simulated the chain based on the bead-spring
approach under the forcing of spatially correlated Gaussian
noise (SCGN) for which we have varied the correlation
length and the amplitude. Our previous findings regarding the
stiffening of the chain under the SCGN, shown with the aid of
the reduced dynamics, have been published in [13]. However,
our further investigation into this system, which involves the
extension of the parameters’ range and the measurements of
chain characteristics, has revealed several new effects, namely,
bead motion synchronization, increased time correlation of
both module length and angles between modules, the inhibition
of the average module length growth, and, most notably,
the chain unfolding induced by the increased correlation
length.

Our simulations are related to the actual physical situation
by the choice of λ. Unfortunately, currently, there are few ex-
perimentally accessible quantities that describe the collective
molecular behavior in the vicinity of the glass transition and
can be measured for the variety of temperatures [14]. One of
these parameters is the number of cooperatively rearranging
molecules [15], which has been reported to increase from 1 in
the liquid phase to approximately 10 in the glass phase [15].
Additionally, these results are qualitatively similar for the
different chemical compounds [15]. On the other hand, the
direct measurements of the correlation length are scarce and
limited to a specific experimental setup, as, e.g. in [16], which
reports λ to be of the order of two to four molecule diameters.
These measurements suggest that λ covering up to five chain
nodes is physically meaningful.

This paper has following structure: in Sec. II the methods
of the SCGN generation are introduced, and in Sec. III we
propose the equations of motion and the correlation function.
In Sec. IV we present our polymer model, and Sec. V briefly
discusses simulation methods. Sections VI to IX present the
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M. MAJKA AND P. F. GÓRA PHYSICAL REVIEW E 86, 051122 (2012)

FIG. 1. Spatially correlated random vectors with correlation
length λ, generated on a regular network. For λ = 0 the pattern is
entirely random, but for λ = 20 the ordered clusters can be noticed.

results regarding each effect with an interpretation, and in
Sec. X we summarize our findings.

II. MULTIPLE CORRELATED GAUSSIAN VARIABLES

The generation of multiple correlated Gaussian variables
is a central problem in the simulation of SCGN driven
systems; therefore we shall outline here the basic algorithm.
Let’s assume that we have two real vectors of random,
zero-mean Gaussian variables, namely, �ξT = (ξ1, . . . ,ξN ) and
�ηT = (η1, . . . ,ηN ), whose components satisfy the following
correlation relations:

〈ξiξj 〉 = Sij , (1)

〈ηiηj 〉 = δij . (2)

Here, δij denotes the Kronecker delta, and Sij are elements of
the correlation matrix, defined as

〈�ξ �ξT 〉 = Ŝ. (3)

The matrix Ŝ is symmetric and positively definite [17], so it is
suitable for Cholesky decomposition [18], which factorizes Ŝ

into a lower triangular matrix L̂ and its transposition:

Ŝ = L̂L̂T . (4)

The vector of correlated variables �ξ is related to the uncorre-
lated vector �η via a linear transformation [19]:

�ξ = L̂�η. (5)

This means that, given a correlation matrix, one can generate
the correlated Gaussian vector �ξ simply by sampling N times
the normal distribution to obtain the components of �η and then
performing the transformation (5).

III. EQUATIONS OF MOTION AND
CORRELATION FUNCTION

Our system is equivalent to an ordered set of N interacting
material points on a plane, enumerated by the index i. The
position of the ith point (or bead, as we will refer to it in the
following) is �ri

T = (xi,yi). In order to simulate the trajectory
{�ri(t)}N of the whole system, we have to solve numerically a

set of 2N stochastic equations of motion:

mẍi + γ ẋi + ∂xi
U = ξx(�ri),

(6)
mÿi + γ ẏi + ∂yi

U = ξy(�ri).

Here, U is the potential energy of the system, which we will
discuss in detail in the next section. �ξ (�ri)T = [ξx(�ri),ξy(�ri)]
is the two-dimensional SCGN, m is a bead mass, and γ is a
friction constant. In the absence of a more relevant theory, we
have applied the simplest friction model and have chosen γ

to be constant. The differential equations (6) are, in principle,
of second order, which we preserve for generality, but in the
course of our simulations we have overdamped the system by
choosing γ to be large enough.

We assume that the correlation function Sij of stochastic
forces acting on beads i and j should depend only on a
relative distance between these beads, which is rij = |�ri − �rj |.
Additionally, we assume that there are no cross correlations
between the x and y components, which allows us to reduce
the correlation relations to the form

〈ξx(�ri)ξx( �rj )〉 = 〈ξy(�ri)ξy( �rj )〉 = S(rij ),

〈ξx(�ri)ξy( �rj )〉 = 0. (7)

It should be emphasized that the correlation matrix Ŝ is
a dynamical object and evolves in t as the relative distances
rij (t) do. The conditions (7) suggest the following procedure
to integrate Eqs. (6): once all beads’ positions { �ri(t)}N at
some moment t are determined, we can calculate the N × N

correlation matrix and its Cholesky decomposition L̂; next,
according to (5), we shall use L̂ and two different �η to obtain
{ξx(�ri)}N and {ξy(�ri)}N . Finally, we can use them to perform
an integration step, which gives { �ri(t + �t)}N . The repeated
Cholesky decompositions are the most computationally expan-
sive part of our simulations, as the computational complexity
of this decomposition is O(N3) [18].

Along with conditions (7), we assume that the correlation
function Sij is characterized by the correlation length λ, and
it reproduces the standard Brownian diffusion for λ → 0 [20],
so

S(ri(t),rj (t ′)) λ→0= 2kBT γ

m
δ(t − t ′). (8)

In the above formula kB denotes the Boltzmann constant and
T is temperature. Taking into account (7) and (8), we chose
the exponentially decaying spatial correlation function, which
resembles the displacement correlation function from [11] and
[16]. We also neglect the temporal correlations, as we are
interested in the effects of the purely spatially structured noise.
Finally, the spatiotemporal correlation function reads

S(ri(t),rj (t ′)) = σ
γ

m
e− |�ri−�rj |

λ δ(t − t ′), (9)

where σ = 2kBT denotes the noise amplitude and we will
refer to it as temperature, as it is proportional to the actual
physical temperature.

In order to illustrate how the spatial correlations affect
the noise pattern, we have applied (5) and (9) to generate
the random vectors on a regular network. A snapshot of
this simulation is presented in Fig. 1. One can easily notice
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clusters of correlated vectors; however, this pattern changes
dramatically for every new generation.

IV. THE MODEL OF A POLYMER CHAIN

The polymeric chain is an archetype of many biomolecules;
thus we have chosen it as a test object for our simulation. Our
model is based on the bead-spring approach, in which i and
i + 1 beads interact with a harmonic potential:

UR =
N−1∑
i=1

1

2
k1(|�ri+1 − �ri | − d0)2. (10)

Every bead is also the source of the Lennard-Jones type
interaction, which provides the excluded volume effect and

FIG. 2. The energetic landscape for a single bead interacting
with its four nearest neighbors. The potential parameters are chosen
according to Table I. (a) The distance |�rj+1 − �rj−1| = l0, and j1 and
j2 enumerate two possible positions of the j th bead that minimize the
potential energy. U (0,0) is the height of the energy barrier, and Umin

is the depth of the minimum. (b) The distance |�rj+1 − �rj−1| = 1.25l0,
and j1 and j2 merge into a single minimum as the energy barrier
disappears.

TABLE I. The parameters of the system chosen for simulation.

N k1 d0 k2 l0 ε σLJ γ m

128 7 7 2 11 1 3 20 1

an interaction between the distant tails of the chain:

ULJ =
N∑
i,j

ε

(
σ 12

LJ

|�ri − �rj |12
− σ 6

LJ

|�ri − �rj |6
)

. (11)

Finally, we introduce a harmonic interaction between beads i

and i + 2 which resembles angular interactions:

Uψ =
N−2∑
i=1

1

2
k2(|�ri+2 − �ri | − l0)2. (12)

The total potential energy U is equal to

U = UR + Uψ + ULJ . (13)

For ε = 0 (no ULJ contribution) the potential energy is
minimized when the beads’ positions satisfy

|�ri+1 − �ri | = d0, |�ri+2 − �ri | = l0. (14)

In this case, all of the minimum energy conformations
are equienergetic. In fact, unless l0 > 2d0, once �r1 and �r2

are chosen to satisfy |�r2 − �r1| = d0, the third bead can be
positioned in two ways, so the relation |�r3 − �r1| = l0 is also
fulfilled. Successively applying the conditions (14) to the
following beads, one can build numerous minimum energy
geometries. When ULJ �= 0, the energetic structure of the
chain becomes more complex, but if d0 > σLJ and ε 	
k1, the Lennard-Jones contribution becomes a perturbation.
However, the ULJ influence makes the structures no longer
equienergetic.

When the chain’s energy is not minimized, the dynamical
topography of the potential energy surface depends on both
potentials’ parameters and the local geometry of the chain. An
effective way to represent snapshots of this energy landscape
for a single bead is to take into account its four nearest
neighbors. An example of such a landscape is reproduced
in Fig. 2(a). We have chosen the values of potential energy
parameters (Table I) such that the double-minimum structure
is distinct and holds for a wide range of local conformations.
However, this structure is extremely sensitive to a single
parameter, which is the distance lj = |�rj+1 − �rj−1|. Whenever
lj > 2d0, the two minima tend to merge rapidly into a single
one, positioned in line with beads j − 1 and j + 1. This
is reproduced in Fig. 2(b). This fact significantly affects
the high temperature dynamics of the chain, as is show in
Sec. IX.

V. SIMULATION

Applying the classical Runge-Kutta method modified for
stochastic differential equations [21], we have simulated the
system described by Eqs. (6) with the potential (13) and the
parameters from Table I. The number of beads has been set to
N = 128, the bead’s mass has been chosen as m = 1, and the
friction coefficient γ has been set to 20, which overdamped
the system.
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In our research, we have explored three regimes of
temperature. First, we have varied the noise amplitude σ from
0 to 20 units with an interval of 1 unit, and we have increased
the correlation length λ from 0 to 20 with an interval of 5
units. In the second regime, we have increased σ from 25 to
250 with an interval of 25 units, and in the third regime we have
explored the region from 300 to 1000 units with an interval of
100 units. For the second and the third regimes we have varied
λ from 0 to 50 with an interval of 10 units. For each pair of
λ and σ we have performed 64 runs, starting from different
initial positions. The initial coordinates have been chosen so
that the distance between nearest neighbors is equal to d0, but
the angle between modules has been chosen randomly from
π/2 to 3π/2.

The integration step has been set to 1/128 time unit, and
each simulation lasted 2148 time units. The data for the
first 100 units have been rejected due to system thermaliza-
tion. If not stated otherwise, the data have been collected
once per time unit. We have gathered the data regarding
bead synchronization, module length, and the angle between
modules.

VI. THE BEAD MOTION SYNCHRONIZATION

The introduction of the spatial correlations into the noise
implies that, at a length scale comparable to the correlation
length λ, the stochastic force vectors have similar direction
and value. Therefore, one could expect that the motion of
beads with a relative distance lower than λ will synchronize.
This prediction has been fully confirmed.

As the measure of synchronization at a particular moment
t , we have chosen the normalized product of two beads’
velocities, distanced by n nodes, which has been averaged

along the chain:

Kn(t) = 1

(N − n)

N−n∑
i=1

�vi · �vi+n

vivi+n

= 〈cos θi,i+n〉. (15)

Here θi,i+n is an angle between velocity vectors of the ith and
(i + n)th beads. For each run, we have gathered Kn(t), which
was time averaged to obtain the synchronization factor Kn.
The maximal value of Kn = 1 indicates a fully synchronized
motion, while Kn = 0 implies the opposite.

We have gathered the data for n ranging from 1 to 9. A
representative sample of our results is show in Fig. 3. The rise
in the synchronization factor Kn along with increasing λ and
σ = const is evident. Conversely, the level of synchronization
is almost constant for λ = const and varying amplitude, which
is valid even for temperatures below σ = 5. For every n, the
factor Kn grows from 0 for λ = 0 to the maximal observed
value for λ = 50, which is approximately 0.8 for n = 1 and
0.3 for n = 9.

A further insight into the synchronization comes from the
rearrangement of data, so Kn is represented as a function of n,
with λ and T being parameters. Figure 4 shows the qualitative
similarity between these data for two extreme temperatures
(σ = 1 and σ = 1000). To obtain a quantitative measure of
the decrease in synchronization with the rise in n, we have
fitted our data with the exponential decay model:

Kn = Aλe
−Bλn. (16)

This model proved to be an accurate description of data, as
the coefficient of determination R2 exceeded 0.99 for all fits,
except those with λ = 0, for which Bλ=0 has no physical
meaning.

In Fig. 5, we have juxtaposed the values of Bλ for σ � 25,
at which temperature the behavior of the chain is noise

FIG. 3. The synchronization factor Kn for n = 1,4,8 as a function of the correlation length λ and the noise amplitude σ . Each column
contains the data for the same n in (top) the high temperature regime and (bottom) the low temperature regime.
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FIG. 4. The synchronization factor Kn for two extreme values of
temperature as a function of the beads’ distance n. The data have been
fitted with the model: Kn = Aλe

−Bλn.

dominated. According to Fig. 5, the value of Bλ is mainly
determined by λ and decreases when the temperature grows by
two orders of magnitude. However, for λ � 30 this fall is rather
insignificant; thus, we conclude that the noise correlation
length is the primary factor that influences the effective range
of synchronization along the chain.

VII. BEAD MOTION CORRELATION

The other quantities that are also affected by the presence
of spatial correlations in noise are the time correlation of the
module length and the time correlation of the angles between
neighboring modules. These two characteristics describe the
time evolution of the chain geometry.

By a module we understand two neighboring beads, so the
length of the j th module, at certain moment t , is defined as

dj (t) = |�rj (t) − �rj−1(t)|. (17)

The angle between two neighboring modules is defined by the
positions of the three following beads:

ψj (t) = ∠[�rj−1(t),�rj (t),�rj+1(t)]. (18)

With the beginning at the center of the coordinate system,
vectors �ri are equivalent to the coordinates on a plane; thus

FIG. 5. The synchronization decay factor Bλ as a function of
temperature for σ � 25.

they are applied in the above definition. Additionally, one has
to remember that the angle ψj is directed and varies from 0◦
to 360◦ (with 180◦ indicating that three beads are exactly in
line), so the angles have to be measured in a unified way along
the whole chain, conserving the initial numeration of beads.

The time correlation function of angles has been calculated
in a following way:

Cψ (τ ) = 1

Cψ

T∑
k=0

N−1∑
j=2

[ψj (tk + τ ) − 〈ψ〉][ψj (tk) − 〈ψ〉].

(19)

Here, we introduce the additional summation over j due to the
fact that we have N − 2 angles for a single moment t , which
allows us to increase statistics and obtain a correlation measure
for a whole chain, rather than a single site. The normalization
factor Cψ has been chosen as

Cψ =
T∑

k=0

N−1∑
j=2

[ψj (tk) − 〈ψ〉]2, (20)

which means that Cψ (0) = 1. Finally, 〈ψ〉 reads

〈ψ〉 = 1

T (N − 2)

T∑
k=0

N−1∑
j=2

ψj (tk). (21)

In a strict analogy to the angle correlation function Cψ (τ ), we
can define the module length correlation function Cd (τ ):

Cd (τ ) = 1

Cd

T∑
k=0

N∑
j=2

[dj (tk + τ ) − 〈d〉][dj (tk) − 〈d〉]. (22)

Cd and 〈d〉 are defined similarly to their angle counterparts.
An example of collected data is presented in Fig. 6. In the

high temperature regime (approximately for σ > 200), both
Cψ (τ ) and Cd (τ ) are positive functions, asymptotically falling
from 1 to 0, which is typical of stochastic motion. However,
they differ significantly in the low temperature regime. While
Cψ (τ ) preserves its high temperature profile (but with values
much closer to 1), Cd (τ ) resembles a linear function, falling
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FIG. 6. A representative selection of the module length correlation functions Cd (τ ) and the correlation functions of the angles between
neighboring modules Cψ (τ ). Profiles have been fitted with the function aτα + c.

below 0 with the increase in τ . This long-term behavior of
the low-temperature Cd (τ ) indicates the domination of the
deterministic motion in this temperature regime. In the context
of the energetic landscape, introduced in Sec. IV, we can
suppose that the beads are trapped at the bottom of their
potential energy wells and perform the damped oscillations,
slightly perturbed by the noise. Apparently, while the bead
motion makes dj oscillate, it barely affects the angles, so
the values of Cψ (τ ) are relatively close to 1. Additionally,
the comparison between Cψ (τ ) and Cd (τ ) suggests that the
module length behavior evolves from deterministic into purely
stochastic as the temperature grows, while ψj (t) is of a
stochastic nature for all σ .

In order to measure the influence of σ and the noise
correlation length λ on Cψ (τ ) and Cd (τ ), we have fitted the
profile functions with the following model:

C(τ ) = aτα + c. (23)

Despite the inaccuracy for τ → 0 and a divergence in the
low-temperature regime, the power function model provides
quantitative information on the σ and λ dependencies, thanks
to the α parameter. The values of αd and αψ plotted against σ

and λ are shown in Fig. 7. As expected, for all values of σ and
λ, α is negative and tends to 0 with the decrease in temperature.
However, for constant λ, αψ decreases at a similar pace with the

FIG. 7. The exponents (a) αd and (b) αψ resulting from fitting the
power function to correlation profiles Cd (τ ) and Cψ (τ ).

growth of σ , while αd varies slowly for most of the temperature
range but jumps rapidly below σ = 100.

The increase in the noise correlation length λ affects both
αd and αψ in a similar way, namely, the larger λ is, the lower
the |α| obtained is. This means that the correlation functions
Cψ (τ ) and Cd (τ ) decrease at a slower rate, so dj (t) and ψj (t)
vary less rapidly over time. Therefore, the dynamics of the
chain’s shape becomes attenuated, and a current conformation
is preserved longer.

VIII. MODULE LENGTH DISTRIBUTION

We have also investigated the marginal distribution �(d) of
the module length d and its temperature evolution, with and
without spatial correlations in noise. Taking into account that
dj (t) may express an oscillatory behavior, we have reduced
the time interval between data acquisitions to 1/4 of a time
unit to avoid synchronization effects. The spatial resolution of
histograms has been set to 0.21 length unit.

The profile of �(d) proved to be a single peaked distribution,
concentrated in the vicinity of its mean, with slight, but
noticeable, asymmetry. Therefore, in order to describe �(d)
we have calculated its first moment, second central moment
(presented in Fig. 8), and the skewness.

FIG. 8. Statistical characteristics of the module length distribu-
tion �(d) as functions of the noise correlation length λ and the
temperature σ : (a) the mean module length 〈d〉 and (b) the variance
of �(d).
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The skewness grows with σ from 0 to approximately 0.6
and saturates at this value. Fortunately, the asymmetry proved
to be small enough, so the other parameters are still physically
meaningful. The dispersion of distribution �(d) grows with
increasing σ [Fig. 8(b)], which is expected diffusive behavior,
but the mean distance 〈d〉 also tends to grow [Fig. 8(a)], starting
from 〈d〉 ≈ d0. This fact, along with the nonzero skewness,
indicates that the underlying potential is asymmetric, and,
indeed, the presence of the repulsive Lennard-Jones core
provides the reflective barrier preventing two neighboring
beads from closing up. Conversely, the lengthening of dj is
still possible as the energy well is not as steep for dj > d0 as
in the opposite situation.

The spatial correlations in noise play an inhibitory role
for the process of the temperature dependent broadening
of �(d). Here λ �= 0 slows down the growth of both 〈d〉
and the dispersion of �(d). This effect can be explained
by the following reasoning. When a thermal bath imposes
noncorrelated, stochastic forces on beads j and j + 1, this
commonly results in a nonzero relative force stretching (or
shrinking) the module. However, when the noise is spatially
correlated, stochastic forces applied to beads become similar
at the length scale of λ, which significantly reduces the relative
forcing, and in turn, d is less affected by the noise.

IX. POLYMER UNFOLDING

The most unexpected effect that stems from the presence
of the spatial correlations in the noise is the spontaneous
linearization of the chain. Having defined angles ψj (t) in (18),
we have been able to obtain a marginal distribution of angles
�(ψ) depending on temperature σ and correlation length λ.
Similar to the previous section, the data have been collected
every 1/4 of a time unit, with the resolution of the histogram
set to 1◦. The representative selection covering the entire range
of tested parameters is presented in Fig. 9.

The temperature evolution of distribution �(ψ) gives
an insight into how the angular degrees of freedom are
freed with the rise in temperature. Let us analyze the λ =
0 case first. For low temperatures (σ < 10) we obtain a
symmetric bimodal distribution, which is in accordance with
the predictions of the double-minimum energetic landscape.
However, for extremely low temperatures (σ < 3) one can
see four distinct peaks, which indicates that, probably, there
are two additional minima. We can suppose that they are
shallow, as they disappear quickly with the rise in σ . For
temperatures from σ = 5 to σ = 13 the increased penetration
of the energy barrier region is noticeable, and the third
peak appears exactly at ψ = 180◦. At σ = 13 the two peaks
indicating energy minimums can no longer be distinguished,
and from then on, the shape of the distribution gradually
transforms from a bell-like curve into a triangle profile,
which is completed approximately for σ = 100. After that,
the distribution broadens systematically with the increase in
temperature.

The introduction of λ �= 0 affects �(ψ) in a subtle, but
remarkable, way. In the low noise regime (σ < 25) the increase
in λ retards the temperature evolution of �(ψ), so the bimodal
profile is preserved in a wider interval of σ . However, when σ

exceeds 50, the profile transforms into a heavy-tailed peaked

FIG. 9. The temperature evolution of angle distribution �(ψ) for
noise correlation length λ = 0, λ = 20, and λ = 40.
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FIG. 10. The dispersion of distribution �(ψ) as a function of the
noise correlation length λ and the temperature σ .

distribution, much more concentrated in the vicinity of ψ =
180◦ than in the case of λ = 0. The dispersion of �(ψ) is
a measure of this effect, which shows that the higher λ is,
the lower the value of �(ψ)’s second central moment is. This
indicates the linearization of the chain and thus its unfolding.
This is illustrated in Fig. 10.

The single-peaked distribution with 〈ψ〉 = 180◦ indirectly
suggests that for high temperatures the system selects the
single-minimum energetic configuration similar to the one
shown in Fig. 2(b) rather than the double-minimum landscape
in Fig. 2(a). Knowing that the growth of the distance lj =
|�rj+1 − �rj−1| is a crucial factor in the merging of energetic
minima, we can suppose that lj is subject to interplay similar
to dj , namely, the repulsive cores do not allow beads j − 1 and
j + 1 to close up, while the stretching of lj is still possible.

With sufficiently high noise, this asymmetry could lead to the
rise in 〈l〉 and the domination of the single-minimum potential
topology. This transition seems inherent to the system, and
it is present regardless of the spatial correlations in noise.
Nevertheless, once the single-minimum state prevails, the bead
can explore the well, provided there is enough relative forcing,
and for λ �= 0 this forcing drops dramatically. As a result,
despite the high noise amplitude, the bead is trapped near the
minimum, so the angles between modules cannot vary as much
as in the noncorrelated case. This leads to a narrowing of �(ψ)
around ψj = 180◦.

X. SUMMARY

Summarizing our research, the most salient conclusion one
can draw is that spatial correlations in thermal noise have
an overall inhibitory effect on the system. This manifests
in the general attenuation of the chain geometry dynamics
both in the time domain, where the polymer tends to preserve
its current shape, and in the temperature domain, where the
evolution of the statistical chain properties is retarded. It is
also in agreement with our previous findings that the presence
of nonzero correlations reduced the ability of the chain to
transfer between different conformations [13].

Such a behavior is not a surprise, as we can perceive the
introduction of the spatial correlations into the thermal bath
as a freezing of environment, and in the limit λ → +∞, this
should also lead to the complete attenuation of the system
dynamics. In this context, it is not solely the temperature
of the thermal bath that influences the system behavior but
also the structure of the environment. Our approach, which
decouples the temperature from the environmental correlation
length, allows for more plasticity than the explicit simulation
of thermal bath particles but requires proper scaling to avoid
unphysical situations.
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