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Motivation

◀ QFT techniques for positronium.

◀ QFT corrections (on top of non-rel results) should be small: is it true?

◀ Can we learn something about the QFT treatment out of the comparison
with the known positronium results?

◀ Can QFT tells us something on its own interesting about positronium?

◀ Positronium shares some similarities with the pion.

◀ Para-positronium and para-charmonium: similarities in structure,
differences in dynamics – can both be captured in one approach?
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Introduction:positronium

Positronium (Ps): non-relativistic electron-positron bound state
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Introduction: para-positronium

PARA-POSITRONIUM (p-Ps)

Mass of positronium

2me −
(
α2me

4

)
me− mass of the electron α− fine structure constant

Quantum numbers

Non-relativistic notation relativistic notation

n 2S+1LJ = 1 1S0 JPC = 0−+

Wave function

ψ(x⃗) = 1

(πa3)1/2
e−r/a

a− twice the Bohr radius of atomic hydrogen
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Decays of p− Ps

Decays into any even number of photons (2, 4, 6, ...) are also possible
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PARA-POSITRONIUM (p-Ps) PION (π0)

Ground state for Ground state for

electron-positron system quark-antiquark system

(n = 1) (n = 1)

Non-relativistic state Relativistic state

(Goldstone boson)

JPC = 0−+ JPC = 0−+

Decays into γγ Decays into γγ

electrons are going around quarks are going around

e− propagator ̸= quark propagator

Yet, in first approximation quark is taken

as a free propagator
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PARA-POSITRONIUM (p-Ps) PARA-CHARMONIUM (ηc)

Ground state for Ground state for

electron-positron system charm-anticharm system

(n = 1) (n = 1)

Non-relativistic state Non-relativistic state

(with sizable relativistic corrections)

JPC = 0−+ JPC = 0−+

Decays into γγ Decays into γγ

electrons are going around quarks are going around

e− propagator ̸= quark propagator

Yet, in first approximation quark is taken

as a free propagator
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Lowest order decay width

Γ(p-Ps → 2γ) = α5me
2

Theory∗ Experiment∗∗

8032.5028(1) µs−1 7990.9(1.7) µs−1

mean lifetime of ∼ 0.12 ns

∗J.A. Wheeler, Ann. N.Y. Acad. Sci. 48, 219 (1946).
J. Pirenne, Arch. Sci. Phys. Nat. 29, 265 (1947)
∗∗ Al-Ramadhan, A. H., and D. Gidley (1994), Phys. Rev. Lett. 72, 1632.
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Corrections to the decay width

◀ One loop level

Γ(p-Ps → γγ) = Γ0

{
1 +

α

π

(
π2

4
− 5

)}
= 7985.249µs−1

I. Harris and L.M. Brown, Phys. Rev. 105, 1656 (1957)

◀ Two loop level

Γp-Ps = Γ0

{
−2α2lnα+B2γ

(α
π

)2
− 3α3

2π
ln2α+ C

α3

π
lnα+D

(α
π

)3
}

= 7989.6178(2)µs−1

G. S. Adkins, N. M. McGovern, R. N. Fell and J. Sapirstein, Phys. Rev. A 68 (2003), 032512
A. Czarnecki and S. G. Karshenboim, [arXiv:hep-ph/9911410 [hep-ph]].
Y. Tomozawa, “Radiative Corrections to Parapositronium Decay ,” Annals of Physics 128 (1980),463-490
G. Adkins, “Radiative Corrections to Positronium Decay ,” Annals of Physics 146 (1983), 78-128

9 / 32



Introduction Composite model Summary

Decay width-general formula

Γ(Ps→ nγ) =
1

2J + 1
|ψ(0)|2 lim

v→0

[
4vσ(e+e− → nγ)

]
where:

|ψ(0)|2- a probability that e− and e+ meet each other in the positronium
v- electron-positron relative velocity
σ- electron-positron annihilation cross-section
J- total spin of the positronium

Still, wave function at the origin only!

A. Sen and Z. K. Silagadze, Can. J. Phys. 97 (2019) no.7, 693-700
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The lowest order

At the lowest order it becomes:

Γ
(1S0 → 2γ

)
=

1

2

e4|ψ(x⃗ = 0)|2

πm4

∞∫
0

|⃗k1|2δ(2m− 2|⃗k1|)d|⃗k1| =

=
e4|ψ(x⃗ = 0)|2

42
=

4πα2

m2
|ψ(x⃗ = 0)|2

|ψ(x⃗ = 0)|2 ∼ α3

|ψ(x⃗ = 0)| ∼ α3/2
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Scalar model
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The Lagrangian

TRIANGLE DIAGRAM

EXTERNAL MOMENTA
◀ pµ = (MP , 0⃗)

◀ k
µ
1 = (ω, 0, 0, ω)

◀ k
µ
2 = (ω, 0, 0,−ω)

(ω =
MP
2

)

INTERNAL MOMENTA
◀ q1 =

p
2

+ q

◀ q2 =
p
2

− q

◀ q3 =
p
2

+ q − k1

THE LAGRANGIAN

Lint = gPP (x)ψ̄(x)iγ5ψ(x)− eAµ(x)ψ̄(x)γ
µψ(x)

•P (x) is the pseudoscalar positronium field
•ψ(x) is the electron field
•Aµ(x) is the photon field
•e is the electric charge of the proton
•gP is the positronium-constituent coupling constant

TRIANGLE AMPLITUDE I

I =
∫ d4q

(2π)4
F(q,p)(

q21−m2
e+iε

)(
q22−m2

e+iε
)(

q23−m2
e+iε

)

Solved by using two independent methods:

◀ WICK ROTATION METHOD

◀ RESIDUE THEOREM
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Wick rotation method

Initial variables:
q0, qx, qy, qz

Replacement:
q0 = iw

ρ2 = q2x + q2y

Final variables:
ρ,w, qz

I =
∫

d4q
(2π)4

F(q,p)
den

replacement→ i
∞∫
0

ρdρ
(2π)3

∞∫
−∞

dqz
∞∫

−∞

F
D1D2D3

dw,
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Residue theorem

∫
dq4 =

∫
d3q

∫
dq0

Residue theorem
=

∫
d3q =

∫
ρdρdqz

TRIANGLE AMPLITUDE I: I =
∫

d3q
(2π)3

[∫
dq0

2π
F

D1D2D3

]
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Triangle amplitude

TRIANGLE AMPLITUDE

I = i

∫
d4q

(2π)4
F(q, p)

D1D2D3

where:

D1,2 = (p/2± q)2 −m2
e + iε =

(
MP /2± q0

)2 − q⃗2 −m2
e + iε,

D3 =
(
MP /2 + q0 − k01

)2 − (q⃗ − k⃗1)
2 −m2

e + iε
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Analytical formulas

By setting D1,2,3=0 one gets:

Poles of D1 Poles of D2

L1 = −MP
2

−
√
ρ2 + q2z +m2

e + iδ L2 = MP
2

−
√
ρ2 + q2z +m2

e + iδ

R1 = −MP
2

+
√
ρ2 + q2z +m2

e − iδ R2 = MP
2

+
√
ρ2 + q2z +m2

e − iδ

Poles of D3

L3 = −
√
ρ2 + (qz − kz)2 +m2

e + iδ

R3 =
√
ρ2 + (qz − kz)2 +m2

e − iδ

Resulting decay width into γγ:

ΓP−ps→γγ =
1

2

|⃗k1|
8πM2

P

2

∣∣∣∣8me4παgP I
M2
P

4

∣∣∣∣2
with |⃗k1| = MP

2
.
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Composite model

COMPOSITE MODEL

Positronium (Ps) is a bound state.

How to describe it?

WEINBERG COMPOSITENESS CONDITIONS
(The positronium is not an elementary object, just as the deuteron)

PARA-POSITRONIUM

◀ form factor ∼ wave function

◀ coupling constant (g) is fixed:

gP =
√

1
Σ′(s=M2

p)

Σ(s =M2
p )- the loop function

◀ Loop diagram
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Weinberg compositeness conditions

P H YSI CAL REVI EW VOLUME i37, NUMBER 3B 8 FEBRUARY i 965

Evidence That the Deuteron Is Not an Elementary Particle*

STEVEN WEINBERGt

Department of Physics and Lawrence Radiation Laboratory, University of California, Berkeley, California

(Received 30 September 1964)

If the deuteron were an elementary particle then the triplet n-p effective range would be approximately
ZE/(I—Z), wh—ere E=4.31F is the usual deuteron radius and Z is the probability of 6nding the deuteron

in a bare elementary-particle state. This formula is model-independent, but has an error of the order of the
range m =1.41F of the n-p force, so it becomes exact only in the limit of small deuteron binding energy,
i.e., R))m '. The experimental value of the efFective range is not of order R and negative, but rather of
order m ' and positive, so Z is small or zero and the deuteron is mostly or wholly composite.

I. INTRODUCTION

'ANY physicists believe that low-energy experi-
- ~ ments can never decide whether a given particle

is composite or elementary. I will try to show here that
low-energy rt psca-ttering data already provide very
strong model-independent evidence that the deuteron
is in fact composite, or more precisely, that the proba-
bility Z of ending the deuteron in a bare elementary-
particle state is very small.

This conclusion is based on a theorem proven in
Secs. II and III, which give formulas' for the triplet ss-P

scattering length and effective range in the limit of
small deuteron binding energy:

a, = L2 (1—Z)/(2 —Z) )R+0 (m ') (1)
r'e=

t
—Z/(1 —Z)]R+0(m i) (2)

where Z is the famous deuteron "field renormalization"
constant, and E. is the usual deuteron radius

(3)
k cot5= 1/a, +r.k'/2, — (6)

(1) and (2) give in this case

a, =R; r,=0(m.—'). (4)

This is in agreement with the conclusions of simple
potential theory, and, as is well known, it also agrees
with the experimental values:

a,=+5.41 F; r, =+1.75 F. (5)

In contrast, if the deuteron had an appreciable proba-
bility Z of being found in an elementary bare-particle
state then a, would be less than E, and more striking,
r, x Olid be large and eegaHee. This is clearly contradicted
by the experimental values (5), so we may conclude
that Z is small (say (0.2), and therefore the deuteron
is at least mostly composite. '

The large values for both a, and r, when Z is not zero
may suggest to the reader that the eGective-range
approximation,

R= (2tsB)
—'t'= 4.31 —F

may itself break down when the deuteron is elementary.
In fact, we will see that this does not happen; it is only
the erst two terms in the expansion of k cotb in powers
of k' that become of order R ' for Z&0 and Jt—1/R, the
third and higher terms being smaller by powers of
(Rm ) '. One well-known consequence of (6) is the
relation between a„r„and E.

with 8 the deuteron binding energy and tt the rtp-
reduced mass. The first terms in (1) and (2) are model-
independent and become very large for small 8, while
the second terms called 0(m ') cannot be calculated
without specific information on the rt-p interaction but
are expected to be of the order of magnitude of the
range ns '=1.41F, and will in any case become
negligible for 8~ 0. In actuality E. is three times larger
than m ', so the separation between terms in (1) and
(2) is reasonably clear cut.

If the deuteron is purely composite then Z=O, ' and

1/R = 1/a, +r,/2R' (7)

which is satisfied by (1) and (2) for all Z. It should be
stressed that (7) itself tells us nothing about the
elementarity of the deuteron, since (7) follows directly
from the requirement that (6) give cot8=+ (is.e.,
e"'= co) when k is extrapolated to the deuteron pole
at k=i/R The tru.e token that the deuteron is com-

*Research supported in part by the U. S. Air Force Office of
Scientific Research, Grant No. AF-AFOSR-232-63 and in part
by the U. S. Atomic Energy Commission.

t Alfred P. Sloan Foundation Fellow.
' After deriving these formulas I became aware that they could

also be obtained in the nonrelativistic limit of the Zachariasen
model, as treated by J. S. Dowker, Nuovo Cimento 25, 224 (1962),
by using his Eq. (9) in his Eq. (13), and then passing to the limit
it4R))1. However, Dowker's derivation does not show that for
small binding energy this result is actually model-independent
and hence applicable to the deuteron, and he does not make this
application. {There seems to be a factor of 4 lost from Dowker's
equation for the efFective range, but his equation for k cotb is
correct. )

'The use of Z=O to distinguish composite from elementary
particles has been discussed by many authors, including J. C.
Howard and 3 Jouvet, Nu.ovo Cimento 18, 466 (1960); M. T.

B

Vaughan, R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258
(1961);R. Acharya, Nuovo Cimento 24, 870 (1962); S. Weinberg,
Proceedings of the 1P6Z International Conference on High Energy
Physics at CERE, edited by J. Prentki (CERN, Geneva, 1962),
p. 683; A. Salam, Nuovo Cimento 25, 224 (1962); J. S. Dowker,
ibid 25, 1135 (1962); S.. Weinberg, Phys. Rev. 130, 776 (1963).

'The point that the experimental values (5) of r, and a, are
consistent with Z=O has been made by H. Ezawa, T. Muta, and
H. Umesawa, Progr. Theoret. Phys. (Kyoto) 29, 877 (1963).
However, these authors do not compute r, and a, for Z&0, and
hence miss the point that an elementary deuteron would entail a
large negative n-p effective range.

672
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Comparison with quark model

fπ,ηc ∼
∫
d3q

A(q⃗)√
q⃗ +m2

Matching
F(q, p) = F(q⃗2) = A(q⃗2)(q⃗2 + γ2)

S. Godfrey and N. Isgur, “Mesons in a Relativized Quark Model with Chromodynamics ,” Phys. Rev. D 32 (1985),189

J. Pestieau, C. Smith and S. Trine, Int. J. Mod. Phys. A 17 (2002), 1355-1398
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Vertex function

◀ Vertex function F(q, p) = F(q⃗2) = 1(
1+ q⃗2

γ2

)2

(
q⃗2 + γ2

)
with γ2 = m2 − M2

P
4

1.044471.044471.044471.044471.044471.044481.04448

3.×10-16

4.×10-16

5.×10-16

6.×10-16

7.×10-16

s [MeV2]

|Σ
|[
M
eV

2
]

1.044471.044471.044471.044471.044471.044481.04448

50000

100000

150000

200000

250000

300000

350000

s [MeV2]

g
P

∗J. Pestieau, C. Smith and S. Trine, “Positronium decay: Gauge invariance and analyticity,” Int. J. Mod. Phys. A
17 (2002), 1355-1398 doi:10.1142/S0217751X02009606
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Vertex function

◀ Vertex function F(q, p) = F(q⃗2) = 1(
1+ q⃗2

γ2

)2

(
q⃗2 + γ2

)
with γ2 = m2 − M2

P
4

RESULTS

PARA-POSITRONIUM ΓP−ps→γγ [µs−1]

Experimental result∗ 7990.9(1.7)

pole 1 7968.1

pole 1 + pole 2 7995.1

pole 1 + pole 2 + pole 3 7917.9

∗ Al-Ramadhan, A. H., and D. Gidley (1994), Phys. Rev. Lett. 72, 1632.
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Discussion

◀ idea of poles

-The contribution to the total decay rate from the first pole is by far the
dominant one.
-The first and second pole contributions to the decay width is positive
-Interestingly, the third pole gives a negative contribution to the decay
width. This contribution goes in good direction but it is even too strong.

◀ α−corrections-only some are included.
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fP weak decay constant of positronium

Γ ∼ m2
ν

m4
Z0

Proof of principle

24 / 32



Introduction Composite model Summary

ηc

◀ Vertex function F(q, p) = F(q⃗2) = 1(
1+ q⃗2

γ2

)2

(
q⃗2 + γ2

)
The same as for p-Ps

◀ mc = 1.7 GeV

RESULTS

ηc Γηc→γγ [GeV]

Experimental result∗ 5.063 · 10−6

pole 1 9.976 · 10−6

pole 1 + pole 2 1.553 · 10−5

pole 1 + pole 2 + pole 3 3.139 · 10−6

fηc 0.465

∗ P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
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Γ(m)

1.6 1.7 1.8 1.9 2.0

2×10-6

3×10-6

4×10-6

5×10-6

m [GeV]

Γ
[G
eV

]
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ηc

◀ we changed A(q⃗)

A(q⃗) = e
−q⃗2

2Λ2

◀ mc = 1.5 GeV

RESULTS

ηc Γηc→γγ [GeV]

Experimental result∗ 5.063 · 10−6

pole 1 8.83 · 10−6

pole 1 + pole 2 1.13 · 10−5

pole 1 + pole 2 + pole 3 4.76 · 10−6

fηc 0.427

∗ P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
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Γ(m)

1.6 1.7 1.8 1.9 2.0

2.0×10-6

2.5×10-6

3.0×10-6

3.5×10-6

4.0×10-6

4.5×10-6

5.0×10-6

5.5×10-6

m [GeV]

Γ
[G
eV

]
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π0

◀ Vertex function F(q, p) = F(q⃗2) = 1(
1+ q⃗2

γ2

)2

(
q⃗2 + γ2

)
The same as for p-Ps

◀ mc = 0.25 GeV

RESULTS

π0 Γπ0→γγ [GeV]

Experimental result 7.80 · 10−9

Our model 8.1 · 10−9

fπ exp. 0.130

fπ our model 0.122
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Summary

◀ QFT composite model for the positronium studied

◀ The same framework was extended to ηc state

◀ Weak and exotic decay channels (e.g. to Z0 or X(17)) can be explored
within the same formalism.

◀ Future applications to excited states (n = 2, ...p− Ps)
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THANK YOU FOR YOUR ATTENTION
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Covariance

Question: is it covariant?

q⃗2 =
−(pq)2 + p2q2

p2

F(p, q) = F
(
−(pq)2 + p2q2

p2

)
= FRF(q⃗

2)

Answer: Yes, it can be seen as covariant.

M. Soltysiak and F. Giacosa, “A covariant nonlocal Lagrangian for the description of the scalar kaonic sector,” Acta
Phys. Polon. Supp. 9 (2016), 467-472
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