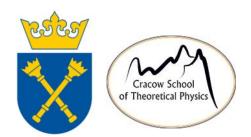
Fitting Experimental Data from DIS and Single Inclusive Hadron Production at RHIC and LHC Using the CGC Framework

Truong My Hau Le, Prof. Piotr Korcyl

Institute of Theoretical Physics, Jagiellonian University

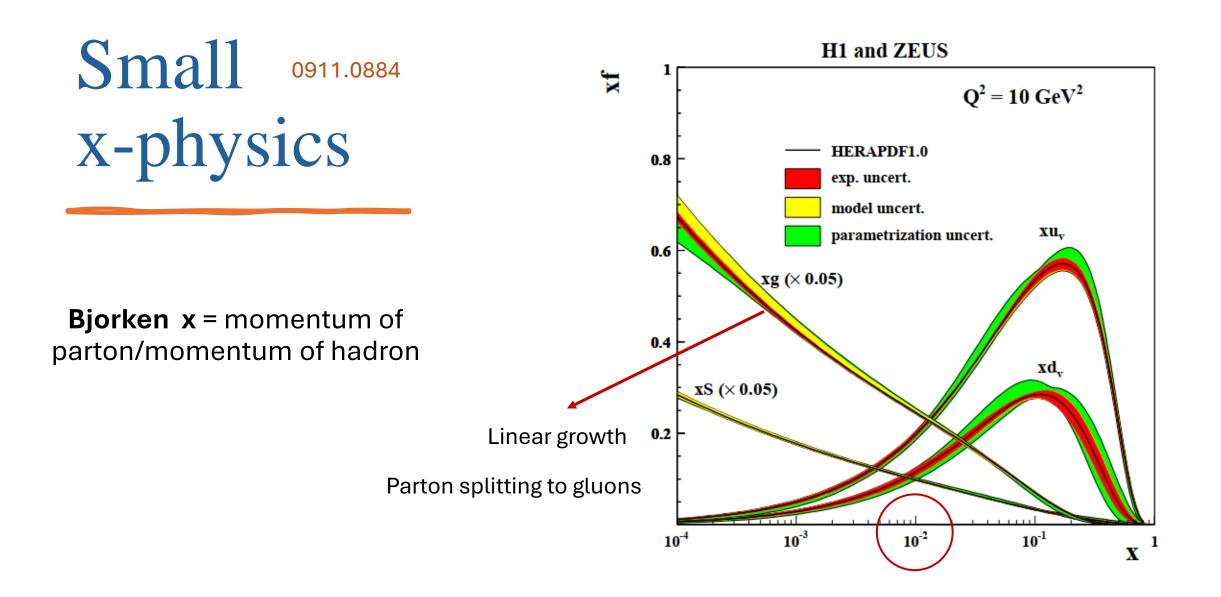
In collaboration with Dr. Tomasz Stebel, Dr. Florian Cougoulic, Dr. Farid Salazar



This work is supported by NCN grant nr 2022/46/E/ST2/00346.

Outline

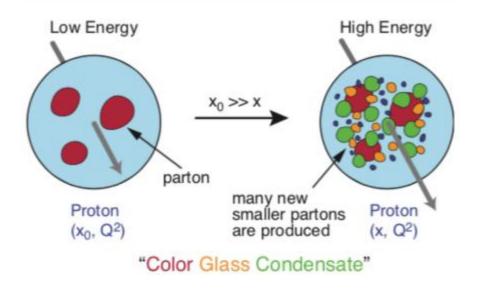
- 1. Background
- 2. Technique and Results
- 3. Planned future



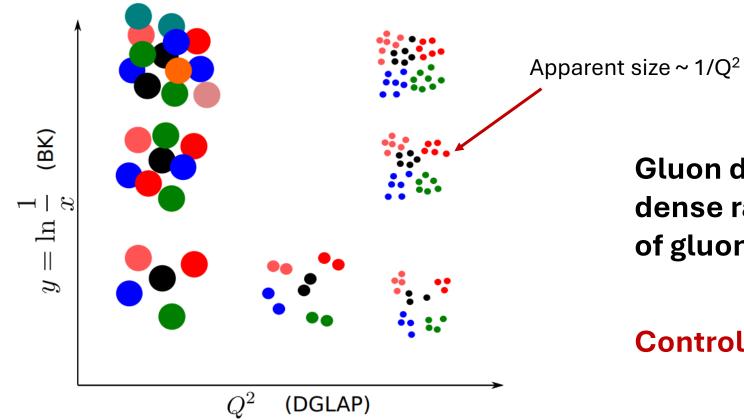
Color Glass Condensate (CGC)

New form of matter

- Color: gluons are colored
- Glass: "frozen" random color source, evolve slowly compared to scale time of hadron
- Condensate: dense



How does CGC happen in theory?

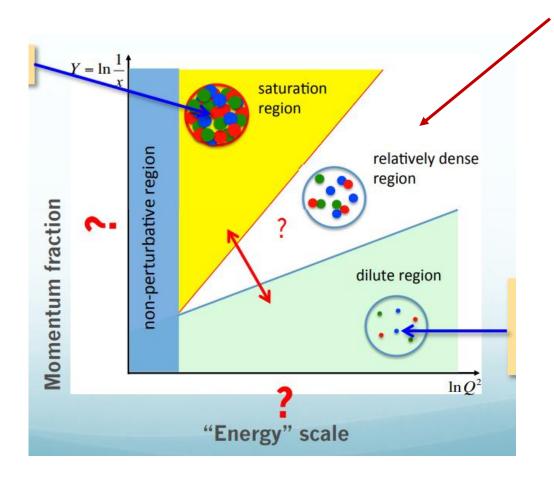


Gluon density is condition for dense rather than the number of gluon!

Control by BK equation

HEIKKI MÄNTYSAARI's

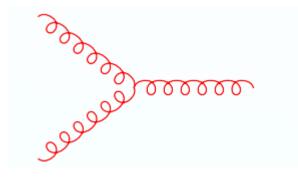
Gluon saturation



Study transition region: Q <~ Q_S

Unitarity of the dipole amplitude

Gluon recombination process:



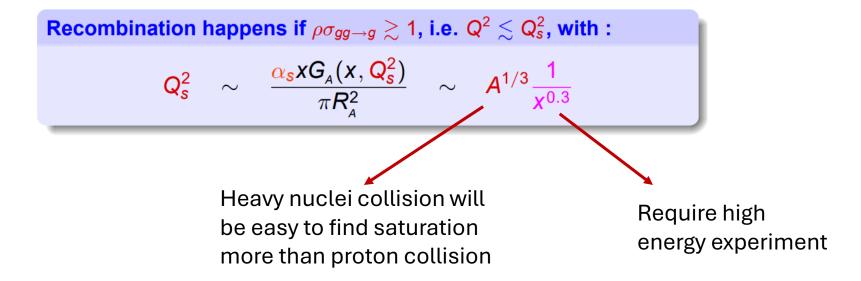
Gluon saturation

Number of gluons per unit area :

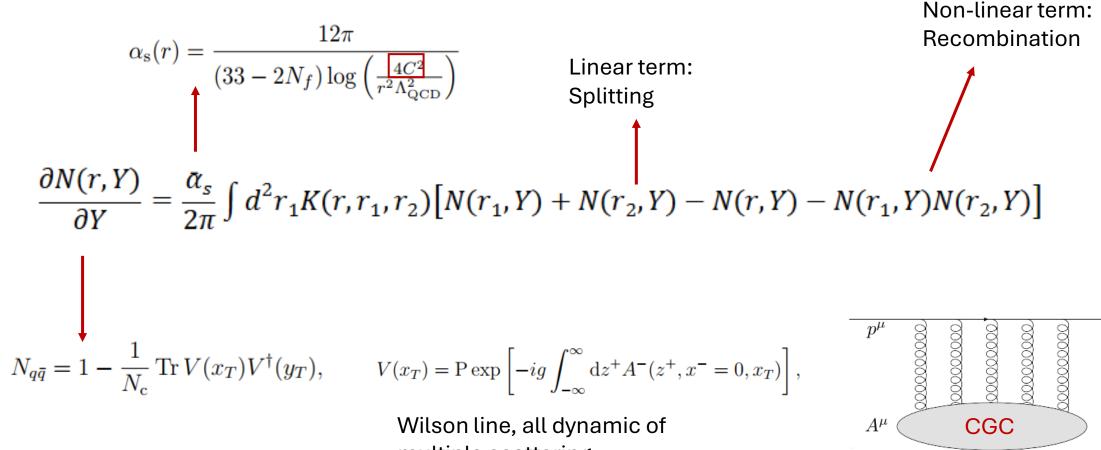
$$ho \sim rac{\mathbf{x} \mathbf{G}_{_{\!\mathcal{A}}}(\mathbf{x},\mathbf{Q}^2)}{\pi \mathbf{R}_{_{\!\mathcal{A}}}^2}$$

Recombination cross-section :

$$\sigma_{gg
ightarrow g}\sim rac{lpha_{s}}{\mathsf{Q}^{2}}$$



BK equation at LO



multiple scattering

Improved BK equation 1507.03651, 1912.09196

Running coupling
$$lpha_s(r) = rac{1}{b_{N_{
m f}} \ln \left[4 C_lpha^2/(r^2 \Lambda_{N_{
m f}}^2)
ight]}$$
 $b_{N_{
m f}} = (11 N_{
m c} - 2 N_{
m f})/12 \pi.$

$$\begin{split} \frac{\partial N(r,Y)}{\partial Y} &= \frac{\bar{\alpha}_{s}}{2\pi} \int d^{2}r_{1}K(r,r_{1},r_{2}) \begin{bmatrix} S_{\boldsymbol{x}\boldsymbol{z}}(\boldsymbol{\eta}-\boldsymbol{\delta}_{\boldsymbol{x}\boldsymbol{z}};r) S_{\boldsymbol{z}\boldsymbol{y}}(\boldsymbol{\eta}-\boldsymbol{\delta}_{\boldsymbol{z}\boldsymbol{y}};r) - S_{\boldsymbol{x}\boldsymbol{y}}(\boldsymbol{\eta}) \end{bmatrix} \\ \bar{\alpha}_{Bal} &= \bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{y}|) \Big[1 + \frac{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|) - \bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)}{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|)\bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)} \\ &\times \frac{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|)(\boldsymbol{y}-\boldsymbol{z})^{2} - \bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \end{bmatrix}, \\ \kappa \frac{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|)(\boldsymbol{y}-\boldsymbol{z})^{2} - \bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \end{bmatrix}, \\ Kinematic constraint \end{split}$$

Balitsky scheme

CGC characteristic

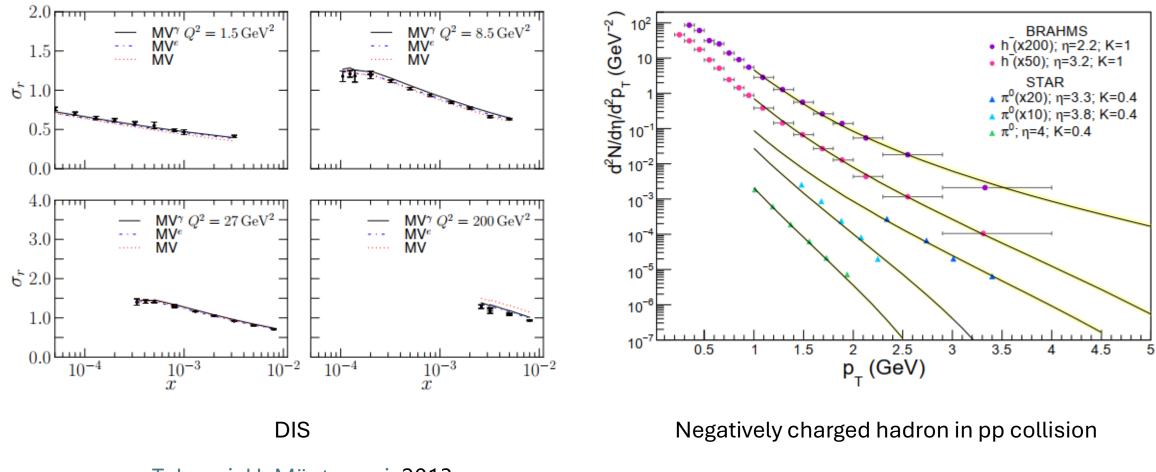
- At small x (x < 0.01) in saturation regime
- Coherent multiple scatterings instead of a single scattering
- Governed by BK/JIMWLK equation
- Universal property

Why fitting?

- Show the correctness of CGC and the universal property
- From the result explain other observables in experiment.

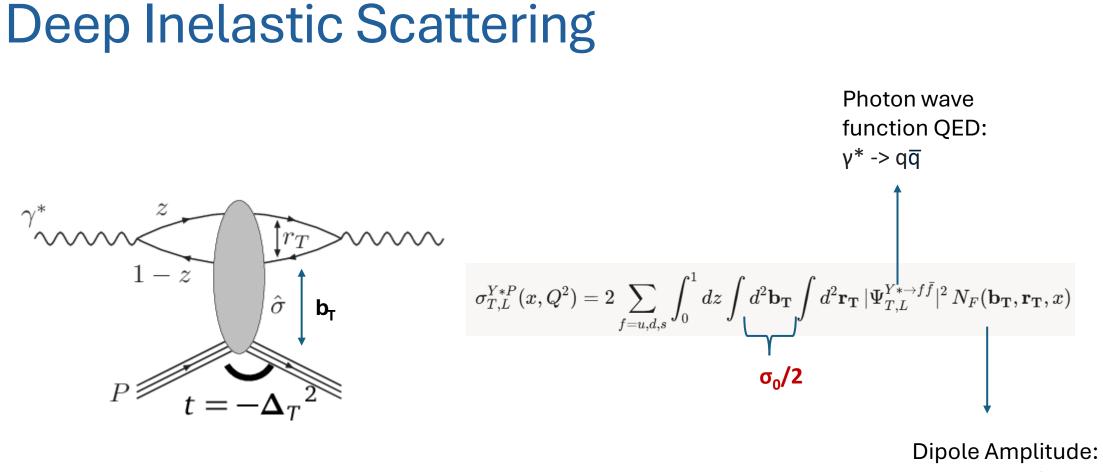
Current Goal 130

1309.6963, 1001.1378



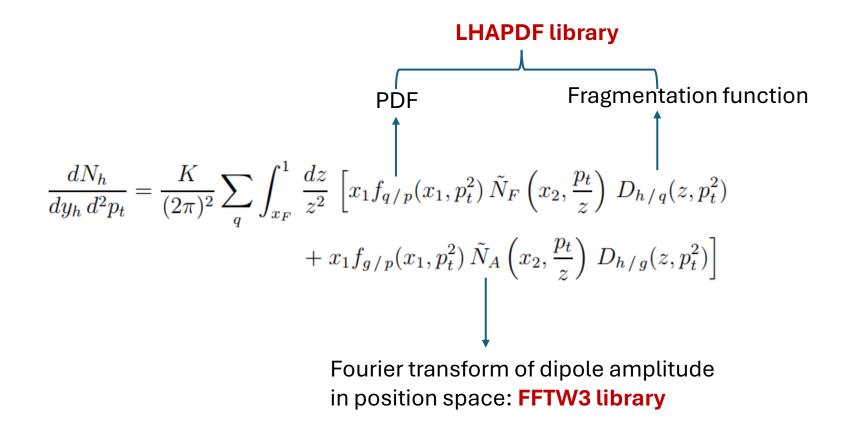
T. Lappi, H. Mäntysaari, 2013

Javier L. Albacete, Cyrille Marquet, 2010

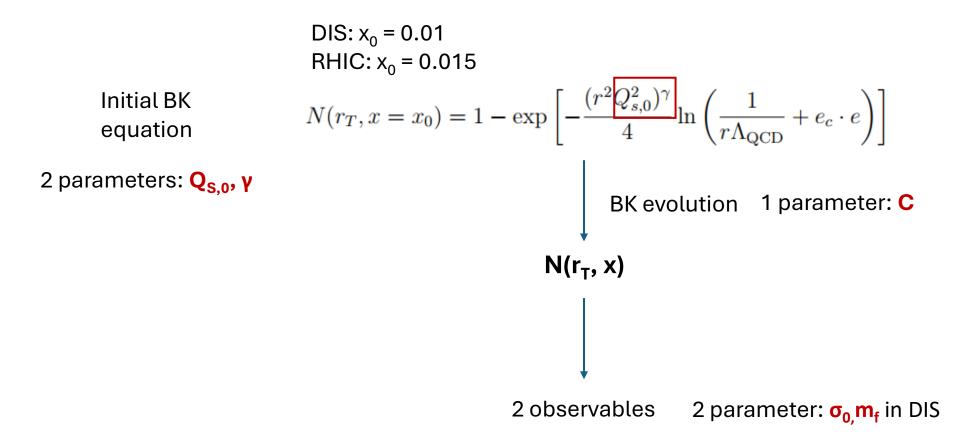


QCD dynamics

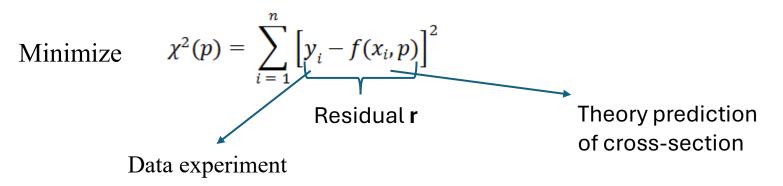
Single Inclusive Hadron Production



Dipole Amplitude



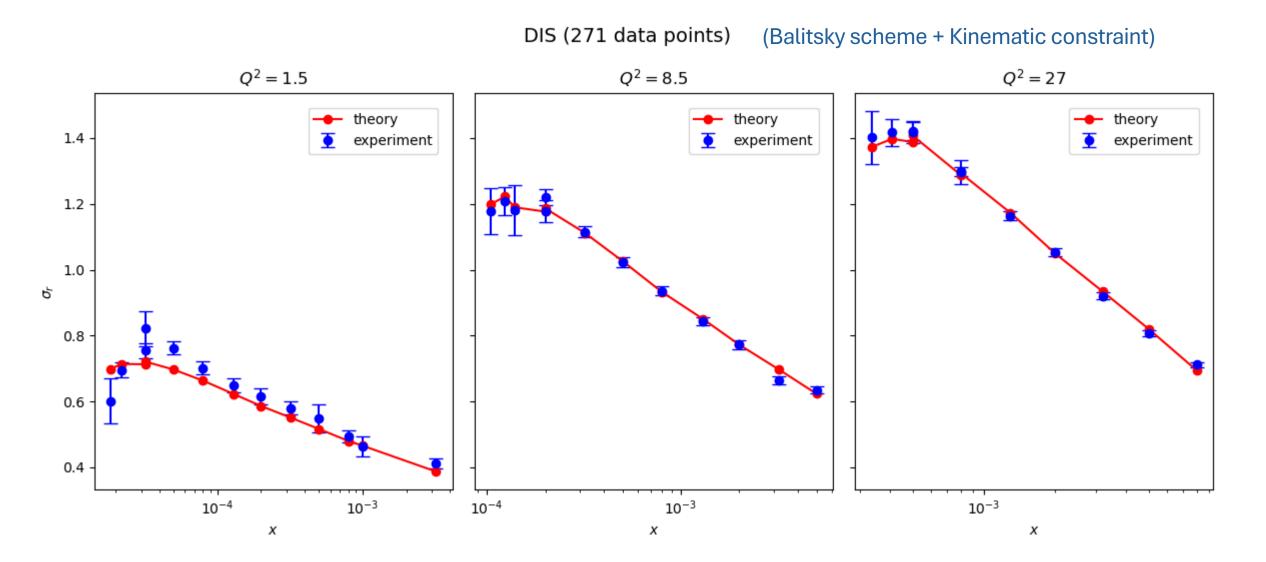
1. Fitting: Levenberg-Marquardt (LevMar) algorithm



2. BK evolution: Automatic Differentiation algorithm

Allow to compute "analytic" derivative of cross-section respect to parameters Done by Prof. Piotr Korcyl

3. Theory Uncertainty: Hessian Method & Monte Carlo Method



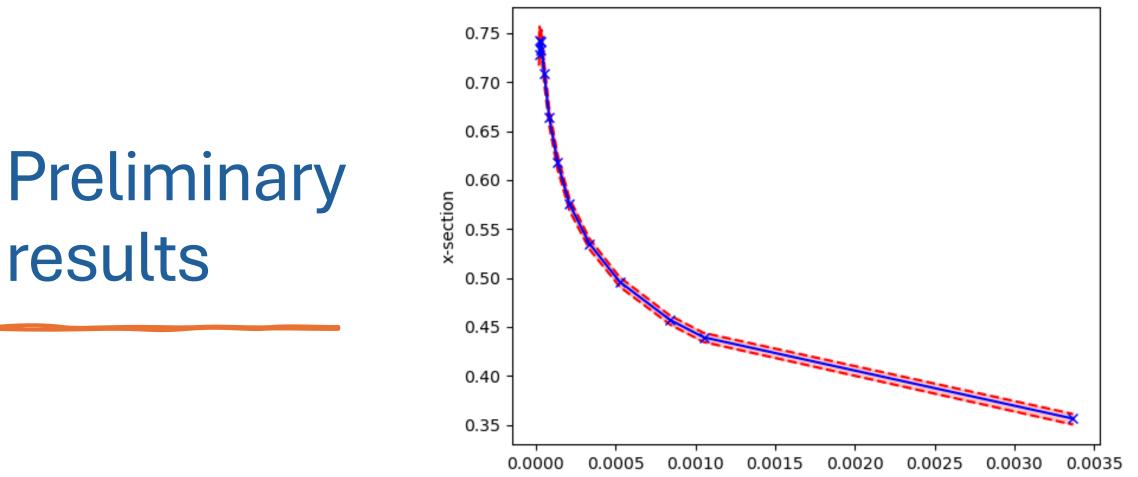
Negatively Charged Hadron in Proton-Proton Collision (31 data points) $\eta = 2.2$ theory $\eta = 3.2$ theory 10-2 $\eta = 2.2$ experiment ▼ $\eta = 3.2$ experiment T 10-3 $d^2 N/d\eta/d^2 p_T$ (GeV⁻²) 10^{-4} 10^{-5} T 10-6 1.5 1.0 2.0 2.5 3.0

(Balitsky scheme + Kinematic constraint)

p_T (GeV)

Scheme	Qs,0 [GeV]	sigma0 [mb]	С	gamma	mf [GeV]	LambdaQCD [Gev]	chi2/d.o.f
Mother scheme	0.4044278	29.49385	21.45029	1.109577	0.0837771		1.88
Balitsky + Kinematic	0.3536551	35.89932	1.092072	1.08882	0.1180737		2.175
Balitksy + Kinematic	0.3734437	36.35449	0.588563	1.114598	0.117476	0.323887	2.026

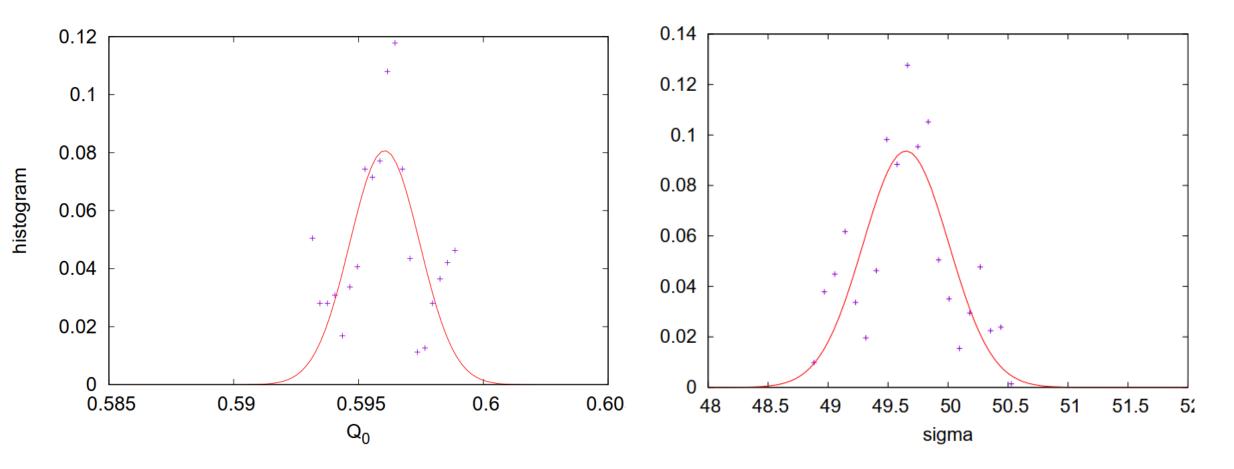
Uncertainty of theory: Hessian method



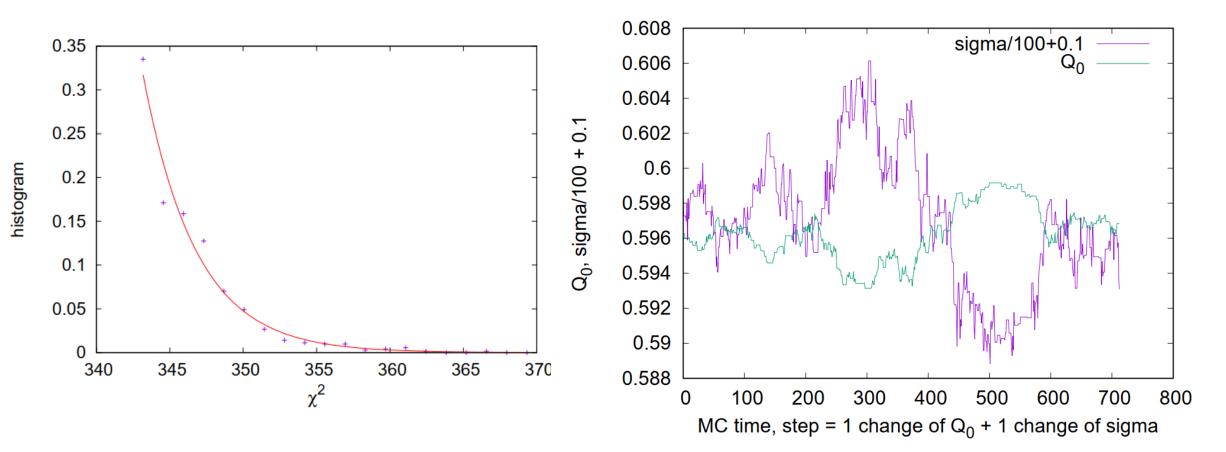
Q2 = 1.5 GeV

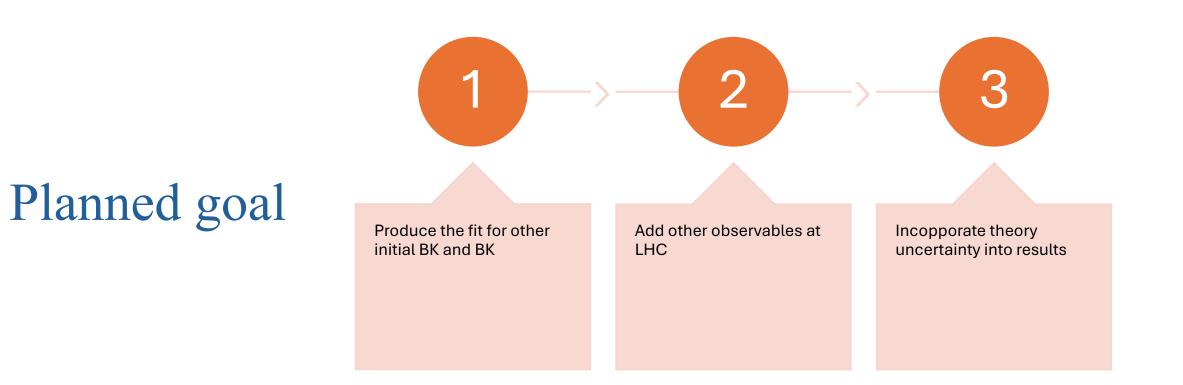
х

Monte Carlo method



Monte Carlo method

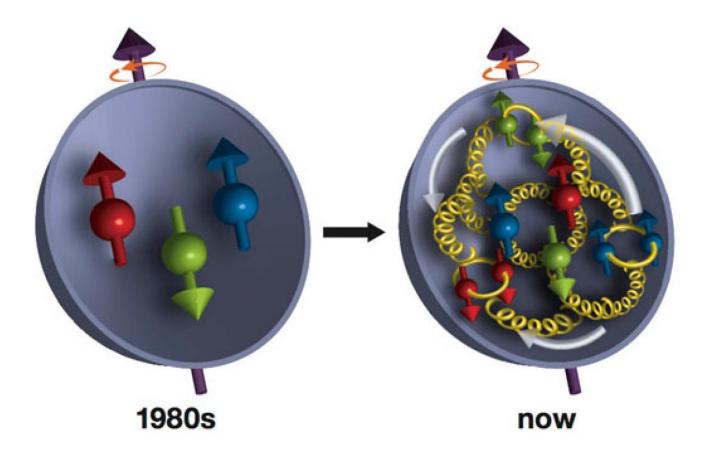




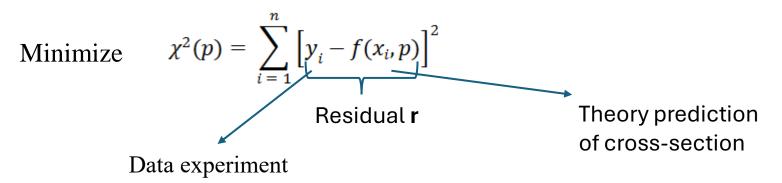
Thank you!

Small x-physics

Bjorken x = momentum of parton/momentum of hadron



1. Fitting: Levenberg-Marquardt (LevMar) algorithm



Update parameters

$$\mathbf{p}_{k+1} = \mathbf{p}_k - (\mathbf{J}^T \mathbf{J} + \lambda \mathbf{I})^{-1} \mathbf{J}^T \mathbf{r}$$

• J is the Jacobian matrix of residuals r_i with respect to p. \leftarrow Require 1st derivative

- r is the vector of residuals.
- λ is a damping factor (Levenberg's contribution), and ${f I}$ is the identity matrix.

2. BK evolution: Automatic Differentiation

Allows to evaluate 'analytic' derivatives of a computer program with respect to external parameters.

numbers are promoted to vectors

$$A \to \begin{pmatrix} x \\ \partial_A \\ \partial_B \\ \partial_A^2 \\ \partial_A \partial_B \\ \vdots \end{pmatrix}$$

- all arithmetic operators are overloaded
- functions with derivatives have to be provided
- works for most algorithms

- Faster convergence of the fit
- Benefits
- Provide Hessian matrix for estimation of uncertainties
 - Test the sensitive of the parameters to the data

3. Theory Uncertainty: Hessian Method

Assume that $\chi^2_{
m global}$ is quadratic about the global minimum

$$\Delta \chi^2_{\text{global}} \equiv \chi^2_{\text{global}} - \chi^2_{\text{min}} = \sum_{i,j=1}^n H_{ij} \left(a_i - a_i^0 \right) \left(a_j - a_j^0 \right),$$

where

$$H_{ij} = \frac{1}{2} \frac{\partial^2 \chi^2_{\text{global}}}{\partial a_i \partial a_j} \bigg|_{\min}$$

We can diagonalize the covariance matrix $C \equiv H^{-1}$,

$$\sum_{j=1}^n C_{ij} v_{jk} = \lambda_k v_{ik}$$

$$a_i - a_i^0 = \sum_{k=1}^n \left(\sqrt{\lambda_k} v_{ik} \right) z_k \quad \Rightarrow \quad \Delta \chi^2_{\text{global}} = \sum_{k=1}^n z_k^2 \equiv T^2$$