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Universal Character of Stochastic Resonance and a
Constructive Role of White Noise
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It is shown that, in spite of claims put forward in the literature, the stochastic
resonance (SR) appears even in linear systems��both overdamped and inertial
��driven by Gaussian white noise, and even after averaging the asymptotics
over the initial phase of the input signal. This supports recent suggestions that
SR is a universal effect present in every stochastic process modulated by external
signals. It is also shown that the noise may sustain the output signal which
otherwise would vanish exponentially in the course of time.
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1. INTRODUCTION

The idea of constructive role of noise and fluctuations, although seemingly
paradoxical, has gained recently considerable attention.(1) The best known
examples of phenomena in which random forces play a constructive role
are the stochastic resonance (SR)(2, 3) and, related to it, (4) molecular motors
(Brownian ratchets).(5)

SR is a phenomenon in which the response of a dynamical system to
an input signal is optimized by the presence of a specific level of noise. The
standard criterion for SR is the appearance of a peak in the signal-to-noise
ratio (SNR) (in the power spectrum) vs. input noise strength, whereas the
physics of this phenomenon is a significant change of some characteristics,
like the transmission of matter or information, due to the transfer of energy
from the stochastic field into some physical process, stimulated by external
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pumping noise, and appearing in some more or less narrow range of noise
intensity.

It has been believed for a long time that there are three essential
ingredients necessary for the onset of SR: bistability of the dynamical
system, periodic input, and intrinsic random forces. However, discovery of
aperiodic SR(3, 6) proved that also non-periodic signals can be enhanced by
the SR mechanism, and therefore the periodic forcing is not an essential
ingredient. SR has been also detected in monostable nonlinear systems, (7)

and in excitable systems with(8) and without(9, 10) threshold crossing; there-
fore bistability appears not to be essential, either. It has been discovered
recently that, unexpectedly, even nonlinearity is not necessary��the presence
of SR in linear enzymatic kinetics nonlinearly coupled both to a periodic
field and to noise was first suggested in ref. 11 and later discussed in more
detail in ref. 12. Biophysical and biochemical enzymatic processes are
highly complex and, in general, nonlinear. However, there is a commonly
used representation, the so-called Michaelis�Menten scheme, which is
linear in the enzyme probability states, nonlinearities being hidden in time-
dependent coefficients. This scheme can be rewritten as the linear kinetics
with both multiplicative and additive noise driving. First, explicit demon-
stration of SR in a simple linear system with multiplicative (parametric)
noise was given in ref. 13 and discussed more thoroughly in refs. 14 and 15.
Besides, linear SR (both periodic and aperiodic) has been proposed as a
plausible explanation(16) of experimental data of active transport of Na+

and Rb+ in human erythrocytes catalyzed by Na+&K+&ATPase, (17)

although the SR mechanism in the latter case is more complicated than in
the standard one: the noise intensity depends here on the intensity of the
external driving.(16) All these recent developments demonstrate that the SR
phenomenon does not depend on the barrier or threshold crossing, and
even on a nonlinear character of the process. Indeed, the SR has been
recently claimed to be just an inherent property of rate-modulated random
series of events.(10) The discovery of the linear SR (LSR) suggests that SR
is quite a universal phenomenon��the linear (relaxation) kinetics is the
final stage of most dissipative processes, and therefore the presence of SR
in the linear stage suggests the appearance of SR in earlier, nonlinear stages
as well. However, current literature claims that the appearance of LSR is
restricted: the noise needs to be multiplicative, the effect vanishes in the
Gaussian white noise (GWN) limit, (14) and vanishes after averaging over
the initial phase of the input signal (driving field).(15) The aim of this report
is to demonstrate that SR is a still more universal phenomenon than can
be judged from the up-to-date literature. In other words, for almost any
process driven by an external signal and internal or external noise one can
find some characteristics of the process, like the amplitude of the outgoing
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signal, or current, or the higher moments, or correlation functions, or some
combinations of such quantities, if not the direct SNR response itself,
which bear the signature of SR. For this aim we shall consider linear pro-
cesses driven by GWN only��it is obvious that the detection of SR due to
GWN implies the appearance of SR due to colored noises, too. The
calculations we present are provided to demonstrate the universality of SR,
and not for the purpose of presenting yet other examples of SR.

We follow the general procedure: (i) write the formal solution X(t)
to a model stochastic equation. (ii) construct the product X(t) X(t+{),
(iii) calculate the appropriate averages. In doing so, we repeatedly use the
fact that for GWN with ('(t) '(s))=D2

0$(t&s)

(ea �t2
t1

'(t$) dt$) =e1�2 a2D2
0(t2&t1) (1)

and the average of a product of two functions defined on disjoint time
intervals factorizes. Thus, for instance,

(ea �t
0 '(t$) dt$ea �0

t+{ '(t$) dt$)=(e2a �t
0 '(t$) dt$ea �t

t+{ '(t$) dt$)=e2a2D2
0 te1�2 a2D2

0{ (2)

This procedure produces rather lengthy intermediate formulas. For brevity,
we will mostly leave out details of the calculations. Averages (2) can also
be calculated for dichotomic noises, by obvious generalizations of methods
used in ref. 18.

2. THE OVERDAMPED TRANSMITTER

Let us begin with a simple case: the driven noisy relaxation with multi-
plicative noise:

X4 (t)=&(a0+'(t)) X(t)+Ai cos(0t+, i ) (3)

The reason for considering such systems is that in most enzymatic pro-
cesses the overdamped approximation works very well: the inertial term is
estimated to be about 10 orders of magnitude smaller than the ``friction''
term. The flow (3) has been discussed in refs. 13�15 and 19 for '(t) being
Gaussian and dichotomous noises. Contrary to claims put forward earlier,
we shall show that signatures of SR can be found in this system both for
Gaussian white noise (GWN) and after averaging over the initial phase ,i .
As the general formulas for the averages are lengthy, consider two special
cases: asymptotic state not averaged over the initial phase, and transient
behavior averaged over the initial state.

The solution of Eq. (3) can be written in the form

(X(t))= f (t)+Ao cos(0t+, i+,o) (4)
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where f (t) describes the transient behavior, and Ai , , i , Ao , ,o are
amplitudes and phases of the input and output, signals, respectively. Exact,
shapes of f (t), Ao , ,o depend on the type of noise '(t). Output parameters
for the GWN are(14, 15) (;=a0& 1

2 D2
0)

Ao=A i �- ;2+02, tan ,o=&0�; (5)

and the system is convergent if and only if ;�0. According to refs. 14 and 15,
this system exhibits SR for colored noises only. However, it is easy to verify
that Ao has a maximum at 1

2D2
0=a0 , i.e, at the limit of the convergence of

the process (X(t)) , and, moreover, that the amplitude-SNR, defined(14, 15)

as RA=Ao�A iD2
0 has two extrema at 1

2 D2
0= 1

4 (3a0\- a2
0&802), both

corresponding to the convergent (X(t)). This effect, however, indeed
vanishes after averaging over the initial phase, because of vanishing of the
oscillating component in Eq. (4).

Most direct definition of SNR is via the power spectral density S(|)
(cf. [ref. 1, Eqs. (2.12)�(2.13)]). In general S(|) can be written in the form:

S(|)=|
�

0
d{ cos(|{)(X(t) X(t+{)) (6)

which for the system (3) gives

S(|)=90(t)
;

;2+02+
1
2

?9c(t)[$(|+0)+$(|&0)]+9s(t)
|

;2&02

(7)

with the standard definition of SNR as

RS=9c<\90

;
;2+02+|=\0

(8)

Note, that since the flow X(t) is nonstationary, the spectrum (7) does depend
on both t and {. It is, nevertheless, a direct observable quantity, and proce-
dures for measuring power spectra of nonstationary signals are well known.(20)

General formulas for 90 , 9c are lengthy, but asymptotically (i.e.,
omitting terms which vanish in the limit t � �) we get

9 �
0 =

(;&:)(- (:+;)2+402&(:+;) cos(20t+2,i+2,� ))

2(:+;)(;2+02) - (:+;)2+402
(9)

9 �
c =

1+cos(20t+2,i+2.~ )
2(;2+02)

(10)
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where

tan(2,� )=&
20(02&;(:+2;))

(:+5;) 02&(:+;) ;2 (11)

tan(2.~ )=&
2;0

;2&02 (12)

:=a0&
3
2

D2
0 (13)

Note that the power spectrum (7), or indeed the variance of the process
(4), is properly defined only if a0&D2

0= 1
2 (:+;)�0.

Asymptotic SNR R�
s exhibits SR for some (rather narrow) time range

��see Fig. 1. The effects repeats itself with the period ?�0 and vanishes after
averaging over the initial phase. On the other hand, the averaging over the
initial phase does not destroy the non-asymptotic (transient) SR; we show
this transient effect in Fig. 2.

Fig. 1. Asymptotic (t � �) signal-to-noise ratio RS , Eq. (8). The effect repeats itself in time
with period ?�0.
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Fig. 2. Transient RS , Eq. (8), for linear process (3), averaged over the initial phase. a0=1,
0=0.05. The effect vanishes for higher frequencies 0.

On the other hand, when the input signal is coupled parametrically to
the process X(t) and the noise is additive:

X4 (t)=&[a0+Ai cos(0t+,i)] X(t)+'(t) (14)

the power spectrum has the form S(|; t)=SD+D2
0 SN , with SN � 0 for

t � � which implies the lack of conventional SR. (A nonlinear analog of
Eq. (14) leads to the monostable SR.(7)) Nevertheless there is an interest-
ing, never described so far, constructive effect of the presence of noise:
SN survives both the limit t � � and the ,i-averaging, i.e., the presence of
noise sustains the output signal (at frequency 0 and at higher harmonics!),
which otherwise, for a purely deterministic case, would vanish exponen-
tially in the course of time. Although there is no resonance��here is no
optimal noise level��this is still undoubtedly a cooperative effect between
the noise, the driving field, and the intrinsic (relaxation) kinetics. This
aspect will be discussed in detail elsewhere.
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The above effect seems to explain the appearance and persistence of
SR in the ``fully mixed'' linear case:(11, 12, 16)

X4 (t)=[ f1(t)+ f2(t) '(t)] X(t)+ f3(t)+ f4(t) '(t) (15)

where fi (t) are periodic functions of time, generated by a common external
periodic field. Such fully mixed model described, among others, the linear
enzymatic kinetics, and reproduces correctly(16)��in terms of SR between
the external field and the fluctuations of the membrane potential��the
experimental data on active transport of ions (catalyzed by Na+&K+&
ATPase) through biological membrane of human erythrocytes.(17) In the
model (15) the SR appears both for the averaged and for instantaneous
current in the asymptotic state, and both for noise level (fluctuations of the
membrane electric potential) induced in part by the external field(16) and
for noise level independent of the external field.(12) These results prove, that
the standard linear SR exists also in the averaged asymptotic state.

3. THE INERTIAL PROCESS

Consider now another example, the inertial process:

{X4 =(1+'(t)) V
V4 =&02(1+'(t)) X+b0

(16)

In the absence of noise, this is equivalent to the equations of motion of a
harmonic oscillator. There is no periodic driving in this case, and we may
only think of autonomous(21) SR. The formal solution for X(t) reads:

X(t)=X0 cos[0#(t, 0)]+
V0

0
sin[0#(t, 0)]+

b0

0 |
t

0
sin[0#(t, t$)] dt$ (17)

where

#(t, t$)#t&t$+|
t

t$
'(z) dz (18)

While calculating the appropriate averages for the process (17), we
repeatedly encounter expressions similar to

(sin[0#(t, t$)])=
1
2i

[(ei0(t&t$) ei0 �t
t$ '(z) dz)&(e&i0(t&t$)e&i0 �t

t$ '(z) dz)]

=e&1�2 02D0
2(t&t$) sin 0(t&t$) (19)

(cos[0#(t, t$)])=e&1�2 02D0
2(t&t$) cos 0(t&t$) (20)
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(cf. Eq. (2)). The calculations are elementary though tedious, and the
detailed formulas are lengthy. We will only present solutions in the
asymptotic regime, i.e., excluding terms which fall off exponentially with
t � �. In this regime

(X(t)) =
4b0

02(4+D4
002)

(21)

(X(t) X(t+{))

=
16b2

0

04(4+D4
002)2+2t

b2
0D2

0

02(4+D4
0 02)

cos 0{e&1�2 D2
002{

+
1
2 \X 2

0+
V 2

0

02+ cos 0{e&1�2 D2
002{

+
2b0

02(4+D4
002)

(V0 D2
0&2X0) cos 0{e&1�2 D2

002{

+
b2

0

04(4+D4
002)2 (1+D4

0 02)
[(D8

004&18D4
0 02&28) cos 0{

&D2
00(20+11D4

0 02) sin 0{)] e&1�2 D2
002{ (22)

We can see that while (X(t)) goes to a constant value, the correlation
function (22) diverges linearly with t � �. If we define:

Xs(t)=X(t)&
4b0

02(4+D4
002)

(23)

we can immediately see that for t � � but finite

(Xs(t))=0 (24a)

(X 2
s (t))=

2b2
0D2

0

02(4+D4
002)

t=2Dt (24b)

In other words, the process Xs(t) behaves asymptotically like a simple diffu-
sion. It is straightforward to see that from the point of view of the diffusion
process (24) there is an optimal level of noise, D2

0=2�0, which maximizes
the diffusion constant D. A similar effect can be seen in the power spectrum
of (22), which after removing the $(|=0) term corresponding to the con-
stant (zero frequency) external driving is for t large enough dominated by

S(|)=
2b2

0D4
0 t

02(4+D4
002) {

1
4(1&(|�0))2+D4

002+
1

4(1+(|�0))2+D4
0 02=

(25)
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Fig. 3. The power spectrum (25) of the dominating term in the correlation (22). Time t is
such that the exponentially vanishing contributions to the correlation function are negligibly
small. The scale of the S axis is determined by the current value of t. Other parameters are
b0=1.0, 0=1.0.

(cf. Fig. 3). Again we see that the diffusion constant in (24b) and the power
spectrum in the asymptotic regime both behave in a SR-like manner: they
are optimized by certain well-defined levels of noise.

4. DISCUSSION

We have shown that SR-like characteristics can be found even in
systems so far believed to be immune to that effect. It is worth to stress that
the effects reported here are induced by the Gaussian white noise, which
represents standard equilibrium thermal fluctuations.

One may ask what is the ``genuine'' SR. Barzykin et al.(15) claim that
it requires a maximum in the SNR (RS in our notation) in the asymptotical
state and after averaging over ,i . In the present authors' opinion such
requirements are much too strong: (i) Many effect vanish after averaging
(e.g., after stirring in spatially extended systems), but there is no reason to
deem them nonexistent or spurious. (ii) We have shown that transient SR
remains even after the ,i -averaging. One may ask in turn whether such
short-lived transient effects are relevant at all. Let us mention, therefore,
that there are situations when the process X(t) is repeatedly revived, e.g.,
in biologically important enzymatic processes. In such cases SR will be
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visible as repeating short time bursts of enhanced output signal, and also
in the increase of the time-averaged output signal when the revivals are suf-
ficiently frequent. (iii) Constructive role of noise may manifest itself not
only in the signal transmission, expressed through SNR��there are other
directly observable quantities like the amplitude Ao , Eq. (5), the currents in
refs. 16 and 17, or the diffusion constant (24b).

One more point deserves a brief discussion: Our model systems are
linear in the sense that their equations of motion are linear with time-
dependent coefficients, and thus one may be tempted to call the phenomena
discussed above a ``linear stochastic resonance.'' There is, however, a point
in observation that since noise is meant to represent many unobserved and
unaccounted for degrees of freedom��instead of considering impossibly
complicated microscopic motions, we mimic their effect by a reasonably
simple stochastic process��a multiplicative (nonlinear) coupling between
the stochastic process and the observed degrees of freedom means a ``hidden''
nonlinearity. This is certainly the case for instance in the Michaelis�Menten
scheme mentioned above. This is, in a sense, similar to a situation known
from the dynamical systems theory when one system is coupled to another
one which ``drives'' the former to a certain location in the phase space, but
there is no coupling back between the ``response'' system and the driving
one; see, for example, ref. 22 for a review.

Moreover, the responses of most the model systems discussed here to
the multiplicative stochastic term and to the external deterministic driving
are not separable��the time behavior resulting from the two signals (deter-
ministic and stochastic) acting together is not a linear combination of
behaviors resulting from each of them acting separately. It would be proper
to call a system ``linear'' if its response to various forces is decomposable.

The conclusion of this report may be formulated as follows: SR effect
is present everywhere the stochastic process is modulated by external fields
(``signal''), although it may manifest itself through different quantities. This
observation supports and strengthens recent Bezrukov's claim(10) that SR is
``an inherent property of rate-modulated series of events.''
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