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Constructive role of noise in signal transmissions by biomembrane proteins
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We discuss new examples of the constructive role of environmental fluctuations in biophysical processes,
namely quantitative enhancement and qualitative sharpening of the outgoing signal in the intercellular signal
transduction, e.g., in the synaptic links. An experimental check in a chemical flow reactor is suggested.
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I. INTRODUCTION

Although the idea ofa constructive role of noise and fluc
tuationsseems paradoxical at first sight, the impact of intr
sic noise~spontaneous fluctuations! on various processes i
gaining more and more attention. Indeed, for real syste
noise is never strictly zero, and in mesoscopic systems
particular in biological ones, noise may play a dominant r
in the kinetics because more or fewer random fluctuation
physical and chemical parameters are inherent to the e
ronment of biologically important proteins, especially tho
embedded within membranes of living cells. In fact, the s
gestion that ‘‘the noise may be a source of order rather t
disorder’’ and that ‘‘a biological organism makes use
energy-driven fluctuations for the purpose of signal and fr
energy transduction’’ was put forward about ten years ago
Astumianet al. @1#. This suggestion was later discussed
more detail by the present author@2#. Serious discussion o
the constructive role of noise in biophysical and biochemi
processes began a few years ago@3# and at present it seem
to be a well-established idea@4#.

The best known phenomena in this respect are the fam
stochastic resonance@5# and molecular motors~Brownian
ratchets! @6#, although there are other manifestations, su
as, e.g., noise-induced phase transitions@7#, noise-induced
resonances@8#, fluctuating barrier kinetics@9,10#, noise-
enhanced stability@11# and synchronization@12#, propaga-
tion of signals in nonlinear noisy environments@13,14#,
noise-sustained oscillations in subexcitable media with
threshold@15#, etc.

In this paper, we report another phenomenon in wh
noise helps in transmitting signals. We are going to sh
that, when the incoming signal~driving field! is coupled to
the transmitting process in a multiplicative way, the additi
of multiplicative noise improves the outgoing signal~trans-
mitter’s response! both quantitatively and qualitatively. It is
noteworthy that in most cases of the constructive role
noises in signal transmission discussed so far, the incom
signal is additive in the transmitter’s kinetics. On the oth
hand, parametric couplings of the external signal~driving
field! to the ‘‘transmitter’’ ~kinetic process! exist typically in
biological systems, in particular in processes governed
enzymes embedded in cell membranes that are coupled t
membrane electric potential@1,2#. Therefore, the effect dis
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cussed below may be of relevance for signal transductio
living organisms.

This paper is organized as follows. A biological motiv
tion for considering the type of models discussed in
present paper, as well as their connection with experime
data, is briefly presented in Sec. II. The constructive role
noise in transmitting signals is discussed for a realistic mo
of a membrane-protein system in the same section, and
for a simplified ‘‘skeletal’’ model in Sec. III. This simplified
model, however, offers the possibility of a more thorou
analysis. A brief discussion is presented in Sec. IV. A ske
of a proposed experimental verification of the theory p
sented here is offered in Appendix B, and mathematical
tails are presented in two other Appendixes.

II. A MEMBRANE-PROTEIN SYSTEM

Random fluctuations and periodic oscillations of physi
and chemical parameters are inherent to the environmen
many proteins, particularly those embedded within the me
branes of living cells. One parameter particularly relevant
membrane enzymes is the membrane potentialc, which is
typically between 50 and 250 mV@2#. The effects of a static
external field on enzyme kinetics and thermodynamics
well known. Oscillating, both regular and random, extern
fields ~ac fields! can cause an enzyme to drive a reacti
away from equilibrium@1#: The main requirement is tha
some enzyme conformational transitions be influenced by
field and that the fluctuations in the field be driven by
free-energy dissipating process. As a result, enzymes sh
be capable of transducing free energy from external fluct
tions in their environment. Macroscopic fluctuations of t
membrane potential of650 mV have been observed expe
mentally@1#, and even larger stochastic oscillations may w
occur in the vicinity of ion channels and membranes. F
thermore, large-amplitude oscillations of the membrane
tential are relatively simple to attain experimentally due
the fact that an externally applied field is amplified acro
closed-cell membranes. These facts present a biological
tivation for including large fluctuations in any realistic mod
of a protein molecule embedded in a cell membrane.

Consider such a molecule~an enzyme E! embedded in the
synapse linking the neurons. The protein can be in sev
distinct internal states. The simplest~two-state! model of the
enzyme–governed process, describing the effect of a var
electric field on the action and efficiency of the membra
enzymes@1,2,16,17#, can be written schematically as
©2001 The American Physical Society05-1
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E1S1

1
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2

@E*S#
3

�
4

E1S2, ~2.1!

Ṗ52~k1S11k21k31k4S2!P1k21k3 , ~2.2!

whereP(t) is the probability of the enzyme being in the sta
E @12P(t) is the probability of the enzyme being in th
state E* S#, Sj are concentrations of substances Sj , andkj are
the effective@18# rate coefficients for processes symboliz
by arrows in the scheme~2.2!. A crucial property of the
model is the dependence of these coefficients on the m
brane electric potentialc(t)5ce(t)1j(t), composed of an
external field~incoming signal! ce(t) and intrinsic fluctua-
tions j(t) @2# ~the static part is included in the coefficien
a j ):

kj5a jexp$2D jc~ t !%. ~2.3!

This model, proposed about ten years ago@16# and later
extended to include intrinsic fluctuations@2#, describes the
kinetics of an enzyme cycle under the influence of an al
nating~ac! electrical fields. Its main features are~i! the mem-
brane electric potentialc(t) plays the role of a potentia
barrier ~Arrhenius activation energy!, ~ii ! c(t) is composed
of an external driving field~input signal! and of intrinsic
fluctuations, therefore both the signal and the noise enter
kinetic equation in a multiplicative~nonlinear! way, and~iii !
the membrane potential fluctuations are composed of
sidual~endogenous! noise~mostly thermal! and noise created
by the induced activity of nearby ionic channels.

The compatibility of this model with reality has bee
checked by one of the present authors@2# by comparing its
predictions with experimental data on the average curren
Na1 ions pumped by Na12K12ATPase induced by an ex
ternal ~sinusoidal or random! ac field in human erythrocyte
@19#. It should be noted that the two-state model witho
fluctuations of the membrane potential is unable to reprod
these data. A more involved, four-state model has also b
proposed@20#, but this model without fluctuations canno
reproduce the experimental data either.

We expect that the model~2.2! and~2.3! can also be used
for a description of the intercellular signal transmission, e
in the synapses linking neurons: Since the model works w
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for the transport phenomena, it should describe the sys
composed of the membrane potential, the protein, and
neurotransmitter at least qualitatively equally well, as t
biological mechanisms responsible for the two phenom
are similar@21#. The electric signal~a spike in the membrane
potential! causes the membrane protein complex E* S to re-
lease the neurotransmitter S2 into the synapse space. Th
latter is caught by proteins on the other side of the synap
releasing the electric spike~s! in the dendrite~s! of other neu-
ron~s! forming the synapse. In the scheme~2.2!, the state
@E* S# is binding~synthesizing! and state E releases the ne
rotransmitters. Thus the outgoing signal will be proportion
to the probabilityP(t) of the protein being in the state E.

There are no data on the kinetic parameters (a j , D j ) for
synaptic proteins. Therefore, to keep our modeling as rea
tic ~though simplified! as possible, we shall use the values
these parameters determined for another membrane enz
viz., Na1-K1-ATPase@2#, expecting them to be not ver
different from these involved in the signal transmission, t
more so that this ATPase is one of the key enzymes resp
sible for neural conduction. These parameters areS1a1
5270 s21, a254.0 s21, a350.11 s21, S2a455.4 s21,
D152D251.74, andD452D352.62. With these values
the characteristic time~relaxation timet r) of the kinetics
~2.2! is of the order of magnitude of ms.

The fluctuationsj(t) are approximated by the dichoto
mous noise,

j~ t !P$D,2D%, j2~ t !5D2, ~2.4!

^j~ t !&50, ^j~ t !j~ t1t!&5D2exp~2Lt!. ~2.5!

Note that since there is an exponential dependence of the
coefficients ~2.3! on the noise, modeling the latter by
Gaussian white noise would be clearly unphysical. Due
the property~2.4!, the rate coefficients and the kinetic equ
tion can be written as

kj5a jexp~2D jce!S coshD jD2
1

D
j~ t !sinhD jD D ,

~2.6!

Ṗ~ t !52@ f 1~ t !1 f 2~ t !j~ t !#P~ t !1 f 3~ t !1 f 4~ t !j~ t !.
~2.7!

with
f 1~ t !5a1S1exp„2D1ce~ t !…coshD1D1a4S2exp„2D4ce~ t !…coshD4D1 f 3~ t !, ~2.8a!

f 2~ t !52
1

D
@a1S1exp„2D1ce~ t !…sinhD1D1a4S2exp„2D4ce~ t !…sinhD4D#1 f 4~ t !, ~2.8b!

f 3~ t !5a2exp„2D2ce~ t !…coshD2D1a3exp„2D3ce~ t !…coshD3D, ~2.8c!

f 4~ t !52
1

D
@a2exp„2D2ce~ t !…sinhD2D1a3exp„2D3ce~ t !…sinhD3D#. ~2.8d!
5-2
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CONSTRUCTIVE ROLE OF NOISE IN SIGNAL . . . PHYSICAL REVIEW E 64 011905
The solution of Eq.~2.7!, averaged over the noise, can
found using a theorem by Shapiro and Loginov@22#—see
Appendix A for details. Further analysis depends on
shape of the input signal~external driving! ce(t).

A typical situation in the interneuronal signal transm
sion is the arrival of a single short spike in the action pot
tial ~input signal!. We shall represent it by the rectangul
pulsece(t)5bf(t) with

f~ t !5H 1 if tP@ t i ,t f #,

0 otherwise.
~2.9!

In this case, the numerical calculations are rather sim
The influence of the noise~membrane potential fluctuations!
on the shape and intensity of the response~outgoing signal!,
i.e., of ^P(t)&, is shown in Fig. 1 for a relatively long dura
tion ~50 ms! of the pulse. It is easily seen that the presence
noise improvesboth the intensity and the shape of the o
going signal. The increase of intensity depends on the p
duration. Figure 2 shows the relative gain as the function
impulse widthd: for short pulses~about a few ms!, the gain
is considerable, about 30%. Figure 1 shows also that,
broader pulses, there is an improvement in the shape o
output signal: the noisy response attains its maximal va
faster than the noiseless one. Both of these counterintu
effects—quantitative enhancement and qualitative sharp
ing of the outgoing signal—are unexpected new example
the constructive role of the environmental fluctuations in
biophysical processes.

A similar conclusion can be reached also for the conti
ous input signal in the form of a sinusoidal wave. The fo
mulas in this case become rather involved and the results
the kinetics~2.7! will be reported elsewhere. Note also th
knowing the response of this system to a strictly perio
signal is probably of lesser importance as one seldom
counters such excitations in a realistic biological context

III. SKELETAL SYSTEM

The phenomenon described above can also be dem
strated in the simplest possible situation~the ‘‘skeletal’’ sys-
tem! composed of a linear transmitter perturbed by indep
dent Gaussian white noises:

FIG. 1. Shape of outgoing signal in the absence~lower curve,
D250) and presence~upper curve,D252.0) of the noise. Timet
@t r . Note that the noise increases the background~dotted lines!.
L54 ms21.
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Ẋ~ t !52@a1 f ~ t !1h1~ t !#X~ t !1B1h2~ t !, ~3.1!

wherea.0; B are constants;h1,2(t) are the noises,

^h i , j~ t !&50,̂ h i~ t !h j~ t8!&5Di
2d i j d~ t2t8!, i , j 51,2;

~3.2!

and f (t) is an external field~the incoming signal! being
transmitted. In the following, we will takef (t) to be either
the rectangular pulse or the continuous sinusoidal signa
the latter case the system’s response~the outgoing signal!
will be averaged over the initial phase of the incoming s
nal.

The reason for studying such a simple system as the fl
~3.1! is twofold. First, it is clear that if constructive effects o
noise appear in such a simple system, they will also app
in more complicated ones, without phase-averaging, in n
linear cases, and for nonequilibrium~colored, coupled, non-
Markovian, etc.! noises. Second, such a system can mo
various chemical reactions and thus can be easily real
experimentally in a flow reactor with variable influxes~see
Appendix B and, e.g.,@23#!, thus allowing for an experimen
tal check of the theory presented here.

A formal solution to Eq.~3.1! reads

X~ t !5expF2E
0

t

@a1 f ~ t8!1h1~ t8!#dt8GX0

1E
0

t

expF2E
t8

t

@a1 f ~ t9!1h1~ t9!#dt9G
3@B1h2~ t8!#dt8. ~3.3!

It is easy to see that the response of the system~3.1! to the
additive random driving is also random and therefore v
ishes in the mean. Thus the term containingh2 in Eq. ~3.3!
gives no contribution to the average ofX(t), but its effects
do not vanish in the correlation̂X(t)X(t1t)&,

^X~ t !&5e2[ 2(1/2)D1
2] texpFa2E

0

t

f ~ t8!dt8GX0

1BE
0

t

e2[a2(1/2)D1
2]( t2t8)expF2E

t8

t

f ~ t9!dt9Gdt8,

~3.4!

FIG. 2. Relative gainh(D2)2h(0)/h(0) (h is the maximal
height of the outgoing signal, cf. Fig. 1! as a function of the dura-
tion d5t f2t i of the incoming signal.
5-3
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A. FULIŃSKI AND P. F. GÓRA PHYSICAL REVIEW E 64 011905
where the well-known fact has been used that for a Gaus
white noise

K expF6aE
t1

t2
h i~ t8!dt8G L 5expF1

2
a2Di

2~ t22t1!G .
~3.5!

Note that fora,D1
2, the system is formally divergent.

Further details depend on the shape of the incoming
nal f (t).

A. The rectangular pulse

The incoming signal has the form~2.9!. A constant exter-
nal forcingB5” 0 is now necessary to keep the transmitter
an active state. Calculations with the signal~2.9! are elemen-
tary and give

^X~ t !&5e2btX01
B

b
~12e2bt!, ~3.6a!

^X~ t !&5e2bte2b(t2t i )X01
B

b
~e2b(t2t i )2e2bt!

1
B

b1b
~12e2(b1b)(t2t i )!, ~3.6b!

^X~ t !&5e2bte2b(t f2t i )X0

1
B

b
~11e2b(t2t i )2e2b(t2t f )2e2bt!

1
B

b1b
~e2b(t2t f )2e2b(t2t i )e2b(t f2t i )!,

~3.6c!

with b5a2 1
2 D1

2 for t,t i , t i,t,t f , and t f,t, respec-
tively. Typical responses are shown in Fig. 3. It is clear t
for t large enough, the system, prior to the arrival of t
pulse, would rest in its stationary stateB/b ~this is an aver-
aged effect: any specific realization would oscillate random
around this value!, then it would start to grow, and eventu
ally it would start to decay back to the stationary state a
the pulse has ended. Note that the magnitude of the resp
increases with the noise levelD1

2. However, the skeletal sys
tem ~3.1! is a poor transmitter, much worse than the prot
system of Sec. II; in particular, the shape of the incom
pulse is reproduced badly. This improves slightly for puls
of longer duration@cf. Fig. 3~b!#.

B. Oscillatory external driving

In this case, the incoming signal has the form of a sin
soidal wave:

f ~ t !5bVcos~Vt1f!, ~3.7!
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and we put the constant backgroundB50 as in this case its
presence is not necessary for the system to be able to
spond. The response of the system, averaged over the n
realizations, is now

^X~ t !&5KexpF2E
0

t

@a1bVcos~Vt81f!1h1~ t8!#dt8G L X0

5e2[a2(1/2)D1
2] texpF22bsin

1

2
VtcosS 1

2
Vt1f D GX0

5e2[a2(1/2)D1
2] texp$b@sinf2sin~Vt1f!#%X0 , ~3.8!

where Eq.~3.5! has been used; averaging overh2 produces a
zero mean value. Note that ifD1

2.a, the system is formally
divergent. More interesting results can be obtained from
correlations of Eq.~3.3! with Eq. ~3.7! and B50. In this
case, the correlations approach a stationary state:

^^X~ t !X~ t1t!&&→ t→`^^X2~t!&&st

5D2
2e2[a2(1/2)D1

2)tE
0

`

dt8e22(a2D1
2)t8I 0

3H 4bsinF1

2
V~t1t8!G J . ~3.9!

Here thê ^•••&& stands for averaging over realizations of t
noisesh1 ,h2 first, and then averaging over the initial phas
f, of the incoming signal.I 0 is a modified Bessel function
see Appendix C for details. Although any further quantitati
analysis of Eq.~3.9! needs to be done numerically, one thin
is clear: ^^X2(t)&&st does not vanish for anyD2

2.0 even
though the average~3.8! decays as time goes to infinity
rather than that, it displays damped oscillations for appro
ate values of the parameters.

This result is seemingly paradoxical. Indeed, the addit
noise h2 does not show upon the average, but any indi-
vidual trajectory~realization! feels its presence even for ver
large timest and fluctuates. These fluctuations are capable
exhibiting correlations echoing signatures of the input sign

The form of Eq.~3.9! might suggest that the basic fre
quency has somehow shrunk fromV to 1

2 V. In fact, this is
not the case as the modified Bessel functionI 0 has only even
powers of its argument in its Taylor expansion, and Eq.~3.9!

depends actually on sin21
2Vt. The original frequency of the

driving signal is thus restored.
The correlations are related through the Wiener-Khinc

theorem to the power spectrum of the processX(t). The
stationary power spectrum averaged over the initial phas
the incoming signal is

S~v!5E
0

`

cos~vt!^^X2~t!&&stdt. ~3.10!

It is a directly measurable quantity, allowing for an expe
mental check of the theory presented here. In the trans
~short-time! regime, or without thef averaging, the system
is nonstationary and the correlation function^X(t)X(t1t)&
5-4
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FIG. 3. Response of the skeletal system~3.1!
to the pulse input signal averaged over the no
realizations.~a! Dashed line, the incoming signa
solid lines, top to bottom the responses withD1

2

50.0, 0.1, 0.5, 1.0, and 1.5, respectively. Th
signal duration ist f2t i52.0. Other parameters
area5B51.0, b51.1. ~b! Same as~a! but with
signal durationt f2t i512.0.
tim
ill

n
th
th
c
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e
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nal
as well as the corresponding power spectrum depend on
t; nevertheless, the nonstationary power spectrum is st
directly measurable quantity~see, e.g.,@24#!.

In the transient regime, the multiplicative noise sharpe
the outgoing signal in the absence of the additive noise;
effect is clearly visible even after the averaging over
initial phase,f ~Fig. 4!. The stationary outgoing periodi
signal is also sharpened in the presence of the additive n
~Fig. 5!, but the effect is weaker than in the transient regim
Still, in the stationary case an increase in the noise powerD1

2

for 0 to 0.4 results in an increase~weakly exponential! of the
signal peak heighth of about 35%, and in a decreas
~roughly linear! of its width D at 1

2 h of about 18%. The
height of the central peak, representing the output noise
the transmitter itself, increases much faster, and the widt
it decreases slightly slower than those of the signal pe
Note also that the correlations depend strongly on the am
tude of the driving signal. For small amplitudes, there
essentially no correlations, just a Debyean peak forv50.
For larger values of the amplitude, correlations echoing
01190
e
a

s
is
e

ise
.

of
of
s.
li-
e

e

FIG. 4. The effect of sharpening of the transient outgoing sig
by multiplicative noise in the absence of additive noise.a5b51,
V52.5, Vt5p. Overbar means the average over initial phasef.
5-5



en
th

on
tiv
ea

th
m
e

ig
f t
th
a

se
o

ng
nd

tiv

r
it

d.

pe
ve

-
s he
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periodicity of the input signal start to show up. For ev
larger amplitudes, second and even third harmonics of
input signal appear.

Let us compare these results with those for the n
f-averaged case. First, in the absence of the multiplica
noise but with the additive noise present, correlations app
but they are very weak~Fig. 6!. When the multiplicative
noise level increases, the correlations become larger~Fig. 7!.
For large times, the correlations grow even larger and
system exhibits stationary oscillations as a function of ti
~Fig. 8!. A similar effect occurs also when the multiplicativ
noise is absent but the stationary oscillations are smaller~not
plotted! than those with the multiplicative noise present. F
ures 6–8 share a common scale for the convenience o
reader. It is clear that without initial phase averaging,
multiplicative noise acts constructively on the correlations
their amplitude gets larger with increasing levels of noi
The correlations are sustained by the additive noise; with
it the system would quickly go to a flat zero value.

The multiplicative noise effectively reduces the dampi
constanta, or lengthens the effective relaxation time, a
thus destabilizes the processX(t) and ‘‘sensitizes’’ it to the
incoming signal. On the other hand, the action of the addi
noise ~the sustaining of the output signal! is similar to the
effect of the addition of a constant external fieldB to the
right-hand side of Eq.~3.1!. However, the effect of the latte
would remain visible also in the behavior of the process
self: ^X(t)&Þ0 for t→0 in the presence of the external fiel

FIG. 5. The effect of sharpening of the stationary outgoing
riodic signal by multiplicative noise in the presence of additi
noise.~a! Height h ~in units of D2

2), ~b! width D at 1
2 h of the main

peaks of the stationary frequency spectrum.a51, b52, V512. N
denotes the central peak~output noise!, Sdenotes the outgoing sig
nal at frequencyV, and I and II are its first and second harmonic
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FIG. 6. Time-dependent correlations~a! and the corresponding
time-dependent power spectrum~b! of the skeletal system in the
absence of the multiplicative noise,D1

250, not averaged over the
initial phase,f. Other parameters area51, b51.3, V512, D2

2

51, f50. Time, t, starts at zero and covers two periods of t
input signal.

FIG. 7. Same as in Fig. 6, but withD1
250.5.
5-6
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IV. DISCUSSION

We have shown that multiplicative noise can enhan
both qualitatively and quantitatively, the output of a realis
model of an enzyme-protein system and of a simplified,
still realistic~cf., Appendix B!, ‘‘skeletal’’ system: When the
driving field ~the incoming signal! is coupled to the transmit
ting process in a multiplicative way, the addition of a mul
plicative noise improves the outgoing signal. In many cas
the constructive role of noise manifests itself only when
fluctuations are of a nonequilibrium nature@6,7#. In this re-
spect, it is worth stressing that the effects reported here
induced also by the Gaussian white noises, which repre
standard equilibrium thermal fluctuations, and do not van
after averaging over the initial phase of the input signal.

These effects are related to the stochastic resonance@5#;
this relation will be further clarified elsewhere.

Note that while our model equations of motion~2.7! and
~3.1! are formally linear with time-dependent coefficients
multiplicative coupling between the noise and the syst
means a ‘‘hidden’’ nonlinearity: The noise is supposed
represent many unobserved degrees of freedom couple
the transmitting process in a nonlinear manner.

Linear transmitters of periodic or single-pulse, signals c
be realized experimentally in simple chemical reactions i
flow reactor with variable influxes@23#. This would allow for

FIG. 8. Same as in Fig. 7, but time,t, starts att51000 and
covers two periods of the input signal. For fixed values oft in ~a!
and f in ~b!, the system exhibits stationary oscillations int.
01190
,

t

s,
e

re
nt
h

to

n
a

an experimental check of our results on both systems: s
etal, Eq.~3.1!; and full, Eq.~2.7!.
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APPENDIX A: AVERAGE RESPONSE OF THE
MEMBRANE-PROTEIN SYSTEM

Given the kinetic equation

dP~ t !

dt
52@ f 1~ t !1 f 2~ t !j~ t !#P~ t !1 f 3~ t !1 f 4~ t !j~ t !,

~A1!

where the noisej(t) is defined through Eqs.~2.4! and~2.5!,
we will now find an expression for the average outp
^P(t)&. Obviously,

d

dt
^P~ t !&52 f 1~ t !^P~ t !&2 f 2~ t !^j~ t !P~ t !&1 f 3~ t !.

~A2!

Using the Shapiro-Loginov theorem@22#, we find that

d

dt
t^j~ t !P~ t !&52L^j~ t !P~ t !&1 K j~ t !

dP~ t !

dt L ~A3!

and we substitute Eq.~A1! in the above expression to get

d

dt
^j~ t !P~ t !&52L^j~ t !P~ t !&12 f 1~ t !^j~ t !P~ t !&

2 f 2^j~ t !j~ t !P~ t !&1 f 4^j~ t !j~ t !&

52D2f 2~ t !^P~ t !&2@L1 f 1~ t !#^j~ t !P~ t !&

1D2f 4~ t !, ~A4!

where the fact that̂j(t)&50 andj2(t)5D2 has been used
With abbreviationsu(t)5^P(t)& and v(t)5^j(t)P(t)&/D
we obtain the following linear equation:

d

dt Fu

vG52F f 1~ t ! D f 2~ t !

D f 2~ t ! L1 f 1~ t !
GFu

vG1F f 3~ t !

D f 4~ t !
G . ~A5!

A formal solution to Eq.~A5! reads
5-7
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Fu~ t !

v~ t !
G5e2A(t,0)Fu0

v0
G1E

0

t

e2A(t,t8)F f 3~ t8!

D f 4~ t8!
Gdt8, ~A6!

where

A~ t,t8!5F F1~ t,t8! DF2~ t,t8!

DF2~ t,t8! L~ t2t8!1F1~ t,t8!
G , ~A7!

F1~ t1 ,t2!5E
t2

t1
f 1~ t8!dt8, F2~ t1 ,t2!5E

t2

t1
f 2~ t8!dt8,
01190
and@u0 ,v0#T represent the initial conditions. Eigenvalues
A(t,t8) are

l75F1~ t,t8!1
1

2
L~ t2t8!7

1

2
AL2~ t2t8!214D2F2

2~ t,t8!.

~A8!

Note that both these eigenvalues are properly defined fo
possible values oft, t8. Diagonalization ofA(t,t8), and
therefore finding its exponential, is now straightforward,
exp„2A~ t,t8!…5e2[F1(t,t8)1(1/2)L(t2t8)]F 1

2
C~ t,t8!1

L~ t2t8!

2F~ t,t8!
S~ t,t8! 2

2DF2~ t,t8!

F~ t,t8!
S~ t,t8!

2
2DF2~ t,t8!

F~ t,t8!
S~ t,t8!

1

2
C~ t,t8!2

L~ t2t8!

2F~ t,t8!
S~ t,t8!

G , ~A9!

where

F~ t,t8!5AL2~ t2t8!214D2F2
2~ t,t8!,

C~ t,t8!5coshF1

2
F~ t,t8!G , S~ t,t8!5sinhF1

2
F~ t,t8!G .

Finally, collecting all terms, we get

^P~ t !&[u~ t !5e2[F1(t,0)1(1/2)Lt]F S 1

2
C~ t,0!1

Lt

2F~ t,0!
S~ t,0! Du02

2DF2~ t,0!

F~ t,0!
S~ t,0!v0G

1E
0

t

e2[F1(t,t8)1(1/2)L(t2t8)] H S 1

2
C~ t,t8!1

L~ t2t8!

2F~ t,t8!
S~ t,t8!D f 3~ t8!2

2D2F2~ t,t8!

F~ t,t8!
S~ t,t8! f 4~ t8!J dt8.

~A10!
b-
APPENDIX B: CHEMICAL REACTIONS MODELED BY
THE SKELETAL SYSTEM

Consider a reaction written schematically as

in
X→

c1~ t !

X
k1

�
k2

Y
X,Y→

c2~ t !

out, ~B1!

wherec1(t) andc2(t) are the influx to and the outflux from
the flow reactor@23#, respectively. The kinetics is given by

Ẋ5c1~ t !2k1X1k2Y2c2~ t !X, ~B2!

Ẏ5k1X2k2Y2c2~ t !Y. ~B3!

It follows immediately that

Ẋ1Ẏ5c1~ t !2c2~ t !~X1Y!, ~B4!

and consequently
Y~ t !5e2C2(t,0)~X01Y0!1E
0

t

e2C1(t,t8)c1~ t8!dt82X~ t !,

~B5!

where

C i~ t,t1!5E
t1

t

c i~ t9!dt9

and X0 ,Y0 represent the initial concentrations of the su
strates. Plugging Eq.~B5! back into Eq.~B2!, we see that

Ẋ52 f 1~ t !X1 f 2~ t !, ~B6!

where f 1(t), f 2(t) are built from the fluxesc1,2 and the rate
constantsk1,2. Note that Eq.~B6! has a formal structure
identical to that of Eq.~3.1!.
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Concentrations of substrates in a flow reactor can ea
be varied, both periodically and randomly. The react
~B1! can in reality mean conversion ofX to Y on a solid
catalyst, on an electrode, or induced by light. In the lat
two cases, the reaction ratesk1,2 can further be varied, ran
01190
ly

r

domly or in an oscillatory manner, by changing the electro
potential or the intensity of light, thus facilitating the var
ability of the functionsf 1,2(t), which in turn should render
an experimental check of the theory presented in this pa
relatively easy.
.
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he
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APPENDIX C: CORRELATIONS IN THE SKELETAL SYSTEM

The correlation function of a system whose formal solution is given by Eq.~3.3! reads

^X~ t !X~ t1t!&5K expF2E
0

t

dt1@a1 f ~ t1!1h1~ t1!#2E
0

t1t

dt2@a1 f ~ t2!1h1~ t2!#G L X0
2

1K E
0

t

dt1E
0

t1t

dt2expF2E
t1

t

dt9@a1 f ~ t9!1h1~ t9!#2E
t2

t1t

dt9@a1 f ~ t9!1h1~ t9!#Gh2~ t1!h2~ t2!L .

~C1!

Since the noisesh1 ,h2 are independent and uncorrelated, the mixed terms, which contain a singleh2, produce a zero average
Furthermore, because^h2(t1)h2(t2)&5D2

2d(t12t2),

^X~ t !X~ t1t!&5expF22E
0

t

@a1 f ~ t8!#dt82E
t

t1t

@a1 f ~ t8!#dt8G K expF22E
0

t

h1~ t8!dt82E
t

t1t

h1~ t8!dt8G L X0
2

1D2
2E

0

t

dt1E
0

t1t

dt2d~ t12t2!K expF2E
t1

t

dt9@a1 f ~ t9!1h1~ t9!#2E
t2

t1t

dt9@a1 f ~ t9!1h1~ t9!#G L .

~C2!

Because of thed term in Eq.~C2!, the double integral witht1,t, t2.t equals zero. Thus

^X~ t !X~ t1t!&5e22(a2D1
2)te2[a2(1/2)D1

2] texpF22E
0

t

f ~ t8!dt82E
t

t1t

f ~ t8!dt8GX0
2

1D2
2E

0

t

dt8K expF2E
t8

t

dt9@a1 f ~ t9!1h1~ t9!#2E
t8

t1t

dt9@a1 f ~ t9!1h1~ t9!#G L
5e22(a2D1

2)te2[a2(1/2)D1
2] texpF22E

0

t

f ~ t8!dt82E
t

t1t

f ~ t8!dt8GX0
2

1D2
2e22(a2D1

2)te2[a2(1/2)D1
2] texpF2E

t

t1t

f ~ t8!dt8G E
0

t

dt8e2(a2D1
2)t8expF22E

t8

t

f ~ t9!dt9G . ~C3!

In the derivation of Eq.~C3!, in addition to Eq.~3.5!, we have used the fact that an average of a product of functions de
on disjoint time intervals factorizes. For instance,

K expF2E
0

t

h~ t9!dt92E
0

t1t

h~ t9!dt9G L 5K expF22E
0

t1t

h~ t9!dt9G L K expF2E
t

t1t

h~ t9!dt9G L .

Finally,

^X~ t !X~ t1t!&5e2[a2(1/2)D1
2] texpF2E

t

t1t

f ~ t8!dt8G
3H e22(a2D1

2)texpF22E
0

t

f ~ t8!dt8GX0
21D2

2e22(a2D1
2)tE

0

t

dt8e2(a2D1
2)t8expF22E

t8

t

f ~ t9!dt9G J . ~C4!

We can see that the first term in curly brackets goes to zero ast→`, but the other does not, as the contribution to t
integral from the upper limit of integration cancels the exponent in time. We may thus conclude that the additive
prevents the correlations from decaying as time goes to infinity.
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In the case of a cosinusoidal input~3.7!, the correlation function~C4! can be further averaged over the initial phase of
input signal,f:

^^X~ t !X~ t1t!&&5
1

2pE0

2p

^X~ t !X~ t1t!&df

5
X0

2

2p
e2[a2(1/2)D1

2] t22(a2D1
2)tE

0

2p

exp$2a~ t1t,0!cos@b~ t1t,0!1f#%df

1
D2

2

2p
e2[a2(1/2)D1

2] t22(a2D1
2)tE

0

t

dt8e2(a2D1
2)t8E

0

2p

exp$2a~ t1t,t8!cos@b~ t1t,t8!1f#%df, ~C5!

where

a~ t1 ,t2!54bsin
1

2
V~ t12t2!, b~ t1 ,t2!5

1

2
V~ t11t2!. ~C6!

Since the integration overf runs over the entire period of the integrands, values of these integrals cannot depend onb, and
we can safely setb50. An integral representation of the modified Bessel functionI 0,

I 0~z!5 (
m50

`
~z/2!2m

~m! !2
,

can then be immediately recognized@25#. After collecting the terms, we get

^^X~ t !X~ t1t!&&5X0
2e2[a2(1/2)D1

2] te22(a2D1
2)tI 0„a~ t1t,0!…1D2

2e2[a2(1/2)D1
2] tE

0

t

dt8e22(a2D1
2)t8I 0„a~t1t8,0!…. ~C7!

If D1
2.a, the system is formally divergent. Denote the integral in Eq.~C7! by J(t,t). Note that

0,E
0

`

dt8e22(a2D1
2)t8I 0„a~t1t8,0!…2J~t,t !5E

t

`

dt8e22(a2D1
2)t8I 0„a~t1t8,0!…<

I 0~4b!

2~a2D1
2!

e22(a2D1
2)t ~C8!

and we conclude that the correlation function~C7! approaches exponentially a stationary state,

^^X~ t !X~ t1t!&&→ t→`D2
2e2[a2(1/2)D1

2] tE
0

`

dt8e22(a2D1
2)t8I 0H 4bsinF1

2
V~t1t8!G J . ~C9!
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