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Measuring and interpreting 
neutron star properties has  
far reaching implications.    



Neutron Star Observables
(Relevant to probe its interior) 

EM 
(Radio, Optical, X-Ray, 

Gamma Ray) 
Neutrinos Gravitational Waves

Mass   ✓👍 (radio) ✘   ✓
Radius   ✓ 🤞(x-rays) ✘ ✓🤞

Tidal Deformability ✘ ✘   ✓👍
Spin (t) ✓👍 (radio)   ✓👍 ✓🤞

Temperature (t) ✓🤞(x-rays)   ✓👍 ✘

Seismology ✓🤞(𝛄-rays) ✓🤞   ✓👍
Binding  Energy ✘ ✓🤞 ✘



Neutron Star Structure: Observations
2 M⦿ neutron stars exist.
PSR J1614-2230: M=1.93(2) 
Demorest et al.  (2010)
PSR J0348+0432: M=2.01(4) M⦿ 
Anthoniadis  et al. (2013)
MSP J0740+6620: M=2.17(10) M⦿ 
Cromartie et al. (2019)
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Figure 4

The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from
(Left) all neutron stars in low-mass X-ray binaries during quiescence (Right) all neutron stars with
thermonuclear bursts. The light grey lines show mass-relations corresponding to a few representative
equations of state (see Section 4.1 and Fig. 7 for detailed descriptions.)

(Guillot et al. 2013; Guillot & Rutledge 2014; Lattimer & Steiner 2014; Özel et al. 2015). The most

recent results are displayed as correlated contours on the neutron-star mass-radius diagram4 (see
Fig. 4).

Several sources of systematic uncertainties that can affect the radius measurements have been

studied, which we discuss in some detail below.

Atmospheric Composition. The majority of qLMXBs for which optical spectra have been ob-
tained show evidence for Hα emission (Heinke et al. 2014), indicating a hydrogen rich companion.

Although none of these spectra have been obtained for globular cluster qLMXBs, assuming that
sources in globular clusters have similar companions to those in the field led to the use of hydrogen

atmospheres when modeling quiescent spectra. There is one source among the six that have been

analyzed in detail, for which there is evidence to the contrary. There is only an upper limit on the
Hα emission from the qLMXB in NGC 6397 using HST observations (Heinke et al. 2014). Because

of this, this source has been modeled with a helium atmosphere and the corresponding results are

displayed in Fig. 4.

Non-thermal Component. Assuming different spectral indices in modeling the none-thermal

spectral component also has a small effect on the inferred radii (Heinke et al. 2014). The low

counts in the spectra do not allow an accurate measurement of this parameter; however, a range of
values have been explored in fitting the data.

Interstellar Extinction. Because of the low temperature of the surface emission from qLMXBs,

the uncertainty in the interstellar extinction has a non-negligible effect on the spectral analyses. Dif-
ferent amounts of interstellar extinction have been assumed in different studies (Guillot et al. 2013;

Lattimer & Steiner 2014). A recent study explored different models for the interstellar extinction

4The full mass-radius likelihoods and tabular data for these sources can be found at
http://xtreme.as.arizona.edu/NeutronStars.
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NS radii are difficult to measure: 
Poorly understood systematic errors, preclude 
the determination of NS radius using x-ray 
observations of surface thermal emission.

Freire & Ozel (2016)



NICER: Radii from Hot Spots  

J. M. Lattimer Constraining the Dense Matter Equation of State from Observations

Emission from rotating neutron stars with 
hot spots is sensitive to space-time 
geometry. 

X-ray pulse profiles contain information 
about the source compactness. 

NASA’s NICER mission has acquired data 
from a couple of neutron stars. Modeling of 
hot spots and their x-ray emission favors 
radii in the 12-14 km range. 
Riley et al. (2019,2021), Miller et al. (2019,2021) NICER Science Overview Arzoumanian, et. al. (2014) 
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PSR J0030:
   

 
Miller et al. (2019), Riley et al. (2019)  

PSR J0740:
 =   

 
  

M = 1.44 ± 0.15 M⊙
Re = 12.0 − 14.3 km

M 2.08 ± 0.07 M⊙
Re = 12.2 − 16.3 km

Re = 12.4+1.3
−1.0 km

Miller et al. (2021)

Riley et al. (2021)



GW170817: Gravitational Waves from Neutron Stars   ∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.
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GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
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On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave
detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected
with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per
8.0 × 104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M⊙, in
agreement with masses of known neutron stars. Restricting the component spins to the range inferred in
binary neutron stars, we find the component masses to be in the range 1.17–1.60 M⊙, with the total mass of
the system 2.74þ0.04

−0.01M⊙. The source was localized within a sky region of 28 deg2 (90% probability) and
had a luminosity distance of 40þ8

−14 Mpc, the closest and most precisely localized gravitational-wave signal
yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the
coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a
link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts
across the electromagnetic spectrum in the same location further supports the interpretation of this event as
a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides
insight into astrophysics, dense matter, gravitation, and cosmology.

DOI: 10.1103/PhysRevLett.119.161101

I. INTRODUCTION

On August 17, 2017, the LIGO-Virgo detector network
observed a gravitational-wave signal from the inspiral of
two low-mass compact objects consistent with a binary
neutron star (BNS) merger. This discovery comes four
decades after Hulse and Taylor discovered the first neutron
star binary, PSR B1913+16 [1]. Observations of PSR
B1913+16 found that its orbit was losing energy due to
the emission of gravitational waves, providing the first
indirect evidence of their existence [2]. As the orbit of a
BNS system shrinks, the gravitational-wave luminosity
increases, accelerating the inspiral. This process has long
been predicted to produce a gravitational-wave signal
observable by ground-based detectors [3–6] in the final
minutes before the stars collide [7].
Since the Hulse-Taylor discovery, radio pulsar surveys

have found several more BNS systems in our galaxy [8].
Understanding the orbital dynamics of these systems
inspired detailed theoretical predictions for gravitational-
wave signals from compact binaries [9–13]. Models of the
population of compact binaries, informed by the known
binary pulsars, predicted that the network of advanced
gravitational-wave detectors operating at design sensitivity

will observe between one BNS merger every few years to
hundreds per year [14–21]. This detector network currently
includes three Fabry-Perot-Michelson interferometers that
measure spacetime strain induced by passing gravitational
waves as a varying phase difference between laser light
propagating in perpendicular arms: the two Advanced
LIGO detectors (Hanford, WA and Livingston, LA) [22]
and the Advanced Virgo detector (Cascina, Italy) [23].
Advanced LIGO’s first observing run (O1), from

September 12, 2015, to January 19, 2016, obtained
49 days of simultaneous observation time in two detectors.
While two confirmed binary black hole (BBH) mergers
were discovered [24–26], no detections or significant
candidates had component masses lower than 5M⊙, placing
a 90% credible upper limit of 12 600 Gpc−3 yr−1 on the rate
of BNS mergers [27] (credible intervals throughout this
Letter contain 90% of the posterior probability unless noted
otherwise). This measurement did not impinge on the range
of astrophysical predictions, which allow rates as high as
∼10 000 Gpc−3 yr−1 [19].
The second observing run (O2) of Advanced LIGO, from

November 30, 2016 to August 25, 2017, collected 117 days
of simultaneous LIGO-detector observing time. Advanced
Virgo joined the O2 run on August 1, 2017. At the time of
this publication, two BBH detections have been announced
[28,29] from the O2 run, and analysis is still in progress.
Toward the end of the O2 run a BNS signal, GW170817,

was identified by matched filtering [7,30–33] the data
against post-Newtonian waveform models [34–37]. This
gravitational-wave signal is the loudest yet observed, with a
combined signal-to-noise ratio (SNR) of 32.4 [38]. After

*Full author list given at the end of the Letter.
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Component masses: m1 = 1.47 ± 0.13 M⊙

m2 = 1.17 ± 0.09 M⊙

Chirp Mass: ℳ =
(m1m2)3/5

(m1 + ms)1/5
= 1.188+0.004

−0.002 M⊙

Total Mass: M = m1 + m2 = 2.74+0.04
−0.01 M⊙
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One can combine additional 
information from nuclear physics 
and electromagnetic observations 
to improve the constraint. 

Tidal deformations (not) observed 
in GW170817 implies a small NS 
radius:  R < 13 km

4

FIG. 3. The 90% credible region of the posterior probability for
the common radius R̂ and binary tidal deformability ⇤̃ with the
common EOS constraint for the three mass priors. The posteriors
for the individual parameters are shown with dotted lines at the
5%, 50% and 95% percentiles. The values of ⇤̃, and hence R̂
forbidden by causality have been excluded from the posteriors.

mon radius R̂ of the neutron stars in the binary. Our results
suggest a radius R̂ = 10.7+2.1

�1.6 ± 0.2 km (90% credible
interval, statistical and systematic errors) for the uniform
mass prior, R̂ = 10.9+2.1

�1.6±0.2 km for double neutron star
mass prior, and R̂ = 10.8+2.1

�1.6±0.2 km for the prior based
on all neutron star masses.

For the uniform mass prior, we computed the Bayes fac-
tor comparing a model with a prior ⇤s ⇠ U [0, 5000] to a
model with a prior ⇤s ⇠ U [0, 100]. We find log10(B) ⇠
1, suggesting that the data favors a model that includes
measurement of tidal deformability ⇤̃ & 100. However,
the evidences were calculated using thermodynamic inte-
gration of the MCMC chains [9]. We will investigate model
selection using, e.g., nested sampling [44] in a future work.

Finally, we note the post-Newtonian waveform family
used will result in systematic errors in our measurement of
the tidal deformability [45, 46]. However, this waveform
family allows a direct comparison to the results of Ref. [1].
Accurate modeling of the waveform is challenging, as the
errors in numerical simulations are comparable to the size
of the matter effects that we are trying to measure [47].
Waveform systematics and comparison of other waveform
models (e.g., [48]) will be investigated in a future work.

Discussion.—Using Bayesian parameter estimation, we
have measured the tidal deformability and common radius
of the neutron stars in GW170817. Table I summarizes
our findings. To compare to Ref. [1], which reports a 90%
upper limit on ⇤̃  800 under the assumption of a uni-
form prior on ⇤̃, we integrate the posterior for ⇤̃ to obtain
90% upper limits on ⇤̃. For the common EOS analyses,
these are 485, 521, and 516 for the uniform, double neu-

Mass prior ⇤̃ R̂ (km) B ⇤̃90%

Uniform 222+420
�138 10.7+2.1

�1.6 ± 0.2 369 < 485

Double neutron star 245+453
�151 10.9+2.1

�1.6 ± 0.2 125 < 521

Galactic neutron star 233+448
�144 10.8+2.1

�1.6 ± 0.2 612 < 516

TABLE I. Results from parameter estimation analyses using three
different mass prior choices with the common EOS constraint,
and applying the causal minimum constraint to ⇤(m). We show
90% credible intervals for ⇤̃, 90% credible intervals and system-
atic errors for R̂, Bayes factors B comparing our common EOS
to the unconstrained results, and the 90% upper limits on ⇤̃.

tron star, and Galactic neutron star component mass pri-
ors, respectively. We find that, in comparison to the un-
constrained analysis, the common EOS assumption signif-
icantly reduces the median value and 90% confidence up-
per bound of ⇤̃ by about 28% and 19%, respectively, for
all three mass priors. The difference between our common
EOS results for the three mass priors is consistent with the
physics of the gravitational waveform. At constant M, de-
creasing q causes the binary to inspiral more quickly [49].
At constant M and constant q, increasing ⇤̃ also causes the
binary to inspiral more quickly, so there is a mild degener-
acy between q and ⇤̃. The uniform mass prior allows the
largest range of mass ratios, so we can fit the data with a
larger q and smaller ⇤̃. The double neutron star mass prior
allows the smallest range of mass ratios, and so, a larger
⇤̃ is required to fit the data, with the Galactic neutron star
mass prior lying between these two cases.

Nevertheless, considering all analyses we performed
with different mass prior choices, we find a relatively ro-
bust measurement of the common neutron star radius with
a mean value hR̂i = 10.8 km bounded above by R̂ <

13.2 km and below by R̂ > 8.9 km. Nuclear theory and
experiment currently predict a somewhat smaller range by
2 km but with approximately the same centroid as our re-
sults [14, 50]. A minimum radius 10.5–11 km is strongly
supported by neutron matter theory [51–53], the unitary
gas [54], and most nuclear experiments [14, 50, 55]. The
only major nuclear experiment that could indicate radii
much larger than 13 km is the PREX neutron skin measure-
ment, but this has published error bars much larger than
previous analyses based on antiproton data, charge radii of
mirror nuclei, and dipole resonances. Our results are con-
sistent with photospheric radius expansion measurements
of x-ray binaries which obtain R ⇡ 10–12 km [12, 56, 57].
Reference [58] found from an analysis of five neutron stars
in quiescent low-mass x-ray binaries a common neutron
star radius 9.4 ± 1.2 km, but systematic effects includ-
ing uncertainties in interstellar absorption and the neutron
stars’ atmospheric compositions are large. Other analyses
have inferred 12± 0.7 [59] and 12.3± 1.8 km [60] for the
radii of 1.4M� quiescent sources.

We have found that the relation q
7.48

< ⇤1/⇤2 < q
5.76,

in fact, completely bounds the uncertainty for the range of

Radius constraints from GW170817

De et al. PRL (2018)
See also LIGO and Virgo Scientific Collaboration arXiV:1805.11581v1    
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Uniform 222+420
�138 10.7+2.1

�1.6 ± 0.2 369 < 485

Double neutron star 245+453
�151 10.9+2.1

�1.6 ± 0.2 125 < 521

Galactic neutron star 233+448
�144 10.8+2.1

�1.6 ± 0.2 612 < 516

TABLE I. Results from parameter estimation analyses using three
different mass prior choices with the common EOS constraint,
and applying the causal minimum constraint to ⇤(m). We show
90% credible intervals for ⇤̃, 90% credible intervals and system-
atic errors for R̂, Bayes factors B comparing our common EOS
to the unconstrained results, and the 90% upper limits on ⇤̃.

tron star, and Galactic neutron star component mass pri-
ors, respectively. We find that, in comparison to the un-
constrained analysis, the common EOS assumption signif-
icantly reduces the median value and 90% confidence up-
per bound of ⇤̃ by about 28% and 19%, respectively, for
all three mass priors. The difference between our common
EOS results for the three mass priors is consistent with the
physics of the gravitational waveform. At constant M, de-
creasing q causes the binary to inspiral more quickly [49].
At constant M and constant q, increasing ⇤̃ also causes the
binary to inspiral more quickly, so there is a mild degener-
acy between q and ⇤̃. The uniform mass prior allows the
largest range of mass ratios, so we can fit the data with a
larger q and smaller ⇤̃. The double neutron star mass prior
allows the smallest range of mass ratios, and so, a larger
⇤̃ is required to fit the data, with the Galactic neutron star
mass prior lying between these two cases.

Nevertheless, considering all analyses we performed
with different mass prior choices, we find a relatively ro-
bust measurement of the common neutron star radius with
a mean value hR̂i = 10.8 km bounded above by R̂ <

13.2 km and below by R̂ > 8.9 km. Nuclear theory and
experiment currently predict a somewhat smaller range by
2 km but with approximately the same centroid as our re-
sults [14, 50]. A minimum radius 10.5–11 km is strongly
supported by neutron matter theory [51–53], the unitary
gas [54], and most nuclear experiments [14, 50, 55]. The
only major nuclear experiment that could indicate radii
much larger than 13 km is the PREX neutron skin measure-
ment, but this has published error bars much larger than
previous analyses based on antiproton data, charge radii of
mirror nuclei, and dipole resonances. Our results are con-
sistent with photospheric radius expansion measurements
of x-ray binaries which obtain R ⇡ 10–12 km [12, 56, 57].
Reference [58] found from an analysis of five neutron stars
in quiescent low-mass x-ray binaries a common neutron
star radius 9.4 ± 1.2 km, but systematic effects includ-
ing uncertainties in interstellar absorption and the neutron
stars’ atmospheric compositions are large. Other analyses
have inferred 12± 0.7 [59] and 12.3± 1.8 km [60] for the
radii of 1.4M� quiescent sources.

We have found that the relation q
7.48

< ⇤1/⇤2 < q
5.76,

in fact, completely bounds the uncertainty for the range of

Radius constraints from GW170817

Capano, Tews, Brown, Margalit, De, Kumar, Brown, Krishnan, Reddy (2020)
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Golden Age for Compact Object Astrophysics

Animation Credit: NASA's Goddard Space Flight Center/CI Lab

3 Overview

Figure 3.4: Astrophysical horizon of current and proposed future detectors for compact binary systems.
As in the bottom of Fig. �.�, the lines indicate the maximum redshift at which a detection with signal-to-
noise ratio � could be made. The detectors shown here are Advanced LIGO during its third observing run
(“O�”), Advanced LIGO at its anticipated sensitivity for the fifth observing run (“A+”), a possible cryogenic
upgrade of LIGO called Voyager (“Voy”), the Einstein Telescope (“ET”), and Cosmic Explorer (“CE”, see
§� for observatory descriptions). The yellow and white dots are for a simulated population of binary
neutron star mergers and binary black hole mergers, respectively, following Madau and Dickinson [��]
with a characteristic binary merger time of ���million years.

13

Next-generation GW detectors will detect   > 20,000 BNS/year  
 
About 100 events/year  will be provide precise (error < 10%) 
measurements of NS masses and radii. 

• We anticipate a wealth of new data relating to compact object mergers during the next 10-20 years. 

• GW astronomy is poised to detect all mergers with staggering event rates! 
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Equation of State and Neutron Star Structure 
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R

A small radius and large maximum mass implies a rapid 
transition from low pressure to high pressure with density. 
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FIG. 6: The mass M (in M⊙) and radius R (in km) for pure neutron stars, using a Fermi gas

EoS. The stars of low mass and large radius are solutions of the TOV equations for small values

of central pressure p̄(0). The stars to the right of the maximum at R = 11 are stable, while those

to the left will suffer gravitational collapse.

The thermal component of the pressure in cold stars is by definition negligible. Thus,

variations in both the energy density and pressure are only caused by changes in the density.

Given this simple observation, let us examine why we expect a maximum mass in the

Newtonian case.

Here, an increase in the density results in a proportional increase in the energy density.

This results in a corresponding increase in the gravitational attraction. To balance this,

we require that the increment in pressure is large enough. However, the rate of change

of pressure with respect to energy density is related to the speed of sound (see Sec. 6.3).

In a purely Newtonian world, this is in principle unbounded. However, the speed of all

propagating signals cannot exceed the speed of light. This then puts a bound on the pressure

increment associated with changes in density.

Once we accept this bound, we can safely conclude that all cold compact objects will

eventually run into the situation in which any increase in density will result in an additional

gravitational attraction that cannot be compensated for by the corresponding increment in

pressure. This leads naturally to the existence of a limiting mass for the star.

When we include general relativistic corrections, as discussed in Sec. 2.2 earlier, they act

to “amplify” gravity. Thus we can expect the maximum mass to occur at a somewhat lower

23

Maximum mass of a non-interacting gas of neutrons. 

Oppenheimer and Volkoff (1939)
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Chandrashekar had already shown that electron degeneracy pressure would support an 
iron core ~ 1.4 M⦿  in massive stars. 


If Oppenheimer’s calculation of the maximum mass was correct neutron stars would not 
exist ! Neither would supernova ! 
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Inside Neutron Stars

Nuclei and relativistic electrons. 

Neutron-rich nuclei, relativistic electrons, 
superfluid neutrons  

Neutrons (~ 90%), protons, relativistic electrons, 
muons. Description in terms of baryons remains 
useful.  Superfluid neutrons & superconducting 
protons.  

Complex strongly interacting relativistic matter. 

Description not simple in terms of either baryons 
or quarks. Quarkyonic Matter? 

Ordered quark matter?  color superconductor? 
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Constraints on the three-neutron potential 
are weaker.

Nuclear Interactions and Many Body Theory

The potential between two neutrons at low energy is 
well constrained by scattering data but interactions at 
short distances are model dependent.   



Constraints on the three-neutron potential 
are weaker.

Nuclear Interactions and Many Body Theory

The potential between two neutrons at low energy is 
well constrained by scattering data but interactions at 
short distances are model dependent.   

V(r)

r (fm)
0.5 1 1.5 2

GeV



Constraints on the three-neutron potential 
are weaker.

Nuclear Interactions and Many Body Theory

The potential between two neutrons at low energy is 
well constrained by scattering data but interactions at 
short distances are model dependent.   

E(⇢n, ⇢p) & Equation of State

Quantum 

Many-Body 


Theory 
V(r)

r (fm)
0.5 1 1.5 2

GeV



Nuclear Forces from Effective Field Theory (EFT) 

2N LO

N LO3
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3N force 4N force2N force
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2QH LPPHGLDWHO\ UHDGV RII IURP (T� ������� WKDW LQ RUGHU IRU SHUWXUEDWLRQ WKHRU\ WR ZRUN� WKH HIIHFWLYH
/DJUDQJLDQ PXVW FRQWDLQ QR UHQRUPDOL]DEOH DQG VXSHU�UHQRUPDOL]DEOH LQWHUDFWLRQV ZLWK κi = 0 DQG
κi < 0� UHVSHFWLYHO\� VLQFH RWKHUZLVH DGGLQJ QHZ YHUWLFHV ZRXOG QRW LQFUHDVH RU HYHQ ORZHU WKH FKLUDO
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Chiral-EFT: The Good, the Bad, and the Power-Counting Ugly 

Incorporates symmetries and provides an expansion of 
operators to estimate errors.

The connection to QCD, particularly to the quark masses, 
remains difficult to  quantify.  

The cut-off needed to regulate loop-integrals can only be 
varied over a small range. Not RG invariant.   



Hebeler and Schwenk (2009), Gandolfi, Carlson, Reddy (2010), Gezerlis et al. 
(2013), Tews, Kruger, Hebeler, Schwenk (2013), Holt Kaiser, Weise (2013), 
Hagen et al. (2013), Roggero, Mukherjee, Pederiva (2014), Wlazlowski, Holt, 
Moroz, Bulgac, Roche (2014), Tews et al. (2018), Drischler et al., (2020). 

Equation of State of Dense Nuclear Matter 
Quantum many-body calculations of neutron matter 
and nuclear matter using EFT potentials show 
convergence up to about twice nuclear saturation 
density.    

Drischler et al. used Bayesian methods to 
systematically estimate the EFT truncation errors in 
neutron and nuclear matter.
Drischler, Furnstahl, Melendez, Phillips, (2020).
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FIG. 6. Energy per particle in PNM with truncation errors
using the ⇤ = 500MeV interactions in Table I. From left
to right, top to bottom, the panels show the order-by-order
progression of EFT uncertainties as the �EFT order increases.
The bands indicate 68% credible intervals.

useful to leave c3(kF) (N2
LO) out of our inductive model

for higher-order terms.

Additionally, the diagnostics point to the possibility
that the NN-only coefficients c0(kF) (LO) and c2(kF)

(NLO) may have a different correlation structure than
higher orders. As noted above, this is suggested by a vi-
sual inspection of Figs. 2 and 3, where c0(kF) and c2(kF)

appear much flatter than c3(kF) (N2
LO) and c4(kF)

(N3
LO). An investigation in this direction is presented

in Appendix A. There we have attempted to isolate the
strongly repulsive 3N contributions that change the cor-
relation structure by splitting the coefficients into NN-
only and residual 3N coefficients with each having differ-
ent kF dependence in yref(x). This succeeds in making
the coefficients more uniform and improves the diagnos-
tics for PNM, but does not improve SNM significantly.
Crucially, the order-by-order uncertainty bands for PNM
and SNM presented in the next section are almost un-
changed when this alternative model is used; the sat-
uration ellipses do become slightly larger though. We
provide these details, along with annotated Jupyter note-
books [50] that generate them, to promote further inves-
tigation, possibly with other EFT implementations, into
the systematic convergence of infinite matter.

FIG. 7. Similar to Fig. 6 but for SNM. The gray box depicts
the empirical saturation point, n0 = 0.164± 0.007 fm�3 with
E/A(n0) = �15.86±0.57MeV, obtained from a set of energy-
density functionals [18, 51] (see the main text for details).

FIG. 8. Credible-interval diagnostics for the E/N(n) (left-
hand side) and E/A(n) uncertainty bands (right-hand side)
for the ⇤ = 500MeV interactions in Table I; for details see
Ref. [25]. At each order we construct an uncertainty band for
the upcoming correction (not the full truncation error) and
test whether the next order is contained within it at a specific
credible interval. The expected size of fluctuations due to the
finite effective sample size of the curves is depicted using dark
(light) gray bands for the 68% (95%) interval. Both bands are
quite large, which shows that correlations are crucial to assess
whether truncation errors have been properly assigned.

C. Quantified uncertainties for PNM and SNM

The GP truncation error model described in Sec. II
combined with the hyperparameter estimates now permit
the first statistically rigorous �EFT uncertainty bands
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Nuclear  
Saturation

Three-nucleon forces at N2LO play a key role. 
They provide the repuslion needed for saturation 
the pressure needed to hold up neutron stars. 



Equation of State of Neutron Star Matter 

Drischler, Han, Lattimer, Prakash, Reddy, Zhao (2020)
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¢P (nB) = PPNM(nB) ° PNSM(nB)PNSM(nB = 0.34 fm−3) = 20.0 ± 5 MeV/fm3

In neutron stars, matter is in equilibrium with 
respect to weak interactions and contains a 
small fraction (about 5-10%) of protons, 
electrons and muons: 

PNSM(nB = 0.16 fm−3) = 3.0 ± 0.4 MeV/fm3

Many-body perturbation theory and 
Bayesian estimates of the EFT 
truncation errors predict: 

Christian Drischler Sophia Han Tianqi  Zhao 



Bounds on Neutron Star Radii 
EFT predictions for the EOS can be combined 
with extremal high-density EOS (with ) to 
derive robust bounds on the radius of a NS of 
any mass. 


The lower limit on the NS maximum mass 
obtained from observations strengthen these  
bounds:


• , 9.2 km <  R1.4 < 13.2 km 


• , 11.2 km <  R1.4 < 13.2 km


If R1.4 is small (<11.5 km) or large (>12.5 km), it 
would imply a very large speed of sound in the 
cores of massive neutron stars. 

c2
s = 1

Mmax > 2.0 M⊙

Mmax > 2.6 M⊙

Drischler, Han, Lattimer, Prakash, Reddy, Zhao (2020)
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Figure 1. Two possible scenarios for the evolution of the speed of sound in dense matter.

For QCD at finite baryon density, we are unaware of compelling reasons to expect that c2S <
1/3, and based on the preceding arguments, we will consider two minimal scenarios, which are
illustrated in Fig. 1. The scenario labeled (a) corresponds to the case when we assume that QCD
obeys the conformal limit c2S < 1/3 at all densities, and scenario (b) corresponds to QCD violating
this conformal bound. The behavior of cS at low and high density is constrained by theory, and
we shall show that NS observations, when combined with improved ab initio calculations of PNM,
can distinguish between these two scenarios, and provide useful insights about matter at densities
realized inside NSs.

This paper is structured as follows. In Section 2, we present constraints on the speed of sound from
nuclear physics. In Section 3, we extend the speed of sound to higher densities. In Section 3.1, we
study the EOS under the assumption that the conformal limit is obeyed and the speed of sound is
bounded by 1/

p
3. For this case, we find that cS needs to increase very rapidly above 1 � 2n0 to

stabilize a 2 M� NS. Such a rapid increase likely signals the appearance of a new form of strongly
coupled matter where the nucleon is no longer a useful degree of freedom. In Section 3.2, we release
this assumption but still find that models in which cS increases rapidly, reaching values close to c,
are favored. We study correlations in our parameterization in Section 3.3. In Section 4, we derive the
smallest possible radius for NSs consistent with nuclear physics and observations. We then investigate
the impact of possible additional observations in Section 5. Finally, we summarize our main findings
in Section 6.

2. EOS AND SPEED OF SOUND FROM NUCLEAR PHYSICS

2.1. The EOS of neutron matter

In this work, we use auxiliary-field di↵usion Monte Carlo (AFDMC) to find the many-body ground
state for a given nonrelativistic nuclear Hamiltonian (Carlson et al. 2014). In general, the nuclear
Hamiltonian contains two-body (NN), three-body (3N), and higher many-body (AN) forces,

H = T + VNN + V3N + VAN , (2)

Tews, Carlson, Gandolfi and Reddy (2018) 
Steiner & Bedaque (2016)

Large maximum mass and 
observed radii, combined with 
neutron matter calculations 
suggests a rapid increase in 
pressure in the neutron star 
core.   

This implies a large and non-
monotonic sound speed in 
dense QCD matter.  

Suggests the existence of a 
strongly interacting phase of 
relativistic matter. 

✔

✘

c2
s =

∂P
∂ϵ
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this conformal bound. The behavior of cS at low and high density is constrained by theory, and
we shall show that NS observations, when combined with improved ab initio calculations of PNM,
can distinguish between these two scenarios, and provide useful insights about matter at densities
realized inside NSs.

This paper is structured as follows. In Section 2, we present constraints on the speed of sound from
nuclear physics. In Section 3, we extend the speed of sound to higher densities. In Section 3.1, we
study the EOS under the assumption that the conformal limit is obeyed and the speed of sound is
bounded by 1/

p
3. For this case, we find that cS needs to increase very rapidly above 1 � 2n0 to

stabilize a 2 M� NS. Such a rapid increase likely signals the appearance of a new form of strongly
coupled matter where the nucleon is no longer a useful degree of freedom. In Section 3.2, we release
this assumption but still find that models in which cS increases rapidly, reaching values close to c,
are favored. We study correlations in our parameterization in Section 3.3. In Section 4, we derive the
smallest possible radius for NSs consistent with nuclear physics and observations. We then investigate
the impact of possible additional observations in Section 5. Finally, we summarize our main findings
in Section 6.

2. EOS AND SPEED OF SOUND FROM NUCLEAR PHYSICS

2.1. The EOS of neutron matter

In this work, we use auxiliary-field di↵usion Monte Carlo (AFDMC) to find the many-body ground
state for a given nonrelativistic nuclear Hamiltonian (Carlson et al. 2014). In general, the nuclear
Hamiltonian contains two-body (NN), three-body (3N), and higher many-body (AN) forces,

H = T + VNN + V3N + VAN , (2)

Tews, Carlson, Gandolfi and Reddy (2018) 
Steiner & Bedaque (2016)

Large maximum mass and 
observed radii, combined with 
neutron matter calculations 
suggests a rapid increase in 
pressure in the neutron star 
core.   

This implies a large and non-
monotonic sound speed in 
dense QCD matter.  

Suggests the existence of a 
strongly interacting phase of 
relativistic matter. 
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Tidal Deformability & Compact Object Populations   
3 Overview

Figure 3.4: Astrophysical horizon of current and proposed future detectors for compact binary systems.
As in the bottom of Fig. �.�, the lines indicate the maximum redshift at which a detection with signal-to-
noise ratio � could be made. The detectors shown here are Advanced LIGO during its third observing run
(“O�”), Advanced LIGO at its anticipated sensitivity for the fifth observing run (“A+”), a possible cryogenic
upgrade of LIGO called Voyager (“Voy”), the Einstein Telescope (“ET”), and Cosmic Explorer (“CE”, see
§� for observatory descriptions). The yellow and white dots are for a simulated population of binary
neutron star mergers and binary black hole mergers, respectively, following Madau and Dickinson [��]
with a characteristic binary merger time of ���million years.
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The Dark Side of Neuton stars 

Neutron stars are great places to look for dark matter: 

• They accrete and trap dark matter. 

•Produce dark matter due to its high density. 

•Produce dark matter due to high temperatures at 
birth or during mergers.  

Mχ < 10−14M⊙ ( ρχ

1 GeV/cm3 ) t
Gyr

Mχ ≲ M⊙ for mχ < 2 GeV

Mχ ≲ 10−1 M⊙ for mχ < 100 MeV



Black-Holes in the Neutron Star Mass-Range

MBosons ≈ 10−18 M⊙ ( GeV
mχ )

The maximum mass of weakly Interacting bosons 
is negligible: 

For a concise reviews see Kouvaris (2013) and Zurek (2013)

Idea:  Accretion of asymmetric bosonic dark matter can induce the collapse of an NS to a BH.    
Goldman & Nussinov (1989)
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FIG. 1: Exclusion regions of the asymmetric bosonic dark
matter as a function of the WIMP mass and the WIMP-
nucleon cross section for an isolated neutron star at local DM
density ρdm = 0.3GeV/cm3 (such as J0437-4715 and J0108-
1431) and for a neutron star in the core of a globular cluster
with ρdm = 103GeV/cm3.

m > 2 keV [6]. If the accreted dark matter mass within
a billion years Macc is larger than Mcrit of Eqs. (2), and
(7), (9), and (11) are satisfied, the WIMPs form a black
hole that can destroy the star. There are some subtle is-
sues regarding how fast the black hole consumes the star
that have been addressed to some extend in [6]. The con-
straints on asymmetric bosonic dark matter are depicted
in Fig. 1. As it can be seen, depending on the WIMP-
nucleon cross section, WIMP candidates from 100 keV up
to roughly 16 GeV are severely constrained by the exis-
tence of nearby old neutron stars. The constrained region
is bound at 100 keV due to the fact that below that mass
accretion is not sufficient to acquire Mcrit from Eq. (2).
These constraints can be enlarged down to 2 keV (the
limit from WIMP evaporation we mentioned before) as
long as we consider old neutron stars in globular clusters
with ρdm � 30 GeV/cm3.

Now we can consider the case where the WIMP mass
is larger than 10 TeV and therefore self-gravitation of
the WIMP sphere happens before BEC formation. As
we mentioned above, black holes of critical mass (2) with
WIMP masses roughly larger than ∼ 16 GeV, do not
survive due to Hawking radiation. Therefore one should
expect that black holes of Mcrit (of Eq. (2)) formed out
of 10 TeV WIMPs (or heavier) would evaporate quite
fast. However, since self-gravitation takes place before
BEC, and the self-gravitating mass of Eq. (6) for m > 10
TeV is much larger than the crucial mass for the survival
of the black hole of Eq. (11), there were speculations in
the literature [7, 9, 10] that constraints can be imposed
also for m > 10 TeV. The claim was that instead of
forming a black hole of Mcrit that is below the surviving
threshold for Hawking radiation, a much larger black hole
coming from the collapse of the self-gravitating WIMP
sphere Msg forms, that due to its larger mass can grow

and destroy the star, thus imposing constraints on this
part of the parameter space of asymmetric bosonic dark
matter. However we review here the argument that was
put forward in [23] that demonstrates that the formation
of smaller (non-surviving) black holes of mass Mcrit is
unavoidable and therefore the Msg instead of collapsing
to a single large black hole, it forms a series of black holes
of Mcrit that evaporate one after the other, thus resulting
to no constraint for WIMP masses with m > 10 TeV.

In order for the WIMP sphere to collapse,
the whole mass should be confined within the
Schwarzschild radius rs = 2GM of the black hole.
The density of WIMPs just before forming the
black hole would be nBH ∼ 3(32πG3M2

sgm)−1 ∼
1074 cm−3(GeV/m)(Msg/1040GeV)−2. It is easy to see
that this density is higher from the density required for
BEC formation of Eq. (7). This means that unless the
WIMP sphere collapses violently and rapidly, it should
pass from a density where BEC is formed. As the self-
gravitating WIMP sphere of mass Msg contracts, at some
point it will reach the density where BEC is formed. Any
further contraction of the WIMP sphere will not lead
to an increase in the density of the sphere. The density
remains that of BEC. The formation of BEC happens
on time scales of order [22] tBEC ∼ �/kBT ∼ 10−16s,
i.e. practically instantaneously. Further shrinking of
the WIMP sphere results in increasing the mass of the
condensate rather than the density of non-condensed
WIMPs. This process happens at a time scale which is
determined by the cooling time of the WIMP sphere as
discussed below. As we shall show, this cooling time
is the relevant time scale for the BEC formation. As
in the previous case, the ground state will start being
populated with WIMPs which at some point will become
self-gravitating themselves. This of course will happen
not when Eq. (9) is satisfied. Eq. (9) was derived
as the WIMP ground state becomes denser than the
surrounding nuclear matter (since the dark matter that
is not in the ground state of the BEC is less dense).
Here, the condition is that the density of the ground
state of the BEC should be larger than the density of the
surrounding dark matter (that is already denser than
the nuclear matter at this point). The condition reads

MBEC, sg =
4π

3
nBECmr3BEC = 9.6×1021GeV

� m

10TeV

�−7/8
.

(12)
Once the BEC ground state obtains this mass, the ground
state starts collapsing within the collapsing WIMP
sphere. Any contraction of the WIMP sphere does not
change the density of the sphere but only the density
of the ground state. MBEC, sg is smaller than Mcrit and
therefore the BEC ground state cannot form a black hole
yet. However as the ground state gets populated at some
point it reaches the point where its mass is Mcrit and this
leads to the formation of a black hole of mass Mcrit and
not Msg. The evaporation time for such a black hole of

The existence of old neutron stars in the 
Milkyway with estimated age ~ Gyr provides 
strong constraints on asymmetric DM.  

Kouvaris (2013)

Mχ ≈ 10−14M⊙ Min [ σ
2 × 10−45cm2

,1] ( ρχ

1 GeV/cm3 ) t
Gyr



Time Scale for Converting NSs into BHs 

For dark matter in the 1-106 GeV 
mass range, black hole formation 
is complex and involves several 
timescales. 


Capture time is typically the 
limiting step. But, thermalization 
can be slow in exotic superfluid 
phases and depends on 
processes in the inner core!  

C. Kouvaris and P. Tinyakov (2011)

S. D. McDermott, H.-B. Yu, and K. M. Zurek, 
(2012)

B. Bertoni, A. E. Nelson, and S. Reddy (2013)

+ many more, more refined recent analyses. 
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A measurement of the tidal 
deformability will allow us to 
distinguish BBH from BNS 
to infer the collape time in 
next generation detectors.  

The number of merging black 
holes formed from NS implosion 
grows rapidly when the collape 
time is less than a Gyr.    



Constraining Dark Baryons

There was speculation that a dark baryon with mass m𝛘 between 
937.76 - 938.78 MeV might explain the discrepancy between 
neutron lifetime measurements. 
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Neutron stars exclude light dark baryons
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Exotic new particles carrying baryon number and with mass of order the nucleon mass have been
proposed for various reasons including baryogenesis, dark matter, mirror worlds, and the neutron
lifetime puzzle. We show that the existence of neutron stars with mass greater than 0.7 M� places
severe constraints on such particles, requiring them to be heavier than 1.2 GeV or to have strongly
repulsive self-interactions.

I. INTRODUCTION

Exotic states that carry baryon number and have mass-
es below a few GeV have been theorized in a number of
contexts, such as asymmetric dark matter [1, 2], mirror
worlds [3], neutron-antineutron oscillations [4] or in nu-
cleon decays [5]. In general, such states are highly con-
strained because they can drastically alter the proper-
ties of normal baryonic matter–in particular, if too light,
they can potentially render normal matter unstable. We
currently understand that matter is observationally sta-
ble because the standard model (accidentally) conserves
baryon number. This ensures that the proton, the light-
est baryon, does not decay (up to effects caused by higher
dimensional operators that violate baryon number).

Now, consider the simple case of a single new fermion
state, �, that is electrically neutral, carries unit baryon
number, and carries no other conserved charge. (Note
that a new boson carrying baryon number does not lead
to proton decay as long as lepton number is conserved.)
Assuming that its couplings to ordinary matter are not
highly suppressed, because of the conservation of baryon
number and electric charge, it must have a mass larg-
er than the difference between the proton and electron
masses, m� > mp � me = 937.76 MeV, in order to not
destabilize the proton. In fact, a slightly stronger low-
er bound on m� comes from the stability of the weakly
bound 9Be nucleus: m� > 937.90 MeV. If the � mass
is less than that of the neutron, mn = 939.57 MeV, a
new neutron decay channel can open up, n ! � + . . . ,
where the ellipsis includes other particles that allow the
reaction to conserve (linear and angular) momentum.

It is interesting to note that if m� < mp + me =
938.78 MeV, � is itself kept stable by the conservation of
baryon number and electric charge. It could therefore be
a potential candidate for the dark matter, which we know
to be electrically neutral and stable on the timescale of

⇤ dmckeen@pitt.edu
† aenelson@uw.edu
‡ sareddy@uw.edu
§ zdk@uw.edu

the age of the Universe. It is compelling that in such
a situation that the stability of normal matter and of
dark matter is ensured by the same symmetry: baryon
number.

The potential existence of a new decay channel for the
neutron has recently received attention as a solution to
the 4� discrepancy between values of the neutron life-
time measured using two different techniques, the “bot-
tle” and “beam” methods [3, 6, 7]. The “bottle” method,
which counts the number of neutrons that remain in a
trap as a function of time and is therefore sensitive to
the total neutron width gives ⌧bottlen = 879.6 ± 0.6 s [8].
The “beam” method counts the rate of protons emitted
in a fixed volume by a beam of neutrons, thus mea-
suring only the �-decay rate of the neutron, results in
⌧beamn = 888.0 ± 2.0 s [9]. These two measurements can
be reconciled by postulating a new decay mode for the
neutron, such as n ! �+ . . . , with a branching fraction

Brn!� = 1� ⌧bottlen

⌧beamn

= (0.9± 0.2)⇥ 10�2. (1)

However, a recent reevaluation of the prediction for the
neutron lifetime from post 2002 measurements of the neu-
tron gA concludes that any nonstandard branching for
the neutron is limited to less than 2.7 ⇥ 10�3 at 95%
CL [10].

In this work we note that a new state that carries bary-
on number and has a mass close to the neutron’s can
drastically affect the properties of nuclear matter at den-
sities seen in the interiors of neutron stars. In neutron
stars the neutron chemical potential can be significantly
larger than mn, reaching values ' 2 GeV in the heaviest
neutron stars [11]. Thus any exotic particle that carries
baryon number and has a mass . 2 GeV will have a large
abundance if in chemical equilibrium. Because they re-
place neutrons, their presence will soften the equation of
state of dense matter by reducing the neutron Fermi ener-
gy and pressure, while contributing to an increase in the
energy density. This will in turn reduce the maximum
mass of neutron stars from those obtained using stan-
dard equations of state for nuclear matter. As we shall
show below, even a modest reduction in the pressure at
high density can dramatically lower the maximum mass
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abundance if in chemical equilibrium. Because they re-
place neutrons, their presence will soften the equation of
state of dense matter by reducing the neutron Fermi ener-
gy and pressure, while contributing to an increase in the
energy density. This will in turn reduce the maximum
mass of neutron stars from those obtained using stan-
dard equations of state for nuclear matter. As we shall
show below, even a modest reduction in the pressure at
high density can dramatically lower the maximum mass
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Exotic new particles carrying baryon number and with mass of order the nucleon mass have been
proposed for various reasons including baryogenesis, dark matter, mirror worlds, and the neutron
lifetime puzzle. We show that the existence of neutron stars with mass greater than 0.7 M� places
severe constraints on such particles, requiring them to be heavier than 1.2 GeV or to have strongly
repulsive self-interactions.

I. INTRODUCTION

Exotic states that carry baryon number and have mass-
es below a few GeV have been theorized in a number of
contexts, such as asymmetric dark matter [1, 2], mirror
worlds [3], neutron-antineutron oscillations [4] or in nu-
cleon decays [5]. In general, such states are highly con-
strained because they can drastically alter the proper-
ties of normal baryonic matter–in particular, if too light,
they can potentially render normal matter unstable. We
currently understand that matter is observationally sta-
ble because the standard model (accidentally) conserves
baryon number. This ensures that the proton, the light-
est baryon, does not decay (up to effects caused by higher
dimensional operators that violate baryon number).

Now, consider the simple case of a single new fermion
state, �, that is electrically neutral, carries unit baryon
number, and carries no other conserved charge. (Note
that a new boson carrying baryon number does not lead
to proton decay as long as lepton number is conserved.)
Assuming that its couplings to ordinary matter are not
highly suppressed, because of the conservation of baryon
number and electric charge, it must have a mass larg-
er than the difference between the proton and electron
masses, m� > mp � me = 937.76 MeV, in order to not
destabilize the proton. In fact, a slightly stronger low-
er bound on m� comes from the stability of the weakly
bound 9Be nucleus: m� > 937.90 MeV. If the � mass
is less than that of the neutron, mn = 939.57 MeV, a
new neutron decay channel can open up, n ! � + . . . ,
where the ellipsis includes other particles that allow the
reaction to conserve (linear and angular) momentum.

It is interesting to note that if m� < mp + me =
938.78 MeV, � is itself kept stable by the conservation of
baryon number and electric charge. It could therefore be
a potential candidate for the dark matter, which we know
to be electrically neutral and stable on the timescale of
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the age of the Universe. It is compelling that in such
a situation that the stability of normal matter and of
dark matter is ensured by the same symmetry: baryon
number.

The potential existence of a new decay channel for the
neutron has recently received attention as a solution to
the 4� discrepancy between values of the neutron life-
time measured using two different techniques, the “bot-
tle” and “beam” methods [3, 6, 7]. The “bottle” method,
which counts the number of neutrons that remain in a
trap as a function of time and is therefore sensitive to
the total neutron width gives ⌧bottlen = 879.6 ± 0.6 s [8].
The “beam” method counts the rate of protons emitted
in a fixed volume by a beam of neutrons, thus mea-
suring only the �-decay rate of the neutron, results in
⌧beamn = 888.0 ± 2.0 s [9]. These two measurements can
be reconciled by postulating a new decay mode for the
neutron, such as n ! �+ . . . , with a branching fraction

Brn!� = 1� ⌧bottlen

⌧beamn

= (0.9± 0.2)⇥ 10�2. (1)

However, a recent reevaluation of the prediction for the
neutron lifetime from post 2002 measurements of the neu-
tron gA concludes that any nonstandard branching for
the neutron is limited to less than 2.7 ⇥ 10�3 at 95%
CL [10].

In this work we note that a new state that carries bary-
on number and has a mass close to the neutron’s can
drastically affect the properties of nuclear matter at den-
sities seen in the interiors of neutron stars. In neutron
stars the neutron chemical potential can be significantly
larger than mn, reaching values ' 2 GeV in the heaviest
neutron stars [11]. Thus any exotic particle that carries
baryon number and has a mass . 2 GeV will have a large
abundance if in chemical equilibrium. Because they re-
place neutrons, their presence will soften the equation of
state of dense matter by reducing the neutron Fermi ener-
gy and pressure, while contributing to an increase in the
energy density. This will in turn reduce the maximum
mass of neutron stars from those obtained using stan-
dard equations of state for nuclear matter. As we shall
show below, even a modest reduction in the pressure at
high density can dramatically lower the maximum mass
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Fornal & Grinstein (2018)

Dark sectors could contain particles in the MeV-GeV mass range that mix with baryons. 

A model for hidden baryons that mix with the neutron:

Mixing angle: θ =
δ

ΔM
An explanation of the anomaly requires θ ≃ 10−9

Neutron stars can probe much smaller mixing angles:  θ ≃ 10−18
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FIG. 1. The mass-radius relationship for selected nuclear EOS
and resulting hybrid configurations. The standard nuclear
matter relationships are shown as dash-dotted curves. The
“Stiff” EOS makes a second order transition to a causal EOS
at nB = 1.5 ns. This is the stiffest possible EOS and pre-
dicts a maximum mass ' 3.3 M�. Adding a dark baryon
with m� = 938 MeV results in the solid curves, which dif-
fer by their nuclear EOS. Even for the extremely stiff EOS,
the maximum mass of hybrid stars containing non-interacting
dark neutrons does not exceed 0.8 M�. The measured mass-
es of the two most massive neutron stars J0348+0432 and
J1614-2230 are also shown.

which carries baryon number and has a mass in the range
937.90 MeV < m� < 938.78 MeV. In fact, we shall
find that any such weakly interacting particle with mass
m� . 1.2 GeV can be excluded.

In Fig. 1 we show the mass-radius curve for neutron
stars predicted by the standard nuclear EOS as dash-
dotted curves. The curve labelled APR was obtained
with a widely used nuclear EOS described in Ref. [18].
The curves labelled “Soft” and “Stiff” are the extreme
possibilities consistent with our current understanding
of uncertainties associated with the nuclear interactions
up to 1.5 ns. The curves terminate at the maximum
mass. The softest possible nuclear equation of state just
falls short of making a 2 M� neutron star. The curve
labelled “Stiff” is obtained by using the nuclear EOS that
produces that largest pressure up to 1.5ns, and at higher
density we use the maximally stiff EOS with P (✏) = P0+
(✏ � ✏0) where P0 and ✏0 are the pressure and energy
density predicted by the nuclear EOS at 1.5 ns. For
the maximally stiff EOS the speed of sound in the high
density region cs = c, and this construction produces the
largest maximum mass of neutron stars compatible with
nuclear physics.

Any exotic neutron decay channel n ! � + · · · which
makes even a small contribution to the neutron width,
of order the inverse lifetime of a neutron star, will be
fast enough to ensure that � is equilibrium inside the
star. The typical age tNS of old observed neutron stars is
tNS ⇡ 106� 108 years. In a dense medium, due to strong
interactions, the dispersion relation of the neutron can be

written as !n(p) =
p

p2 +m2
n+⌃r+i⌃i where ⌃r and ⌃i

are the real and imaginary parts of its self-energy. The
mixing angle is suppressed at finite density and is given
by

✓̃ =
�q

g�m
2
+ ⌃2

i

, (8)

where g�m = �m + ⌃r. Since ⌃r and ⌃i are expect-
ed to be of the order of 10 � 100 MeV at the densities
attained inside neutron stars [22], it is reasonable to ex-
pect the ratio ✓̃/✓ to be in the range 0.01 � 0.1. The
rate of production of �0s in the neutron star interior
due to neutron decay, defined in Eq. 6, is suppressed
by the factor (✓̃/✓)2 but enhanced by (g�m/�m)3 when
g�m > �m. For g�m ⇡ 10 MeV the neutron decay life-
time is < 108 yrs when � > 10�19 GeV, and it is safe to
assume that for the phenomenologically interesting val-
ues of � ' 10�14 � 10�12 GeV, � will come into equilib-
rium on a timescale t ⌧ tNS.2

Because � carries baryon number, in equilibrium it-
s chemical potential µ� = µB , where µB is the bary-
on chemical potential. Given a nuclear EOS the baryon
chemical potential is obtained using the thermodynamic
relation µB = (Pnuc + ✏nuc)/nB where nB is the baryon
number density. If � is a Dirac fermion with spin 1/2
and its interactions are weak, its Fermi momentum and
energy density are given by

kF� =
q

µ2
B �m2

� , (9)

✏� =
1

⇡2

Z kF�

0
dk k2

q
k2 +m2

� , (10)

respectively. The dark neutron number density n� =
k3F�/3⇡

2 and its pressure P� = �✏� + µBn�. The to-
tal pressure Ptot = Pnuc + P� and energy density ✏tot =
✏nuc+ ✏� are easily obtained, and the TOV equations are
solved again to determine the mass-radius relation for
hybrid stars containing an admixture of � particles. The
net result is a softer EOS where the pressure is lower
at a given a energy density, because, as we mentioned
earlier, � replaces neutrons and reduces their Fermi mo-
mentum and pressure. Results for m� = 938 MeV are
shown in Fig. 1 as solid curves which terminate at the
maximum mass. We allow the nuclear EOS to vary from
maximally stiff to soft, and also show the results for the
APR EOS. The striking feature is the large reduction in
the maximum mass. This reduction is quite insensitive
to the nuclear EOS. Even for the maximally stiff EOS,
the presence of non-interacting dark neutrons reduce the
maximum mass to values well below observed neutron s-
tar masses. Thus, a dark neutron with a m� ' 938 MeV

2 We delegate to future work a detailed calculation of the produc-
tion rate for such small values of � which may be interesting in
other contexts.

m𝛘 = mn

m𝛘 = 1.2 GeV

Weakly Interacting Dark Baryons Destabilize Neutron Stars 

n p e n p eχ

Neutron decay lowers the nucleon 
density at a given energy density. 

When dark baryons are weakly 
interacting the equation of state is soft 
~ similar to that of a free fermi gas. This lowers the maximum mass of neutron stars. 

Mckeen, Nelson, Reddy, Zhou (2018) Baym, Beck, Geltenbort, Shelton (2018) Motta, Guichon and Thomas (2018)



Self-interacting Dark Matter
Using Gravitational Waves to Discover Hidden Sectors 

NS + dark-core 

NS + dark-halo 

Gravitational wave observations of binary 
compact objects whose masses and tidal 
deformability’s differ from those expected 
from neutron stars  and stellar black holes 
would provide conclusive evidence for a 
strongly self-interacting dark sector:

Nelson, Reddy, & Zhou (2018) Horowitz &  Reddy  (2018)

Compact Dark Objects 
Mass < 0.1 Msolar
Tidal Deformability > 600

Self-interacting dark matter can be stable 
and bound to neutron stars - a new class 
of compact dark objects. 



Dark Halos Alter Tidal Interactions 

Trace amount of light dark 
matter ~ 10-4-10-2  Msolar is 
adequate to enhance the 
tidal deformability
Λ > 800 !
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FIG. 2. Dependence on nuclear EoS. Solid lines are ⇤ and
dashed lines represent radii. All configurations are approxi-
mately 1.4M� within 0.1%. ⇤1.4M� for selected realistic nu-
clear EoSs vary from 150 to 500. Hybrid stars based on these
nuclear EoSs all exhibit R5 growth for large R. Bosonic DM
with m� = 100 MeV and g�/m� = 0.1 MeV�1 is assumed.

strong coupling or light mediator masses can result in
large ⇤ even when only trace amounts of DM with total
mass M� ⌧ MNS is present. Inspiral dynamics can be

FIG. 3. ⇤ increases rapidly with increasing total DM mass
M�. For self-interacting DM with g�/m� > 1 MeV�1, M� >
10�4M� will increase ⇤ above the upper bound (' 800) set
by GW170817.

modeled by the simple approach described by Eq. 2 in
which all finite size e↵ects are incorporated through ⇤
only when the radius of halo is smaller than the orbital
separation

rorb ' 140

✓
M

M�

◆1/3 ✓ fGW

100 Hz

◆�2/3

km , (10)

at frequencies relevant to Ad. LIGO. For this reason
we restrict our study to dark halos whose radii R . 150
km. With this restriction we find that obtaining ⇤ > 800
requires M� & 5⇥ 10�6M�.

Fermion dark halos are larger and have larger ⇤ due
to the additional contribution from the Fermi degener-
acy pressure. For m� = 100 MeV, the di↵erence be-
tween fermions and bosons is modest but the di↵erence
increases rapidly with decreasing m�. We find that for
fermions with m� . 30 MeV, the dark halo and its
tidal polarizability is large even in the absence of self-
interactions. For example, we find that ⇤ = 800 is
reached for m� = 30 MeV at total dark matter mass
M� = 10�4M�, for m� = 10 MeV at M� = 3⇥10�6M�,
and for m� = 5 MeV at M� = 4⇥ 10�7M�. However in
these cases the radius of the dark halo is large: R ' 210
km for m� = 10 MeV, R ' 140 km for m� = 20 MeV,
and R ' 100 km for m� = 30 MeV. A more sophisti-
cated hydrodynamic treatment is needed to study these
situations when the dark halos overlap strongly and this
is beyond the scope of this work.

III. ACCUMULATING DARK MATTER

A key question that remains is how & 10�5 M� of DM
can be trapped by the neutron star. We noted earlier that
the mass of asymmetric DM that can accrete onto neu-
tron stars is much smaller when the ambient DM density
is of the order of GeV/cm3. In a strongly self-interacting
dark matter scenario DM-DM scattering could increase
the capture rate. In addition, the DM distribution may
not be uniform. If dense DM clumps exist, then nearby
neutron stars might accrete large amounts of DM. An-
other possibility is that DM dynamics resulted in small
structures which could seed star formation, thus massive
stars may already contain trace amounts of DM in their
cores, and the neutron stars born subsequent to the su-
pernova explosion would inherit it. Note that microlens-
ing constraints on small objects only rule out extremely
dense objects, and there is plenty of room for clumps of
DM that are much denser than the ambient density but
not dense enough to microlense. These scenarios for how
to get dark matter into neutron stars are complicated and
speculative, and imply that di↵erent neutron stars would
have vastly di↵erent amounts of DM. In contrast, be-
low we shall estimate that light DM with mass less than
a few hundred MeV can be produced copiously during
the first few seconds subsequent to core-collapse super-
nova events, and, if their coupling to baryons is not too
weak, asymmetric capture of dark particles (�’s) versus
anti-dark particles (�̄’s) would result in an ADM-neutron
star hybrid. In this case all neutron stars would contain
a similar amount of DM.
Inside the hot newly born neutron star with a tem-

perature TNS ' 30 � 50 MeV bremsstrahlung reactions
nn ! nn� and np ! np� produce � particles when
m� is not much larger than about 3TNS. In fact, the
most stringent constraint on gB , their coupling strength
to baryons, is obtained by requiring that the total energy
radiated away as � particles does not exceed ⇡ 1053 ergs
[32–34]. Since � can couple strongly to dark fermions, the

Self-Interactions of 
“natural-size” can provide 
adequate repulsion. 

For m𝜒 = 100 MeV

g𝜒/mΦ = (0.1/MeV) or (10-6/eV)

Nelson, Reddy, Zhou (2019)

GW170817
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can be trapped by the neutron star. We noted earlier that
the mass of asymmetric DM that can accrete onto neu-
tron stars is much smaller when the ambient DM density
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dark matter scenario DM-DM scattering could increase
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Questions?



Re-examing Three Nucleon Forces in ChiEFT 

In Weinberg’s power counting, 3NFs appear 
at N2LO.   

In neutron matter, due to the Pauli principle 
only the long-distance part contributes.  

3NFs play a critical role in the density range nsat - 2 nsat in neutron and nuclear matter 
calculations.

The uncertainty in the LECs c1,c3 and c4 is small because they are measured in pion-
nucleon scattering.

 PMBPT(nsat) = 3.1 ± 0.5 MeV/fm3

For neutron matter chiral EFT at N2L0 predictions:

I. Tews,R. Somasundaram,D. Lonardoni,H. Göttling, R. Seutin, J. 
Carlson S. Gandolfi,K. Hebeler, A. Schwenk (2024)

 PQMC(nsat) = 2.2 ± 0.4 (MeV/fm3)

C. Drischler, R. J. Furnstahl, J. A. Meleldez, D. R. Phillips (2021)
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Renormalization requires  :D2

To obtain a scattering amplitude that is independent 
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 and Coupling to Pions  D2

Chiral symmetry requires that pion 
mass terms only appear in a 
specified form:  m2

π (1 +
πaπb

2f 2
π

δab + ⋯)m2
π

This induces a coupling of pions 
to two-nucleons:   

D2 m2
π D2

m2
π

2f 2
π

+
π

π
N

N

N

N



N N
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N N

N N

N N
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Two more enhanced pion-two-nucleon couplings:  and E2 F2

D2 m2
π E2 ω2 F2 q2

 are enhanced for the same reason and are apriori expected to be of similar size. D2, E2, & F2

B. Borasoy and H. W. Griesshammer (2001), (2003) 

Typical size of these LECs: D2 ≈ E2 ≈ F2 ≈
1

5f 4
π

Note, in Naive Dimensional Analysis: D2 ≈ E2 ≈ F2 ≈
1

Λ 4



A New Class of Three Nucleon Forces 

Vi′ j′ k′ 

ijk ( ⃗q1, ⃗q2, ⃗q3) = −
9g2

AD2m3
π

128πf4
π

κi′ j′ 

ij δkk′ 
ℐ ( ⃗q 2

3

4m2
π ) ℐ(b) =

2
3 (1 + ( 1

2 b
+ b) cot−1(1/ b))

Vi′ j′ k′ 

ijk ( ⃗q1, ⃗q2, ⃗q3) = −
15F2g2

Am3
π

16πf4
π

δkk′ (f̄S
2δii′ 

δjj′ 
+ f̄ T

2 ⃗σi′ i ⋅ ⃗σj′ j)𝒥 ( ⃗q 2
3

4m2
π )

where

𝒥(b) =
3
5 ((1 + 2b)ℐ(b) +

2
3 )where

3NF due to pion coupling to two nucleons are large because: 

•  are enhanced by the large n-n scattering length. 

•Enhanced loop contribution due to small nucleon kinetic energy. 
D2 & F2

Vincenzo Cirigliano, Maria Dawid,  Wouter Dekens and Sanjay Reddy (2024)
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 and  Contributions to the Energy are Large  D2 F2

In neutron and nuclear matter, the leading 3NF plays a critical role.   

The new 3NF can be large enough to compete with the 
NNLO forces currently employed in Chiral EFT.      

The uncertainty is large because  are not yet known.        D2 & F2

Nuclear structure and pion-nucleus scattering data can independently constrain . 


Independent determinations would test the convergence of EFT and estimates of truncation errors.         

D2 & F2

V. Cirigliano, M. Dawid, W. Dekens, S. Reddy (2024) 



Neutron Matter:  Underestimating Errors? 

n n n

nnn n n n

nnn

π

π

ππ

Current Paradigm: 

Leading 3NF is 
determined by pion-
nucleon scattering data. 
Independent of multi-
nucleon information . 
Errors are small becasue 
there are no 3NF short-
distance contributions.   

Our calculation: 

Pion coupling to two-
nucleons can play a role. 
Information about two-
nucleon dynamics 
influences 3NF to ensure 
proper renormalization.     
Error estimates will likely 
need revision.   

c1 & c3 D2 & F2

 P(nsat) = 3.1 ± 0.5 MeV/fm3

Chiral EFT at N2L0 predicts

I. Tews,R. Somasundaram,D. Lonardoni,H. Göttling, R. Seutin, J. 
Carlson S. Gandolfi,K. Hebeler, A. Schwenk (2024)

δP3NF = [0.7 ( D2

Dref
2 ) + 8.8 ( F2

Fref
2 )] MeV

fm3

 P(nsat) = 2.2 ± 0.4 (MeV/fm3)
C. Drischler, R. J. Furnstahl, J. A. Meleldez, D. R. Phillips (2021)

We estimate the contribution to the 
pressure from our new 3NFs to be:   

|Dref
2 | = |Fref

2 | =
1

5f4
π

where
V. Cirigliano, M. Dawid, W. Dekens, S. Reddy (2024) 



Simple Error Estimates with Empirical Constraints   

Energy of neutron matter at ENM(nB = nsat) = − 16 ± 0.4 + S0 MeV
where the symmetry energy 

S0 = 32 ± 2 MeV

We correlate  and  assuming 
that these new 3NFs contribute 

 to the symmetry energy. This 
allows us to estimate the error in 
the pressure of neutron matter.  

D2 F2

δS0

Binding energy and radii of light 
and medum mass nuclei can 
constrain  and . Several 
groups are currently working on it.   

D2 F2



Questions?


