Magnetic properties of Hadron Resonance Gas with physical magnetic moment

Rupam Samanta

in collaboration with Wojciech Broniowski

[based on arXiv:2505.14484]

Institute of Nuclear Physics, PAS, Krakow

Cracow School of Theoretical Physics, Zakopane, Poland

1/15

Hadron Resonance Gas (HRG) (heavy-ion collision)

R. Samanta (IFJ, PAN)

HRG-Magnetic

June 20, 2025

2/15

 Strong magnetic field in non-central HI collision, but it's time-dependent and transient. [Kharzeev, Nucl.Phys.A (2008); Skokov, Int.J.Mod.Phys.A (2009); Deng, Phys. Rev. C(2012); Huang, Phys. Rev. C (2023)]

- Strong magnetic field in non-central HI collision, but it's time-dependent and transient. [Kharzeev, Nucl.Phys.A (2008) ; Skokov, Int.J.Mod.Phys.A (2009); Deng, Phys. Rev. C(2012); Huang, Phys. Rev. C (2023)]
- We want to study the effect of stationary uniform magnetic field (B) on HRG state. [Marczenko, Phys. Rev.C (2024), Vovczenko, Phys. Rev. C (2024)]

- Strong magnetic field in non-central HI collision, but it's time-dependent and transient. [Kharzeev, Nucl.Phys.A (2008) ; Skokov, Int.J.Mod.Phys.A (2009); Deng, Phys. Rev. C(2012); Huang, Phys. Rev. C (2023)]
- We want to study the effect of stationary uniform magnetic field (B) on HRG state. [Marczenko, Phys. Rev.C (2024), Vovczenko, Phys. Rev. C (2024)]
- Lattice QCD : first principle description of QCD matter under extreme condition → data in the presence of uniform B [Bazavov, Phys. Rev. D(2012); Bollweg, Phys. Rev. D(2021); Ding, Phys. Rev. Lett.(2024); Ding, arXiv:2503.18467]

- Strong magnetic field in non-central HI collision, but it's time-dependent and transient. [Kharzeev, Nucl.Phys.A (2008) ; Skokov, Int.J.Mod.Phys.A (2009); Deng, Phys. Rev. C(2012); Huang, Phys. Rev. C (2023)]
- We want to study the effect of stationary uniform magnetic field (B) on HRG state. [Marczenko, Phys. Rev.C (2024), Vovczenko, Phys. Rev. C (2024)]
- Lattice QCD : first principle description of QCD matter under extreme condition \longrightarrow data in the presence of uniform \mathcal{B} [Bazavov, Phys. Rev. D(2012); Bollweg, Phys. Rev. D(2021); Ding, Phys. Rev. Lett.(2024); Ding, arXiv:2503.18467]
- Fiducial range for comparison with HRG: 0.145 MeV < T < 0.165 MeV

 In the assumption of non-interacting gas, thermal partial pressure of individual hadrons:

$$P = -\eta T(2s+1) \int \frac{d^3p}{(2\pi)^3} \log[1 - \eta f(E, T, \mu)]$$

where, $f(E,T,\mu)=\frac{1}{\exp(\frac{E-\mu}{T})+\eta}$ with $\mu=\mu_BB+\mu_SS+\mu_QQ$ and $\eta=\pm 1$

 In the assumption of non-interacting gas, thermal partial pressure of individual hadrons:

$$P = -\eta T(2s+1) \int \frac{d^3p}{(2\pi)^3} \log[1 - \eta f(E, T, \mu)]$$

where,
$$f(E,T,\mu) = \frac{1}{\exp(\frac{E-\mu}{T})+\eta}$$
 with $\mu = \mu_B B + \mu_S S + \mu_Q Q$ and $\eta = \pm 1$

• In presence of magnetic field: $(2s+1)\int \frac{d^3p}{(2\pi)^3} \longrightarrow \frac{\mathcal{B}[Q]}{2\pi^2} \sum_{l,s_z} \int_0^\infty dp_z$

$$P_{ch} = -\eta T \frac{\mathcal{B}|Q|}{2\pi^2} \sum_{l=0}^{\infty} \sum_{s_z=-s}^{s} \int_0^\infty dp_z \log[1-\eta f] \ , \ E = E(\mathcal{B})$$

and
$$P_{neu} = -\eta T \frac{1}{2\pi^2} \sum_{s_z = -s}^{s} \int_{0}^{\infty} p^2 dp \log[1 - \eta f]$$

Structureless particle in a uniform magnetic field

• *B*-field interaction modifies the energy spectra of hadrons. In the non-relativistic limit, energy of a particle :

$$E = M + \frac{p_z^2}{2M} + \underbrace{\frac{\mathcal{B}[Q]}{2M}(2l+1)}_{\text{Landau diamagnetism}} - \underbrace{\mu \mathcal{B}}_{\text{Pauli paramagnetism}}$$

 $\mu = g \; s_z \mu_M$, $\mu_M = rac{1}{2M}$ (natural magneton) and g
ightarrow Lande g factor

Structureless particle in a uniform magnetic field

• *B*-field interaction modifies the energy spectra of hadrons. In the non-relativistic limit, energy of a particle :

$$E = M + \frac{p_z^2}{2M} + \underbrace{\frac{\mathcal{B}[Q]}{2M}(2l+1)}_{\text{Landau diamagnetism}} - \underbrace{\mu \ \mathcal{B}}_{\text{Pauli paramagnetism}}$$

 $\mu = g \ s_z \mu_M$, $\mu_M = \frac{1}{2M}$ (natural magneton) and $g \rightarrow$ Lande g factor • Relativistically for spin- $\frac{1}{2}$ (Dirac) particles :

$$E = \sqrt{M^2 + p_z^2 + 2\mathcal{B}|Q|\left(l + \frac{1}{2} - s_z\right)}$$

where it is implicitly assumed g = 2Q (tree level) and neutral particles do not have magnetic contribution !

Structureless particle in a uniform magnetic field

• *B*-field interaction modifies the energy spectra of hadrons. In the non-relativistic limit, energy of a particle :

$$E = M + \frac{p_z^2}{2M} + \underbrace{\frac{\mathcal{B}[Q]}{2M}(2l+1)}_{\text{Landau diamagnetism}} - \underbrace{\mu \ \mathcal{B}}_{\text{Pauli paramagnetism}}$$

 $\mu = g \ s_z \mu_M$, $\mu_M = \frac{1}{2M}$ (natural magneton) and $g \rightarrow$ Lande g factor • Relativistically for spin- $\frac{1}{2}$ (Dirac) particles :

$$E = \sqrt{M^2 + p_z^2 + 2\mathcal{B}|Q|\left(l + \frac{1}{2} - s_z\right)}$$

where it is implicitly assumed g = 2Q (tree level) and neutral particles do not have magnetic contribution !

• This is correct for structureless Dirac particles but not for hadrons with internal structures (quarks) e.g. for neutron, $\mu_{exp} = -1.9\mu_N$ (Nuclear magneton) and $g \neq 0 \longrightarrow$ need to include anomalous magnetic moment in energy spectrum.

R. Samanta (IFJ, PAN)

The physical magnetic moment of hadrons

 Due to internal quark structures, hadrons (both charged and neutral) possess anomalous magnetic moments:

The physical magnetic moment of hadrons

 Due to internal quark structures, hadrons (both charged and neutral) possess anomalous magnetic moments:

$$\mu = \underbrace{\mu_D}_{\text{Dirac particle}} + \underbrace{\kappa}_{\text{anomalous part}}$$

and $g = 2(Q + \kappa) \implies \kappa = \frac{g - 2\zeta}{2}$

• In experiment μ is defined for $s_z=s$ and expressed in μ_N :

$$\mu_{exp} = gs\mu_M \implies g = \frac{\mu_{exp}}{s\mu_N} \frac{M}{m_p}$$

The physical magnetic moment of hadrons

0

 Due to internal quark structures, hadrons (both charged and neutral) possess anomalous magnetic moments:

$$\mu = \underbrace{\mu_D}_{\text{Dirac particle}} + \underbrace{\kappa}_{\text{anomalous part}}$$

and
$$g = 2(Q + \kappa) \implies \kappa = \frac{g - 2Q}{2}$$

• In experiment μ is defined for $s_z=s$ and expressed in μ_N :

$$\mu_{exp} = gs\mu_M \implies g = \frac{\mu_{exp}}{s\mu_N} \frac{M}{m_p}$$

• For example for
$$p$$
, n (in μ_N):
 $\mu_{exp}^p = 2.793 \implies \mu_D^p = 1, g = 5.586, \kappa^p = 1.793$
 $\mu_{exp}^n = -1.913 \implies \mu_D^n = 0, g = -3.831, \kappa^n = -1.913$
We include κ systematically inside E of hadrons !

R. Samanta (IFJ, PAN)

HRG-Magnetic

• For spin-0 states ($\mu = 0 \ \kappa = 0$): Exact $E_{ch} = \sqrt{M^2 + p_z^2 + B|Q|(2l+1)} \qquad E_{neu} = \sqrt{M^2 + p^2}$

• For spin-0 states (
$$\mu = 0 \ \kappa = 0$$
): Exact

$$E_{ch} = \sqrt{M^2 + p_z^2 + B|Q|(2l+1)} \qquad E_{neu} = \sqrt{M^2 + p^2}$$

• For spin-1/2 states ($g=2Q+2\kappa$): Exact [Tsai and Yildiz , Phys. Rev. D (1971)]

$$\begin{split} E_{ch} &= \sqrt{\left(\sqrt{M^2 + \mathcal{B}|Q|(2l+1) - 2\mathcal{Q}\mathcal{B}s_z)} - \mu_M \mathcal{B}2\kappa s_z\right)^2 + p_z^2} \\ E_{neu} &= \sqrt{\left(\sqrt{M^2 + p^2 - p_z^2} - \mu_M \mathcal{B}2\kappa s_z\right)^2 + p_z^2} \end{split}$$

• For spin-0 states (
$$\mu = 0 \ \kappa = 0$$
): Exact

$$E_{ch} = \sqrt{M^2 + p_z^2 + B|Q|(2l+1)} \qquad E_{neu} = \sqrt{M^2 + p^2}$$

• For spin-1/2 states $(g=2Q+2\kappa)$: Exact [Tsai and Yildiz , Phys. Rev. D (1971)]

$$E_{ch} = \sqrt{\left(\sqrt{M^2 + \mathcal{B}|Q|(2l+1) - 2Q\mathcal{B}s_z)} - \mu_M \mathcal{B}2\kappa s_z\right)^2 + p_z^2}$$
$$E_{neu} = \sqrt{\left(\sqrt{M^2 + p^2 - p_z^2} - \mu_M \mathcal{B}2\kappa s_z\right)^2 + p_z^2}$$

• For spin 1 and $3/2(g = 2Q + 2\kappa)$: Good approximation [Ferrar, Phys. Rev. D (1992); Belinfante, Phys. Rev. (1953); Paoli, J. Phys. G (2013)]

 $E_{ch} = \sqrt{M^2 + \mathcal{B}|Q|(2l+1) - 2Q\mathcal{B}s_z} - \mu_M \mathcal{B}2\kappa s_z \ , \ E_{neu} = \sqrt{M^2 + p^2} - \mu_M \mathcal{B}2\kappa s_z$

• For spin-0 states (
$$\mu = 0 \ \kappa = 0$$
): Exact

$$E_{ch} = \sqrt{M^2 + p_z^2 + B|Q|(2l+1)} \qquad E_{neu} = \sqrt{M^2 + p^2}$$

• For spin-1/2 states $(g=2Q+2\kappa)$: Exact [Tsai and Yildiz , Phys. Rev. D (1971)]

$$E_{ch} = \sqrt{\left(\sqrt{M^2 + \mathcal{B}|Q|(2l+1) - 2Q\mathcal{B}s_z)} - \mu_M \mathcal{B}2\kappa s_z\right)^2 + p_z^2}$$
$$E_{neu} = \sqrt{\left(\sqrt{M^2 + p^2 - p_z^2} - \mu_M \mathcal{B}2\kappa s_z\right)^2 + p_z^2}$$

• For spin 1 and $3/2(g = 2Q + 2\kappa)$: Good approximation [Ferrar, Phys. Rev. D (1992); Belinfante, Phys. Rev. (1953); Paoli, J. Phys. G (2013)]

 $E_{ch} = \sqrt{M^2 + \mathcal{B}|Q|(2l+1) - 2Q\mathcal{B}s_z} - \mu_M \mathcal{B}2\kappa s_z \ , \ E_{neu} = \sqrt{M^2 + p^2} - \mu_M \mathcal{B}2\kappa s_z$

• For spin > 3/2 ($g = 2Q + 2\kappa$): Approximation $E_{ch} = \sqrt{M^2 + B|Q|(2l+1)} - \mu_M Bgs_z$, $E_{neu} = \sqrt{M^2 + p^2} - \mu_M Bgs_z$

Observables: conserved charge susceptibilities

• Then the leading order conserved charge susceptibilities are found as:

$$\chi_{Q_1Q_2} = \frac{\partial^2 (P/T^4)}{\partial (\mu_{Q_1}/T) \partial (\mu_{Q_2}/T)} \bigg|_T$$

where, $Q_1, Q_2 \equiv \{B, S, Q\}$

Observables: conserved charge susceptibilities

• Then the leading order conserved charge susceptibilities are found as:

$$\chi_{Q_1Q_2} = \frac{\partial^2 (P/T^4)}{\partial (\mu_{Q_1}/T) \partial (\mu_{Q_2}/T)} \bigg|_T$$

where, $Q_1, Q_2 \equiv \{B, S, Q\}$

 \bullet Plugging the expression of P for non-zero ${\cal B}$ one finds :

$$\chi_{Q_1Q_2}^{ch} = \frac{Q_1Q_2\mathcal{B}|Q|}{2\pi^2 T^3} \sum_{l=0}^{\infty} \sum_{s_z=-s}^{s} \int_0^{\infty} dp_z f(1-\eta f)$$

and $\chi_{Q_1Q_2}^{neu} = \frac{Q_1Q_2}{2\pi^2 T^3} \sum_{s_z=-s}^{s} \int_0^{\infty} p^2 dp f(1-\eta f)$

Effects of anomalous magnetic moment on χ_{BB}

Let us define :

$$\Delta \chi_{BB}(\mathcal{B}) = \chi_{BB}(\mathcal{B}, \kappa) - \chi_{BB}(\mathcal{B}, \kappa = 0)$$

• Then $\frac{\Delta \chi_{BB}(\mathcal{B})}{\chi_{BB}(0)} \longrightarrow$ the relative increase due to κ in presence of \mathcal{B}

Physical μ and g of hadrons

Hadron species	μ/μ_N	g (Eq. 5)	Reference
$\rho^{+}(775)$	1.94(1)	1.60(1)	LQCD 42
	2.21	1.82	χPT 43
	2.37	1.96	QM 44
$K^{*+}(892)$	2.4 (2)	2.3(2)	LQCD 45
	2.19	2.08	QM 44
$K^{*0}(896)$	-0.183	-0.175	QM 44
p(938)	2.793	5.586	PDG <u>46</u>
n(939)	-1.913	-3.831	PDG 46
$\Lambda^{0}(1115)$	-0.613(4)	-1.458(9)	PDG 46
$\Sigma^{+}(1189)$	2.458(10)	6.232(25)	PDG <u>46</u>
$\Sigma^{0}(1192)$	0.65	1.65	χPT 47
	0.791	2.011	QM 48
$\Sigma^{-}(1197)$	-1.160(25)	-2.96(63)	PDG 46
- ()		=::::::::::::::::::::::::::::::::::::::	
$a_1^+(1230)$	1.7 (2)	2.2(2)	LQCD 49
$a_1^+(1230)$	1.7(2) 1.44	2.2(2) 1.89	LQCD <u>49</u> QM 44
$a_1^+(1230)$ $\Delta^{++}(1232)$	1.7(2) 1.44 3.7-7.5	2.2(2) 1.89 3.23-6.56	LQCD <u>49</u> QM <u>44</u> PDG <u>46</u>
$a_1^+(1230)$ $\Delta^{++}(1232)$	1.7(2) 1.44 3.7-7.5 6.14(51)	2.2(2) 1.89 3.23-6.56 5.37(45)	LQCD <u>49</u> QM <u>44</u> PDG <u>46</u> Lopez et.al <u>50</u>
$a_1^+(1230)$ $\Delta^{++}(1232)$	1.7(2) 1.44 3.7-7.5 6.14(51) 5.24(18)	2.2(2) 1.89 3.23-6.56 5.37(45) 4.58(16)	LQCD 49 QM 44 PDG 46 Lopez et.al 50 LQCD 51
$\frac{a_1^+(1230)}{\Delta^{++}(1232)}$	1.7(2) 1.44 3.7-7.5 6.14(51) 5.24(18) 4.97(89)	$\begin{array}{c} 2.2(2) \\ 1.89 \\ 3.23-6.56 \\ 5.37(45) \\ 4.58(16) \\ 4.34(78) \end{array}$	LQCD 49 QM 44 PDG 46 Lopez et.al 50 LQCD 51 χPT 52
$\Delta^{++}(1232)$	$\begin{array}{c} \textbf{1.7(2)}\\ \textbf{1.44}\\ \textbf{3.7-7.5}\\ \textbf{6.14}(51)\\ \textbf{5.24}(18)\\ \textbf{4.97(89)}\\ \textbf{2.7}_{-1.3}^{+1.0} \pm \textbf{1.5} \pm \textbf{3} \end{array}$	$\begin{array}{c} 2.2(2) \\ 1.89 \\ 3.23-6.56 \\ 5.37(45) \\ 4.58(16) \\ 4.34(78) \\ 2.36^{+0.87}_{-1.14} \end{array}$	LQCD 49 QM 44 PDG 46 Lopez et.al 50 LQCD 51 χPT 52 PDG 46
$\begin{array}{c} a_{1}^{+}(1230) \\ \\ \Delta^{++}(1232) \\ \\ \\ \\ \\ \Delta^{+}(1232) \end{array}$	$\begin{array}{c} \textbf{1.7(2)}\\ \textbf{1.44}\\ \textbf{3.7-7.5}\\ \textbf{6.14(51)}\\ \textbf{5.24(18)}\\ \textbf{4.97(89)}\\ \textbf{2.7^{+1.0}_{-1.3}\pm 1.5\pm 3}\\ \textbf{2.6(5)} \end{array}$	$\begin{array}{c} 2.2(2)\\ 1.89\\ 3.23\text{-}6.56\\ 5.37(45)\\ 4.58(16)\\ 4.34(78)\\ 2.36^{+0.87}_{-1.14}\\ 2.27(4)\end{array}$	LQCD 49 QM 44 PDG 46 Lopez et.al 50 LQCD 51 χ PT 52 PDG 46 χ PT 52
$\begin{array}{c} a_{1}^{+}(1230)\\\\ \Delta^{++}(1232)\\\\\\ \Delta^{+}(1232)\\\\\\ \Delta^{0}(1232)\end{array}$	$\begin{array}{c} \textbf{1.7(2)}\\ \textbf{1.44}\\ \textbf{3.7-7.5}\\ \textbf{6.14(51)}\\ \textbf{5.24(18)}\\ \textbf{4.97(89)}\\ \textbf{2.7^{+1.9}_{-1.3}\pm 1.5\pm 3}\\ \textbf{2.6(5)}\\ \textbf{0.02(12)} \end{array}$	$\begin{array}{c} 2.2(2)\\ 1.89\\ 3.23\text{-}6.56\\ 5.37(45)\\ 4.58(16)\\ 4.34(78)\\ 2.36^{+0.87}_{-0.14}\\ 2.27(4)\\ 0.017(100) \end{array}$	LQCD 49 QM 44 PDG 46 Lopez et.al 50 LQCD 51 χ PT 52 PDG 46 χ PT 52 χ PT 52
$\begin{array}{c} a_{1}^{+}(1230)\\\\ \Delta^{++}(1232)\\\\ \hline\\ \Delta^{+}(1232)\\\\ \hline\\ \Delta^{0}(1232)\\\\ \hline\\ \Delta^{-}(1232)\end{array}$	$\begin{array}{c} \textbf{1.7(2)}\\ \textbf{1.44}\\ \textbf{3.7-7.5}\\ \textbf{6.14(51)}\\ \textbf{5.24(18)}\\ \textbf{4.97(89)}\\ \textbf{2.7}^{+1.0}_{-1.3}\pm \textbf{1.5}\pm \textbf{3}\\ \textbf{2.6(5)}\\ \textbf{0.02(12)}\\ -2.48(32) \end{array}$	$\begin{array}{r} 2.2(2)\\ 1.89\\ 3.23-6.56\\ 5.37(45)\\ 4.58(16)\\ 4.34(78)\\ 2.36^{+0.87}_{-1.14}\\ 2.27(4)\\ 0.017(100)\\ -2.17(28) \end{array}$	LQCD [49] QM [44] PDG [46] Lopez et.al [50] LQCD [51] χ PT [52] PDG [46] χ PT [52] χ PT [52] χ PT [52]
$\begin{array}{c} a_{1}^{+}(1230)\\\\ \Delta^{++}(1232)\\\\ \hline \Delta^{+}(1232)\\\\ \hline \Delta^{+}(1232)\\\\ \hline \Delta^{-}(1232)\\\\ \hline \Xi^{-}(1321) \end{array}$	$\begin{array}{c} \textbf{1.7(2)}\\ \textbf{1.44}\\ \textbf{3.7-7.5}\\ \textbf{6.14(51)}\\ \textbf{5.24(18)}\\ \textbf{4.97(89)}\\ \textbf{2.7+}^{1.0}\pm\textbf{1.5}\pm\textbf{3}\\ \textbf{2.6(5)}\\ \textbf{0.02(12)}\\ -\textbf{2.48(32)}\\ -\textbf{0.651(3)} \end{array}$	$\begin{array}{c} 2.2(2)\\ 1.89\\ 3.23{-}6.56\\ 5.37(45)\\ 4.58(16)\\ 4.34(78)\\ 2.36^{+0.87}_{-0.14}\\ 2.27(4)\\ 0.017(100)\\ -2.17(28)\\ -1.834(8)\\ \end{array}$	LQCD [49] QM [44] PDG [46] Lopez et.al [50] LQCD [51] XPT [52] PDG [46] XPT [52] XPT [52] PDG [46]
$\begin{array}{c} a_{1}^{+}(1230) \\ \\ \Delta^{++}(1232) \\ \\ \hline \\ \Delta^{+}(1232) \\ \\ \hline \\ \Delta^{-}(1232) \\ \\ \hline \\ \Xi^{-}(1321) \\ \\ \hline \\ \Xi^{0}(1321) \end{array}$	$\begin{array}{c} \textbf{1.7(2)}\\ \textbf{1.44}\\ \textbf{3.7-7.5}\\ \textbf{6.14(51)}\\ \textbf{5.24(18)}\\ \textbf{4.97(89)}\\ \textbf{2.7}^{+1.3}_{-1.3} \pm \textbf{1.5} \pm \textbf{3}\\ \textbf{2.6(5)}\\ \textbf{0.02(12)}\\ -\textbf{2.48(32)}\\ -\textbf{0.651(3)}\\ \textbf{-1.250(14)} \end{array}$	$\begin{array}{c} 2.2(2)\\ 1.89\\ 3.23-6.56\\ 5.37(45)\\ 4.58(16)\\ 4.34(78)\\ 2.36^{+0.87}_{-0.14}\\ 2.27(4)\\ 0.017(100)\\ -2.17(28)\\ -1.834(8)\\ -3.503(39)\\ \end{array}$	LQCD [49] QM [4] PDG [46] Lopez et.al [51] LQCD [51] XPT [52] PDG [46] XPT [52] XPT [52] PDG [46] PDG [46]
$\begin{array}{c} a_{1}^{+}(1230)\\\\ \Delta^{++}(1232)\\\\ \hline\\ \Delta^{+}(1232)\\\\ \hline\\ \Delta^{-}(1232)\\\\ \hline\\ \Xi^{-}(1321)\\\\ \hline\\ \Sigma^{+}(1383)\\\\ \end{array}$	$\begin{array}{c} \textbf{1.7(2)}\\ \textbf{1.44}\\ \textbf{3.7-7.5}\\ \textbf{6.14(51)}\\ \textbf{5.24(18)}\\ \textbf{4.97(89)}\\ \textbf{2.7^{\pm1.3}} \pm \textbf{1.5} \pm \textbf{3}\\ \textbf{2.6(5)}\\ \textbf{0.02(12)}\\ \textbf{-2.48(32)}\\ \textbf{-0.651(3)}\\ \textbf{-0.651(3)}\\ \textbf{-1.250(14)}\\ \textbf{2.55(26)} \end{array}$	$\begin{array}{c} 2.2(2)\\ 1.89\\ 3.23-6.56\\ 5.37(45)\\ 4.58(16)\\ 4.34(78)\\ 2.36^{-1.14}\\ 2.27(4)\\ 0.017(100)\\ -2.17(28)\\ -1.834(8)\\ -3.503(39)\\ 2.50(25)\\ \end{array}$	LQCD [49] QM [44] PDG [46] Lopez et.al [50] LQCD [51] QT [52] PDG [46] XPT [52] PDG [46] PDG [46] PDG [46] LQCD [53]

< ∃→

æ

 Lattice data for χ_{BB} shows increase with B, we focus on B < 0.2 GeV².

∃ →

11 / 15

- Lattice data for χ_{BB} shows increase with B, we focus on B < 0.2 GeV².
- In HRG at small *B*, in non-relativistic and Boltzmann limit:

 $\chi_{BB} \sim a + b(g)\mathcal{B}^2$

47 ▶

11/15

- Lattice data for χ_{BB} shows increase with B, we focus on B < 0.2 GeV².
- In HRG at small *B*, in non-relativistic and Boltzmann limit:

 $\chi_{BB} \sim a + b(g)\mathcal{B}^2$

 Without κ, HRG model do not reproduce the data.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Lattice data for χ_{BB} shows increase with B, we focus on B < 0.2 GeV².
- In HRG at small *B*, in non-relativistic and Boltzmann limit:

 $\chi_{BB} \sim a + b(g)\mathcal{B}^2$

- Without κ, HRG model do not reproduce the data.
- With non-zero κ , our model results reproduce the lattice data. At T = 145 MeV the agreement is remarkable.

< A > <

- Lattice data for χ_{BB} shows increase with B, we focus on B < 0.2 GeV².
- In HRG at small *B*, in non-relativistic and Boltzmann limit:

 $\chi_{BB} \sim a + b(g)\mathcal{B}^2$

- Without κ, HRG model do not reproduce the data.
- With non-zero κ , our model results reproduce the lattice data. At T = 145 MeV the agreement is remarkable.
- Error bands \longrightarrow uncertainty in the estimate/measurement of $\mu_{\Delta^{++}}$

11/15

Anatomy of χ_{BB}

3 N 3

Anatomy of χ_{BB}

- $ho(\chi_{BB})
 ightarrow$ relative contributions of baryon states
- At T = 145 MeV, dominant contribution from the nucleons, followed by Δ resonance states. $(p \approx n) + \Delta = 50\%$, $\Sigma + \Lambda = 10\%$ and rest = 40 %

Anatomy of χ_{BB}

(a) B=0.15 GeV² ρ(X_{BB}) [GeV⁻¹] T=145 MeV р • $\rho(\chi_{BB}) \rightarrow$ relative contributions of ۸ baryon states Λ n • At T = 145 MeV, dominant contribution from the nucleons, 0.5 2.0 1.0 1.5 2.5 3.0 followed by Δ resonance states. M [GeV] $(p \approx n) + \Delta = 50\%$, $\Sigma + \Lambda = 10\%$ (b) and rest = 40%• T decreases \rightarrow higher mass states are ρ(χ_{BB}) [GeV⁻¹] thermally suppressed, nucleons largely T=100 MeV р dominate. At T = 100 MeV, $(p \approx n)(60\%) + \Delta(25\%) = 85\%$ n 0.5 1.0 1.5 2.0 2.5 3.0 M [GeV]

12/15

 χ_{QQ}: Lattice data shows relatively smaller increase at highest β.
 Discrepancy at β = 0 is due to larger pion mass in Lattice.

R. Samanta (IFJ, PAN)

HRG-Magnetic

June 20, 2025

13 / 15

- χ_{QQ}: Lattice data shows relatively smaller increase at highest β.
 Discrepancy at β = 0 is due to larger pion mass in Lattice.
- Large error band $\longrightarrow \Delta^{++}$ magnetic moment (for χ_{QQ} effect is multiplied by 4)

- χ_{QQ}: Lattice data shows relatively smaller increase at highest β.
 Discrepancy at β = 0 is due to larger pion mass in Lattice.
- Large error band $\longrightarrow \Delta^{++}$ magnetic moment (for χ_{QQ} effect is multiplied by 4)
- At T = 145 MeV, dominant contribution from π (35 %) followed by Δ(~ 20 %).

- χ_{QQ}: Lattice data shows relatively smaller increase at highest β.
 Discrepancy at β = 0 is due to larger pion mass in Lattice.
- Large error band $\longrightarrow \Delta^{++}$ magnetic moment (for χ_{QQ} effect is multiplied by 4)
- At T = 145 MeV, dominant contribution from π (35 %) followed by Δ (\sim 20 %).
- χ_{SS}: no error band as Δ is non-strange

- χ_{QQ}: Lattice data shows relatively smaller increase at highest β.
 Discrepancy at β = 0 is due to larger pion mass in Lattice.
- Large error band $\longrightarrow \Delta^{++}$ magnetic moment (for χ_{QQ} effect is multiplied by 4)
- At T = 145 MeV, dominant contribution from π (35 %) followed by Δ (\sim 20 %).
- *χ*_{SS}: no error band as Δ is non-strange
- Standard list of hadrons do not reproduce the lattice data for χ_{SS} (even at $\mathcal{B} = 0$). \longrightarrow inclusion of $\kappa(K^*(700))$ state makes up the gap and align with the data.

• We have studied magnetic properties of HRG under uniform magnetic field and compared with Lattice data.

- We have studied magnetic properties of HRG under uniform magnetic field and compared with Lattice data.
- Hadrons have internal structures → possess non-zero anomalous magnetic moment (κ)

- We have studied magnetic properties of HRG under uniform magnetic field and compared with Lattice data.
- Hadrons have internal structures → possess non-zero anomalous magnetic moment (κ)
- Substantial effect of κ for baryon octet and decuplet states

- We have studied magnetic properties of HRG under uniform magnetic field and compared with Lattice data.
- Hadrons have internal structures → possess non-zero anomalous magnetic moment (κ)
- Substantial effect of κ for baryon octet and decuplet states
- Systematic inclusion of κ in the energy spectra of hadrons is necessary to describe the lattice data.

- We have studied magnetic properties of HRG under uniform magnetic field and compared with Lattice data.
- Hadrons have internal structures → possess non-zero anomalous magnetic moment (κ)
- Substantial effect of κ for baryon octet and decuplet states
- Systematic inclusion of κ in the energy spectra of hadrons is necessary to describe the lattice data.
- A second $\kappa : K^*(700)$ state is necessary to describe strange susceptibilities.

- We have studied magnetic properties of HRG under uniform magnetic field and compared with Lattice data.
- Hadrons have internal structures → possess non-zero anomalous magnetic moment (κ)
- Substantial effect of κ for baryon octet and decuplet states
- Systematic inclusion of κ in the energy spectra of hadrons is necessary to describe the lattice data.
- A second $\kappa : K^*(700)$ state is necessary to describe strange susceptibilities.
- HRG works in magnetic field !

Thank you !

Backup

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Ξ.

Susceptibility at $\mathcal{B}=0$

Susceptibility at $\mathcal{B}=0$

