Loop calculations in light cone perturbation theory

T. Lappi

University of Jyväskylä, Finland

Zakopane 2025

Outline

Lecture 1: basics

- Dipole picture of DIS
- Light cone quantization
- ► CGC
- BK equation

Lecture 2: NLO

- Dipole picture DIS at NLO
- Dipole picture DIS with quark masses: Mass renormalization LCPT
- Diffractive structure function at NLO

Summarizing work done by several people over the last ${\lesssim}10$ years:

(often not including me)

G. Beuf, C. Casuga, H. Hänninen, M. Karhunen, Y. Mulian, H. Mäntysaari, R. Paatelainen, J. Penttala

Dipole picture DIS at NLO

DIS at NLO: Fock state expansion

Fock state decomposition of $|\gamma_{\lambda}(\vec{q}, Q^2)\rangle_i$ (and $_i(\gamma_{\lambda}(\vec{q}', Q^2)))$ up to g^2 :

$$\begin{split} |\gamma_{\lambda}(\vec{q}, Q^{2})\rangle_{l} &= \sqrt{Z_{\gamma^{*}}} \left[|\gamma_{\lambda}(\vec{q}, Q^{2})\rangle + \sum_{q\bar{q}} \Psi^{\gamma^{*} \to q\bar{q}} |q(\vec{k}_{0})\bar{q}(\vec{k}_{1})\rangle \right. \\ &+ \sum_{q\bar{q}g} \Psi^{\gamma^{*} \to q\bar{q}g} |q(\vec{k}_{0})\bar{q}(\vec{k}_{1})g(\vec{k}_{2})\rangle + \cdots \right] \end{split}$$

with Light Cone Wave Functions $\Psi^{\gamma^* \to q\bar{q}}$ and $\Psi^{\gamma^* \to q\bar{q}g}$

- ► Fourier-transform to ⊥ coordinate: (eikonal scattering)
- Scattering off target: Wilson line correlators

 $\begin{aligned} \hat{\mathcal{S}}_{E} |q(\mathbf{x}_{\perp})\bar{q}(\mathbf{y}_{\perp})\rangle &= V(\mathbf{x}_{\perp})V^{\dagger}(\mathbf{y}_{\perp})|q(\mathbf{x}_{\perp})\bar{q}(\mathbf{y}_{\perp})\rangle \\ \hat{\mathcal{S}}_{E} |q(\mathbf{x}_{\perp})\bar{q}(\mathbf{y}_{\perp})g(\mathbf{z}_{\perp})\rangle &= V(\mathbf{x}_{\perp})V^{\dagger}(\mathbf{y}_{\perp})V_{adj}(\mathbf{z}_{\perp})|q(\mathbf{x}_{\perp})\bar{q}(\mathbf{y}_{\perp})g(\mathbf{z}_{\perp})\rangle \end{aligned}$

DIS at NLO: procedure

Beuf 2016, 2017, H. Hänninen, T.L., Paatelainen 2017

- 1. Evaluate LCPT diagrams
 - $\Psi^{\gamma^* \to q\bar{q}}$ to 1 loop
 - $\Psi^{\gamma^* \to q\bar{q}g}$ at tree level
- 2. Fourier-transform to transverse coordinate
- 3. "Square" i.e. $_i\langle\gamma_\lambda(\vec{q}',Q^2)|(\hat{\mathcal{S}}_E-1)|\gamma_\lambda(\vec{q},Q^2)\rangle_i$

LCPT rules:

- ▶ Intermediate (\ni "final") state k^- denominators
- On-shell vertices, most importantly qāg

$$\left[\bar{u}_{h'}(p') \phi_{\lambda}^{*}(k) u_{h}(p)\right] = \frac{-2}{z\sqrt{1-z}} \left[\left(1 - \frac{z}{2}\right) \delta_{h',h} \delta^{ij} + \frac{z}{2} ih \delta_{h',h} \varepsilon^{ij} \right] \mathbf{q}_{\perp}^{i} \varepsilon_{\perp \frac{*j}{\lambda}},$$

(This is in d = 4, generalize for d < 4) Note 2 index structures for massless quarks.

DIS at NLO: real and virtual corrections

Here example diagams only

DIS at NLO: subtracting BK equation

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, (arXiv:1708.07328 (hep-ph)).

$$\begin{aligned} \text{Evaluate cross section as} \quad \sigma_{L,T}^{\text{NLO}} &= \sigma_{L,T}^{\text{LO}} + \sigma_{L,T}^{\text{dip}} + \sigma_{L,T,\text{sub.}}^{qg} \\ \Rightarrow \quad \sigma^{\text{LO}} &\sim \int_{0}^{1} dz_{1} \int_{\mathbf{x}_{\pm 0}, \mathbf{x}_{\pm 1}} |\psi_{\gamma^{*} \rightarrow q\bar{q}}^{\text{LO}}(z_{1}, \mathbf{x}_{\pm 0}, \mathbf{x}_{\pm 1})|^{2} \mathcal{N}_{01}(x_{Bj}) \\ &\sim \underbrace{\mathsf{v}}_{\text{vec}}^{\text{vec}} - * \Rightarrow \quad \sigma^{\text{dip}} &\sim \alpha_{\text{s}} C_{\text{F}} \int_{\mathbf{x}_{\pm 0}, \mathbf{x}_{\pm 1}, z_{1}} \left|\psi_{\gamma^{*} \rightarrow q\bar{q}}^{\text{LO}}\right|^{2} \left[\frac{1}{2} \ln^{2} \left(\frac{z_{1}}{1 - z_{1}}\right) - \frac{\pi^{2}}{6} + \frac{5}{2}\right] \mathcal{N}_{01}(x_{Bj}) \\ &\sim \underbrace{\mathsf{v}}_{\text{sub.}}^{\text{deg}} + * \Rightarrow \quad \sigma_{\text{sub.}}^{qg} &\sim \alpha_{\text{s}} C_{\text{F}} \int_{z_{1}, z_{2}, \mathbf{x}_{\pm 0}, \mathbf{x}_{\pm 1}, \mathbf{x}_{\pm 2}} dz_{2} \left[\left|\psi_{\gamma^{*} \rightarrow q\bar{q}g}(z_{1}, z_{2}, \{\mathbf{x}_{\pm i}\})\right|^{2} \mathcal{N}_{012}(X(z_{2})) \\ &\quad - \left|\psi_{\gamma^{*} \rightarrow q\bar{q}g}(z_{1}, 0, \{\mathbf{x}_{\pm i}\})\right|^{2} \mathcal{N}_{012}(X(z_{2}))\right]. \end{aligned}$$

* UV-divergence

DIS at NLO: subtracting BK equation

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, (arXiv:1708.07328 (hep-ph)).

*

UV-divergence LL: subtract leading log, already in BK-evolved \mathcal{N}

DIS at NLO: subtracting BK equation

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, (arXiv:1708.07328 (hep-ph)).

* UV-divergence LL: subtract leading log, already in BK-evolved ${\cal N}$

► Parametrically $X(z_2) \sim x_{Bj}$, but $X(z_2) \sim 1/z_2$ essential! (" k_T -factorization" with fixed rapidity scale is unstable @ NLO. Analogous probem in $p + A \rightarrow h + X$) $^{6/25}$

Confronting with HERA data

G. Beuf, H. Hänninen, T. L. and H. Mäntysaari, (arXiv:2007.01645 (hep-ph)).

Different resummations of collinear logs in BK

- 1. KCBK Beuf (arXiv:1401.0313 (hep-ph))
- 2. ResumBK E. lancu et al (arXiv:1502.05642 (hep-ph)).
- 3. TBK B. Ducloue et al (arXiv:1902.06637 (hep-ph)) ,

Free parameters:

- σ_0 : proton area
- ► Q_{s0}: initial saturation scale
- γ shape of initial condition as function of r
- C^2 : scale of α_s as function of r (fit α_s or Λ_{QCD})

Main conclusions

- Fits are very good, χ^2/N varies 1.03 ... 2.77
- Difference between BK resummation schemes absorbed in initial conditions. Similar as Albacete 2015 Visible only at LHeC kinematics

Quark masses in dipole picture DIS at NLO

Heavy quarks, motivation, issues

- Data
 - ► HERA F_2^c
 - Charm big part of EIC program
- LO F^c₂ problematic in existing fits Dirty little secret: heavy quarks in LO rcBK fits do not actually work!

LCPT loops with massive quarks are fun!

- Working with fixed helicity states (not Dirac traces=sums) : physics very explicit

Approach for this talk: same regularization as in massless case

- Cutoff in k^+
- ▶ ⊥ dim. reg.

(Recall: Hamiltonian perturbation theory, k^- -integrals already done)

Elementary vertex with masses

$$\vec{p}, h \qquad \vec{p}' \equiv \vec{p} - \vec{k}, h'$$

$$\mathbf{q}_{\perp} \equiv \mathbf{k}_{\perp} - z\mathbf{p}_{\perp}$$

$$\mathbf{k}, \lambda; \qquad \mathbf{k}^{+} = zp^{+}$$

$$\vec{u}_{h'}(p') \notin_{\lambda}^{*}(k)u_{h}(p) \qquad \sim \vec{u}_{h'}\gamma^{+}u_{h} \delta^{ij}q^{i}\varepsilon_{\perp} *^{ij}_{\lambda} + \vec{u}_{h'}\gamma^{+}[\gamma^{i}, \gamma^{j}]u_{h} q^{i}\varepsilon_{\perp} *^{j}_{\lambda} + \vec{u}_{h'}\gamma^{+}\gamma^{j}u_{h} m_{q}\varepsilon_{\perp} *^{j}_{\lambda}$$

$$\mathbf{k}, h': \text{ light cone (z-axis) helicities}$$

$$\mathbf{q}_{\perp}: \text{ center-of-mass } \perp \text{ momentum in splitting}$$

$$\mathbf{polarization } \lambda, \text{ with } \perp \text{ polarization vector } \varepsilon_{\perp} *^{j}_{\lambda}$$

$$\vec{u}_{h'}\gamma^{+}(\gamma^{i}, \gamma^{j}]u_{h} q^{j}\varepsilon_{\perp} *^{j}_{\lambda} + \vec{u}_{h'}\gamma^{+}\gamma^{j}u_{h} m_{q}\varepsilon_{\perp} *^{j}_{\lambda}$$

- New 3rd light-cone-helicity-flip structure $\sim m_q$
- ▶ Note: \perp momentum in non-flip, but not in flip vertex \implies less UV-divergent
- Loops: also generate 4th structure $\bar{u}_{h'}\gamma^+\gamma^i u_h \epsilon_{\perp\lambda}^{*j} q^j q^j$
- In principle same as massless, but a lot more algebra ...
- Apart from quark mass renormalization (more in a minute)

First: result for $\gamma^* ightarrow q \bar{q}$ with massive quarks

 $\gamma^*
ightarrow q ar q$ and DIS cross section Beuf, Paatelainen, T.L. 2103.14549, 2112.03158, 2204.02486

$$\begin{split} \widetilde{\psi}_{\text{NLO}}^{\gamma_{1}^{*} \to q\bar{q}} &= -\frac{\Theta \Theta_{f}}{2\pi} \left(\frac{\alpha_{s} C_{\text{F}}}{2\pi} \right) \left\{ \left[\left(\frac{k_{0}^{+} - k_{1}^{+}}{q^{+}} \right) \delta^{ij} \overline{u}(0) \gamma^{+} \nu(1) + \frac{1}{2} \overline{u}(0) \gamma^{+} [\gamma^{i}, \gamma^{j}] \nu(1) \right] \mathcal{F} \left[\mathbf{P}_{\perp}^{i} \mathcal{V}^{T} \right] + \overline{u}(0) \gamma^{+} \nu(1) \mathcal{F} \left[\mathbf{P}_{\perp}^{i} \mathbf{P}_{\perp}^{j} - \frac{\delta^{ij}}{2} \right] \mathcal{S}^{T} \right] - m \overline{u}(0) \gamma^{+} \gamma^{j} \nu(1) \mathcal{F} \left[\mathcal{V}^{T} + \mathcal{M}^{T} - \frac{\mathcal{S}^{T}}{2} \right] \right\} \boldsymbol{\varepsilon}_{\perp \lambda}^{j}. \end{split}$$

 $\Omega_{V}^{T} = -\left(1 + \frac{1}{2\pi}\right) \left[\log(1-z) + \gamma \log\left(\frac{1+\gamma}{1+z-2z}\right)\right] + \frac{1}{2\pi} \left[\left(z + \frac{1}{2}\right)(1-\gamma) + \frac{m^{2}}{\alpha^{2}}\right] \log\left(\frac{n_{z}^{2}}{-z^{2}}\right) + (z \leftrightarrow 1-z)$

$$\begin{split} \mathcal{F}\left[\mathbf{P}^{i}\mathbf{Y}^{T}\right] &= \frac{i\mathbf{x}_{0:1}^{i}}{|\mathbf{x}_{0:1}|^{2}} \left(\frac{\kappa_{s}}{2\pi|\mathbf{x}_{0:1}|}\right)^{\frac{R}{2}-2} \left\{ \left[\frac{3}{2} + \log\left(\frac{\alpha}{2}\right) + \log\left(\frac{\alpha}{1-z}\right)\right] \left\{ \frac{(4\pi)^{2-\frac{R}{2}}}{(2-\frac{R}{2})} \Gamma\left(3-\frac{D}{2}\right) + \log\left(\frac{|\mathbf{x}_{0:1}|^{2}\mu^{2}}{4}\right) \\ + 2\gamma_{E}\right\} + \frac{1}{2} \frac{(D_{s}-4)}{(D-4)} \right] \kappa_{s} \mathcal{K}_{\frac{R}{2}-1}(|\mathbf{x}_{0:1}|\kappa_{s}) + \frac{i\mathbf{x}_{0:1}^{k}}{|\mathbf{x}_{0:1}|^{2}} \left[\left[\frac{5}{2} - \frac{\pi^{2}}{3} + \log^{2}\left(\frac{z}{1-z}\right) - \Omega_{y}^{T} + L\right] \kappa_{s} \mathcal{K}_{1}(|\mathbf{x}_{0:1}|\kappa_{s}) + \mathcal{I}_{y}^{T} \right] \\ &= \int_{-\frac{L}{2}}^{L} \frac{d(\frac{d}{2}+\frac{d}{d}-\frac{d}{d}-\frac{d}{d})}{(d-\frac{d}{d}$$

Comparison to HERA data

H. Hänninen, H. Mäntysaari, R. Paatelainen and J. Penttala, PRL 130 (2023) no.19, 19 [arXiv:2211.03504 [hep-ph]]

- Some massless fits also work for $F_2^{c\bar{c}}$
- Some don't \implies constraining power

At NLO: dipole picture with BK evolution describes both F_2 and $F_2^{c\bar{c}}$

Very recent combined fit

C. Casuga et al [arXiv:2506.00487 [hep-ph]].

Mass renormalization

Vertex corrections to LC helicity flip vertex

► 1 flip vertex: $h_1 \neq h$, $h_2 \neq h_1$ or $h_2 \neq h$ ⇒ log-divergent ~ $m_q \frac{1}{\varepsilon}$ (2 ED's ~ \mathbf{k}_{\perp}^2 each, 2 vertices \mathbf{k}_{\perp} each, measure $d^2\mathbf{k}_{\perp}$) ⇒ absorb into vertex mass counterterm δm_v , same as δm_q in conventional perturbation theory

▶ 3 flip vertices:
$$h_1 \neq h$$
, $h_2 \neq h_1$ and $h_2 \neq h$
⇒ finite NLO contribution

Vertex corrections to non-flip vertex

- ▶ no flip vertex: $h_1 = h$, $h_2 = h_1$ and $h_2 \neq -h$ vertices as in massless theory \implies not new contribution
- ▶ 2 flip + 1 non-flip $h_1 = h$ or $h_2 = h_1$ or $h_2 = -h$ ⇒ again finite NLO contribution (2 ED's ~ \mathbf{k}_{\perp}^2 each, 1 vertex ~ \mathbf{k}_{\perp} , finite integral ~ $\int d^2 \mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}}{((\mathbf{k}_{\perp} - ...)^2 + ...)((\mathbf{k}_{\perp} - ...)^2 + ...)}$)

Quark propagator corrections

can have 0 or 2 flip vertices (1 gives zero by symmetry)

• Loops give m_q -dependent divergence \sim

- Can absorb into a renormalization of m_q^2 in ED of LO LCWF $(k_q^- = (\mathbf{k}_{\perp q}^2 + m_q^2)/(2k_q^+))$
- But now the problem, known since 90's e.g. Haridranath, Zhang, also Burkardt in Yukawa th.
- ► In our regularization: k^+ cutoff, \perp dim. reg. this **kinetic mass** counterterm δm_k is **not** same as the vertex correction δm_v
- In fact δm_v is same as in covariant theory, δm_k different
- So how to determine finite part of δm_v and δm_k ?

Mass renormalization

- Mass has 2 conceptually different roles here:
 - Kinetic mass: relates energy and momentum
 - Vertex mass: amplitude of helicity flip in gauge boson vertex
- 1 parameter in Lagrangian, but 2 parameters in LCPT Hamiltonian
- Lorentz-invariance requires they stay the same
- ▶ Both gauge condition $A^+ = 0$ and regularization (*k*⁺-cutoff and \perp dim. reg.) violate rotational invariance $\implies m_v \neq m_k$ at loop level \implies "textbook stuff"

There are 3 options to deal with this

- 1. Renormalization conditions to set separately m_v and $m_k \implies$ discuss next
- 2. Smartly combine with instantaneous "normal ordering" diagrams before regularizing & integrating \implies can keep $m_k = m_v$ but cannot calculate blindly For details see Beuf @ Hard Probes 2018
- 3. Use some other regularization \implies finite parts hard!

Two mass renormalization conditions

Pole mass/on shell renormalization point:

- Timelike virtual $\gamma^* \rightarrow q\bar{q}$ with $q^2 = M^2$ (Same diagrams as for spacelike γ^*)
- On shell final state $M^2 = (\mathbf{k}_{\perp q}^2 + m_q^2)/(z(1-z))$ (i.e. $ED_{LO} \rightarrow 0$)

One condition: propagator diagram

is the most divergent at on-shell point \implies cancel this \implies kinetic mass

Vertex mass (+ cross checks) from Lorentz-invariance
 1-loop vertex corrections: coefficients of 4 structures (P₁ = (1 - z)k₁ - zk₁)

$$\bar{u}(0) \notin_{\lambda}(q) v(1) \quad (\mathbf{P}_{\perp} \cdot \varepsilon_{\perp \lambda}) \bar{u}(0) \gamma^{+} v(1) \quad \frac{(\mathbf{P}_{\perp} \cdot \varepsilon_{\perp \lambda})}{\mathbf{P}_{\perp}^{2}} \mathbf{P}_{\perp}^{j} \bar{u}(0) \gamma^{+} \gamma^{j} v(1) \quad \varepsilon_{\perp \lambda}^{j} \bar{u}(0) \gamma^{+} \gamma^{j} v(1)$$

must reproduce 2 Lorentz-invariant form factors (Dirac & Pauli) @ on-shell point

Dipole picture diffractive DIS at NLO

Inclusive diffraction, kinematics

 $\gamma^* + A \rightarrow X + A$, differential in M_X

- Momentum transfer $t = (P P')^2$
- Gap size $x_{\mathbb{P}}$, target evolution rapidity $\sim \ln 1/x_{\mathbb{P}}$
- Diffractive system mass M_X^2 , $\beta = Q^2/(Q^2 + M_X^2)$
- Virtuality Q²
- Lower $x_{\mathbb{P}}$ than dijets (e.g. at EIC)

 $X_{Bj} = X_{\mathbb{P}}\beta$

(This talk: $x_{\mathbb{P}}$ small, β not.)

Diffractive DIS at leading order

Full kinematics and impact parameter dependence
 G. Beuf, H. Hänninen, T.L., Y. Mulian, H. Mäntysaari, arXiv: 2206.13161

$$\frac{\mathrm{d}\sigma_{\lambda,\,q\bar{q}}^{\mathrm{D}}}{\mathrm{d}M_{\chi}^{2}\,\mathrm{d}|t|} = \frac{N_{\mathrm{C}}}{4\pi} \int_{0}^{1} \mathrm{d}z \int_{\mathbf{x}_{\perp 0}\mathbf{x}_{\perp 1}\mathbf{\tilde{x}}_{\perp 1}\mathbf{\tilde{x}}_{\perp 2}} \mathcal{I}_{\mathbf{\Delta}_{\perp}}^{(2)} \mathcal{I}_{M_{\chi}}^{(2)} \\
\times \sum_{f,h_{0},h_{1}} \left(\widetilde{\psi}_{\gamma_{\lambda}^{*}\to q_{0}}\bar{q}_{1}\right)^{\dagger} \left(\widetilde{\psi}_{\gamma_{\lambda}^{*}\to q_{0}}\bar{q}_{1}\right) \left[\left[S_{\overline{0}\,\overline{1}}^{\dagger} - 1 \right] \left[S_{01} - 1 \right] \right]$$

$$zq^+, \mathbf{x}_{\perp 0}$$

$$(1-z)q^+, \mathbf{x}_{\perp 1}$$

(Blue: shockwave target)

- $q\bar{q}$ crossing shockwave: dipole S_{01}
- Quadratic in dipole: sensitive to saturation
- "Transfer functions:" relate coordinates at shockwave to:
 - $\blacktriangleright \text{ Momentum transfer } t = -\Delta_{\perp}^{2} \mathcal{I}_{\Delta_{\perp}}^{(2)} = \frac{1}{4\pi} J_{0} \left(\sqrt{|t|} \| z \mathbf{x}_{\perp \tilde{0}0} (1-z) \mathbf{x}_{\perp \tilde{1}1} \| \right)$
 - Invariant mass $\mathcal{I}_{M_X}^{(2)} = \frac{1}{4\pi} J_0\left(\sqrt{z(1-z)}M_X \| \mathbf{r}_{\perp}^- \mathbf{r}_{\perp} \|\right)$

NLO radiative corrections

Emission before target

Squares already in G. Beuf, H. Hänninen, T.L., Y. Mulian, H. Mäntysaari arXiv:2206.13161

- Contain leading In Q² contribution, which we rederive in arXiv:2206.13161 (Mysterious "Wüsthoff" contribution, used in famous Golec-Biernat+Wüsthoff papers)
- Emission after target

Interferences => simplify with some of the virtual corrections

NLO virtual

See also Boussarie et al 2014: diffractive jets, Caucal et al 2021 inclusive

Vertex corrections: known 1-loop $\gamma \rightarrow q\bar{q}$ wavefunction

NLO virtual

See also Boussarie et al 2014: diffractive jets, Caucal et al 2021 inclusive

- ► Vertex corrections: known 1-loop $\gamma \rightarrow q\bar{q}$ wavefunction
- Gluon crosses shockwave, but not the cut:
 - Loop corrections to amplitude,
 - tree level wavefunctions
 - 3-point operator of Wilson lines
 - BK/JIMWLK evolution of LO amplitude

NLO virtual

See also Boussarie et al 2014: diffractive jets,

- ► Vertex corrections: known 1-loop $\gamma \rightarrow q\bar{q}$ wavefunction
- Gluon crosses shockwave, but not the cut:
 - Loop corrections to amplitude,
 - tree level wavefunctions

- 3-point operator of Wilson lines
- BK/JIMWLK evolution of LO amplitude
- ► Final state interactions (Propagator corrections {} → State renormalization, in fact = 0 in dim. reg.)

NLO diffractive DIS cross section

Calculation in 2401.17251 [hep-ph]

Beuf, T.L., Paatelainen, Mäntysaari, Penttala

We have calculated all these contributions

Diffractive structure function:

clean IR-safe, [perturbative = experimental] final state definition M_X ! (No fragmentation function, jet definition)

 \implies Divergences must cancel

- Explicit expressions will not fit in the slides, but there in 2401.17251 [hep-ph]
- Technically: $A^+ = 0$ gauge Hamiltonian perturbation theory = LCPT

Some features of the calculation:

- Divergence structure
- Treatment of energy denominators

Regularization procedure in LCPT

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ► Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\epsilon}$ and $\frac{1}{\epsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization

Regularization procedure in LCPT

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ► Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\varepsilon}$ and $\frac{1}{\varepsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization
- 2. Collinear $\frac{1}{\varepsilon}$:

wavef. renormalization, final state emission

2. Collinear $\frac{1}{\varepsilon}$ e.g. in

Regularization procedure in LCPT

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ► Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\varepsilon}$ and $\frac{1}{\varepsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization
- 2. Collinear $\frac{1}{\varepsilon}$:

wavef. renormalization, final state emission

3. $1/\alpha$: normal and instantaneous exchange

Regularization procedure in LCPT

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ► Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\varepsilon}$ and $\frac{1}{\varepsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization
- 2. Collinear $\frac{1}{\varepsilon}$:
 - wavef. renormalization, final state emission
- 3. $1/\alpha$: normal and instantaneous exchange
- 4. $\ln^2 \alpha$ from final state exchange and emission (M_X restriction matters here!)

Regularization procedure in LCPT

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ► Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\epsilon}$ and $\frac{1}{\epsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization
- 2. Collinear $\frac{1}{\varepsilon}$:
 - wavef. renormalization, final state emission
- 3. $1/\alpha$: normal and instantaneous exchange
- 4. $\ln^2 \alpha$ from final state exchange and emission (M_X restriction matters here!)
- 5. Remaining $\ln \alpha$ absorbed into BK/JIMWLK

Challenge: how to dig these out from diagrams?

Final state corrections

How to dig out different types of divergences? Penttala

Final state corrections

How to dig out different types of divergences? Penttala

As an example: consider 1st row

"Beuf trick": $\delta(M_X^2 - ...)$ as imaginary part of "propagator"

Off-shell propagators = light cone energy denominators + M_X constraint

$$\frac{\delta(M_{X}^{2} - M_{2}^{2})}{(M_{2}^{2} - M_{1}^{2} + i\delta)(M_{2}^{2} - M_{0}^{2} + i\delta)} + \frac{\delta(M_{X}^{2} - M_{1}^{2})}{(M_{1}^{2} - M_{0}^{2} + i\delta)(M_{1}^{2} - M_{2}^{2} - i\delta)} + \frac{\delta(M_{X}^{2} - M_{0}^{2})}{(M_{0}^{2} - M_{1}^{2} - i\delta)(M_{0}^{2} - M_{2}^{2} - i\delta)}$$

$$(Note: sign of i\delta essential) = \frac{1}{2\pi i} \left[\frac{1}{(M_{X}^{2} - M_{0}^{2} - i\delta)(M_{X}^{2} - M_{1}^{2} - i\delta)(M_{X}^{2} - M_{2}^{2} - i\delta)} - c.c. \right]$$

- Then express numerator (\perp momentum dot products) in terms of M_0^2, M_1^2, M_2^2
- Combine before integration => separate different divergence types

Conclusions, lecture 2

Lecture 2: NLO

- Dipole picture of DIS: $\gamma^*
 ightarrow q ar q$
- Light cone quantization: partons in γ^*
- CGC: target is dense gluon field
- BK equation: add one soft gluon, absorb into redefinition of target

Lecture 2: NLO

- Dipole picture DIS total cross section available at NLO
- Being used to describe HERA data
- Quark masses included; longstanding issue of mass renormalization in LCPT
- Diffractive structure function at NLO calculated, implementation in progress.

Heavy and light quarks

Elephant in the room: heavy quarks, simultaneous $F_2 \& F_2^c$ difficult also at LO

- Only have NLO cross sections for m = 0
- Data is for total F₂ & F₂^c, not light-quark separately; charm is large fraction of F₂
- Here: interpolated "light quark-only" dataset.
 implicit with NLO dipole picture
 Errors not correct (experimentalists needed for this)
- Result: achieve good fits, typically with larger σ_0 and slower evolution speed (The α_s scale parameter *C* allows this to adjust.)
- Lesson: F₂ is not ideal for dipole picture (known: aligned jet configurations)
 F_L and F^c₂ for more reliable probes.

Dirac and Pauli form factors

$$\begin{split} \Gamma^{\mu}(q) &= F_{D}(q^{2}/m^{2}) \gamma^{\mu} + F_{P}(q^{2}/m^{2}) \frac{q_{\nu}}{2m} i\sigma^{\mu\nu} \\ \Psi^{\gamma_{LO}^{*} \to q\bar{q}}_{LO} &= \delta_{\alpha_{0}\alpha_{1}} \frac{ee_{f}}{ED_{LO}} \left\{ \bar{u}(0) \not_{\lambda}(q) v(1) \left[1 + \left(\frac{\alpha_{s}C_{F}}{2\pi} \right) v^{T} \right] + \frac{q^{+}}{2k_{0}^{+}k_{1}^{+}} (\mathbf{P}_{\perp} \cdot \boldsymbol{\epsilon}_{\perp\lambda}) \bar{u}(0) \gamma^{+} v(1) \left(\frac{\alpha_{s}C_{F}}{2\pi} \right) \mathcal{N}^{T} \\ &+ \frac{q^{+}}{2k_{0}^{+}k_{1}^{+}} \frac{(\mathbf{P}_{\perp} \cdot \boldsymbol{\epsilon}_{\perp\lambda})}{\mathbf{P}_{\perp}^{2}} \mathbf{P}_{\perp}^{J} m \bar{u}(0) \gamma^{+} \gamma^{J} v(1) \left(\frac{\alpha_{s}C_{F}}{2\pi} \right) \mathcal{S}^{T} + \frac{q^{+}}{2k_{0}^{+}k_{1}^{+}} m \bar{u}(0) \gamma^{+} \not_{\lambda}(q) v(1) \left(\frac{\alpha_{s}C_{F}}{2\pi} \right) \mathcal{M}^{T} \right\}. \\ &- \left(\frac{\alpha_{s}C_{F}}{2\pi} \right) \frac{m^{2}}{\mathbf{P}_{\perp}^{2}} \mathcal{S}^{T} \Big|_{\mathbf{P}_{\perp}^{2} = -\overline{\mathbf{Q}}^{2} - m^{2}} = F_{P}(q^{2}/m^{2}) \\ &- \left(\frac{\alpha_{s}C_{F}}{2\pi} \right) \frac{1}{(2z-1)} \mathcal{N}^{T} \Big|_{\mathbf{P}_{\perp}^{2} = -\overline{\mathbf{Q}}^{2} - m^{2}} = -1 + F_{D}(q^{2}/m^{2}) + F_{P}(q^{2}/m^{2}) \\ &\qquad \qquad \mathcal{M}^{T} \Big|_{\mathbf{P}_{\perp}^{2} = -\overline{\mathbf{Q}}^{2} - m^{2}} = 0 \end{aligned}$$