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Outline

Lecture 1: basics
▶ Dipole picture of DIS
▶ Light cone quantization
▶ CGC
▶ BK equation

Lecture 2: NLO
▶ Dipole picture DIS at NLO
▶ Dipole picture DIS with quark masses: Mass renormalization LCPT
▶ Diffractive structure function at NLO

Summarizing work done by several people over the last ≲10 years:
(often not including me)

G. Beuf, C. Casuga, H. Hänninen, M. Karhunen, Y. Mulian, H. Mäntysaari, R. Paatelainen, J. Penttala
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Dipole picture DIS at NLO
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DIS at NLO: Fock state expansion

▶ Fock state decomposition of |γλ(q⃗,Q2)⟩i (and i⟨γλ(q⃗′,Q2)|) up to g2:

|γλ(q⃗,Q2)⟩i =
√

Zγ∗

[
|γλ(q⃗,Q2)⟩+

∑
qq̄

Ψγ∗→qq̄|q(k⃗0)q̄(k⃗1)⟩

+
∑
qq̄g

Ψγ∗→qq̄g|q(k⃗0)q̄(k⃗1)g(k⃗2)⟩+ · · ·
]

with Light Cone Wave Functions Ψγ∗→qq̄ and Ψγ∗→qq̄g

▶ Fourier-transform to ⊥ coordinate: (eikonal scattering)

▶ Scattering off target: Wilson line correlators

ŜE |q(x⊥)q̄(y⊥)⟩ = V (x⊥)V †(y⊥)|q(x⊥)q̄(y⊥)⟩
ŜE |q(x⊥)q̄(y⊥)g(z⊥)⟩ = V (x⊥)V †(y⊥)Vadj(z⊥)|q(x⊥)q̄(y⊥)g(z⊥)⟩
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DIS at NLO: procedure
Beuf 2016, 2017, H. Hänninen, T.L., Paatelainen 2017

1. Evaluate LCPT diagrams
▶ Ψγ∗→qq̄ to 1 loop
▶ Ψγ∗→qq̄g at tree level

2. Fourier-transform to transverse coordinate
3. “Square” i.e. i⟨γλ(q⃗′,Q2)|(ŜE − 1)|γλ(q⃗,Q2)⟩i

p⃗,h p⃗ ′ ≡ p⃗ − k⃗ ,h′

k⃗ , λ; k+ = zp+

q⊥ ≡ k⊥ − zp⊥

LCPT rules:
▶ Intermediate (∋ “final”) state k− denominators
▶ On-shell vertices, most importantly qq̄g[

ūh′(p′)ε/∗λ(k)uh(p)

]
=

−2
z
√

1 − z

[(
1 − z

2

)
δh′,hδ

ij +
z
2

ihδh′,hε
ij
]
q⊥

iε⊥
∗j
λ ,

(This is in d = 4, generalize for d < 4 )
Note 2 index structures for massless quarks.
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DIS at NLO: real and virtual corrections
Here example diagams only

ta
rg

e
t

x⊥0

x⊥1
Virtual corrections,
interaction with target is

Nqq̄(x⊥0,x⊥1)

+ UV divergence in loop

ta
rg

e
t

x⊥0

x⊥1

x⊥2

Real corrections,
interaction with target is

Nqq̄g(x⊥0,x⊥1,x⊥2)

UV divergence in x⊥2-integral

These UV-divergences cancel because for Wilson lines ∈ SU(Nc)

Nqq̄g(x⊥0,x⊥1,x⊥2 → x⊥0) = Nqq̄g(x⊥0,x⊥1,x⊥2 → x⊥1) = Nqq̄(x⊥0,x⊥1)
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DIS at NLO: subtracting BK equation
B. Ducloué, H. Hänninen, T. L. and Y. Zhu, [arXiv:1708.07328 [hep-ph]].

Evaluate cross section as σNLO
L,T = σLO

L,T + σdip
L,T + σqg

L,T ,sub.

⇒ σLO ∼
∫ 1

0
dz1

∫
x⊥0,x⊥1

|ψLO
γ∗→qq̄(z1,x⊥0,x⊥1)|2N01(xBj)

− ∗ ⇒ σdip ∼ αsCF

∫
x⊥0,x⊥1,z1

∣∣∣ψLO
γ∗→qq̄

∣∣∣2 [1
2
ln2
(

z1

1−z1

)
−
π2

6
+

5
2

]
N01(xBj)

+ ∗ ⇒ σqg
sub. ∼ αsCF

∫
z1,z2,x⊥0,x⊥1,x⊥2

dz2

[ ∣∣ψγ∗→qq̄g(z1, z2, {x⊥ i})
∣∣2 N012(X(z2))

k+
g ∼ z2

- LL

−
∣∣ψγ∗→qq̄g(z1, 0, {x⊥ i})

∣∣2 N012(X(z2))

]
.

* UV-divergence

LL: subtract leading log, already in BK-evolved N
▶ Parametrically X(z2) ∼ xBj , but X(z2) ∼ 1/z2 essential!

(“kT -factorization” with fixed rapidity scale is unstable @ NLO. Analogous probem in p+A → h+X )
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Confronting with HERA data
G. Beuf, H. Hänninen, T. L. and H. Mäntysaari, [arXiv:2007.01645 [hep-ph]].

Different resummations of collinear logs in BK
1. KCBK Beuf [arXiv:1401.0313 [hep-ph]]

2. ResumBK E. Iancu et al [arXiv:1502.05642 [hep-ph]].

3. TBK B. Ducloue et al [arXiv:1902.06637 [hep-ph]] ,
Free parameters:
▶ σ0: proton area
▶ Qs0: initial saturation scale
▶ γ shape of initial condition as function of r
▶ C2: scale of αs as function of r (fit αs or ΛQCD)
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Main conclusions
▶ Fits are very good, χ2/N varies 1.03 . . . 2.77
▶ Difference between BK resummation schemes absorbed in initial conditions.

Similar as Albacete 2015 Visible only at LHeC kinematics
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Quark masses in dipole picture DIS at NLO
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Heavy quarks, motivation, issues

▶ Data
▶ HERA Fc

2
▶ Charm big part of EIC program

▶ LO Fc
2 problematic in existing fits
Dirty little secret: heavy quarks in LO rcBK fits do not actually work!

LCPT loops with massive quarks are fun!
▶ Working with fixed helicity states (not Dirac traces=sums) : physics very explicit
▶ New Lorentz structures =⇒ rotational invariance constraints

Approach for this talk: same regularization as in massless case
▶ Cutoff in k+

▶ ⊥ dim. reg.
(Recall: Hamiltonian perturbation theory, k−-integrals already done)
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Elementary vertex with masses

p⃗,h p⃗ ′ ≡ p⃗ − k⃗ ,h′

k⃗ , λ; k+ = zp+

q⊥ ≡ k⊥ − zp⊥
▶ h,h′: light cone (z-axis) helicities
▶ q⊥: center-of-mass ⊥ momentum in splitting
▶ polarization λ, with ⊥ polarization vector ε⊥

∗j
λ

[
ūh′(p′)ε/∗λ(k)uh(p)

]
∼

∼δh,h′︷ ︸︸ ︷
ūh′γ+uh δ

ijqiε⊥
∗j
λ +

∼δh,h′︷ ︸︸ ︷
ūh′γ+[γ i , γ j ]uh qiε⊥

∗j
λ +

∼δh,−h′︷ ︸︸ ︷
ūh′γ+γ juh mqε⊥

∗j
λ

▶ New 3rd light-cone-helicity-flip structure ∼ mq

▶ Note: ⊥ momentum in non-flip, but not in flip vertex =⇒ less UV-divergent
▶ Loops: also generate 4th structure ūh′γ+γ iuhε⊥

∗j
λ qiqj

▶ In principle same as massless, but a lot more algebra . . .
▶ Apart from quark mass renormalization (more in a minute)
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First: result for γ∗ → qq̄ with massive quarks
γ∗ → qq̄ and DIS cross section Beuf, Paatelainen, T.L. 2103.14549, 2112.03158, 2204.02486

ψ̃
γ∗

T →qq̄
NLO = −

eef

2π

(
αsCF

2π

){[(k+
0 − k+

1

q+

)
δij ū(0)γ+v(1) +

1
2

ū(0)γ+[γ i , γ j ]v(1)

]
F
[

P⊥
iVT
]
+ ū(0)γ+v(1)F

[
P⊥

jN T
]

+ mū(0)γ+γ iv(1)F
[(

P⊥
iP⊥

j

P⊥
2

−
δij

2

)
ST
]
− mū(0)γ+γ jv(1)F

[
VT +MT −

ST

2

]}
ε⊥

j
λ.
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Comparison to HERA data
H. Hänninen, H. Mäntysaari, R. Paatelainen and J. Penttala, PRL 130 (2023) no.19, 19 [arXiv:2211.03504 [hep-ph]]

▶ Some massless fits also work for Fcc̄
2

▶ Some don’t =⇒ constraining power

At NLO: dipole picture with BK evolution
describes both F2 and Fcc̄

2

Very recent combined fit
C. Casuga et al [arXiv:2506.00487 [hep-ph]].
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Mass renormalization
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Vertex corrections to LC helicity flip vertex

Look at LC helicity flip part of LO vertex

h

h

∼ mq

Vertex corrections from diagrams like

h

h

h1

−h2

3 vertices =⇒ 2 options

▶ 1 flip vertex: h1 ̸= h, h2 ̸= h1 or h2 ̸= h
=⇒ log-divergent ∼ mq

1
ε (2 ED’s ∼ k⊥

2 each, 2 vertices k⊥ each, measure d2k⊥)
=⇒ absorb into vertex mass counterterm δmv ,
same as δmq in conventional perturbation theory

▶ 3 flip vertices: h1 ̸= h, h2 ̸= h1 and h2 ̸= h
=⇒ finite NLO contribution
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Vertex corrections to non-flip vertex

Non-flip part of LO vertex

h

−h

Corrections from

h

−h

h1

−h2

=⇒ again 2 options

▶ no flip vertex: h1 = h, h2 = h1 and h2 ̸= −h
vertices as in massless theory =⇒ not new contribution

▶ 2 flip + 1 non-flip h1 = h or h2 = h1 or h2 = −h
=⇒ again finite NLO contribution

(2 ED’s ∼ k⊥
2 each, 1 vertex ∼ k⊥, finite integral ∼

∫
d2k⊥

k⊥
((k⊥−... )2+... )((k⊥−... )2+... )

)
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Quark propagator corrections

can have 0 or 2 flip vertices (1 gives zero by symmetry)

▶ Loops give mq-dependent divergence ∼ × m2
q

∆k−
LO

1
ε

▶ Can absorb into a renormalization of m2
q in ED of LO LCWF (k−

q = (k⊥
2
q +m2

q)/(2k+
q ))

▶ But now the problem, known since 90’s e.g. Haridranath, Zhang, also Burkardt in Yukawa th.

▶ In our regularization: k+ cutoff, ⊥ dim. reg.
this kinetic mass counterterm δmk is not same as the vertex correction δmv

▶ In fact δmv is same as in covariant theory, δmk different
▶ So how to determine finite part of δmv and δmk?
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Mass renormalization

▶ Mass has 2 conceptually different roles here:
▶ Kinetic mass: relates energy and momentum
▶ Vertex mass: amplitude of helicity flip in gauge boson vertex

▶ 1 parameter in Lagrangian, but 2 parameters in LCPT Hamiltonian
▶ Lorentz-invariance requires they stay the same
▶ Both gauge condition A+ = 0 and regularization ( k+-cutoff and ⊥ dim. reg.)

violate rotational invariance =⇒ mv ̸= mk at loop level =⇒ “textbook stuff”

There are 3 options to deal with this
1. Renormalization conditions to set separately mv and mk =⇒ discuss next
2. Smartly combine with instantaneous “normal ordering” diagrams before

regularizing & integrating =⇒ can keep mk = mv but cannot calculate blindly
For details see Beuf @ Hard Probes 2018

3. Use some other regularization =⇒ finite parts hard!
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Two mass renormalization conditions

▶ Pole mass/on shell renormalization point:
▶ Timelike virtual γ∗ → qq̄ with q2 = M2 (Same diagrams as for spacelike γ∗)
▶ On shell final state M2 = (k⊥

2
q + m2

q)/(z(1 − z)) (i.e. EDLO → 0)

▶ One condition: propagator diagram

is the most divergent at on-shell point =⇒ cancel this =⇒ kinetic mass
▶ Vertex mass (+ cross checks) from Lorentz-invariance

1-loop vertex corrections: coefficients of 4 structures (P⊥ = (1 − z)k⊥q − zk⊥q̄)

ū(0)ε/λ(q)v(1) (P⊥·ε⊥λ)ū(0)γ
+v(1)

(P⊥ · ε⊥λ)

P⊥
2 P⊥

j ū(0)γ+γ jv(1) ε⊥
j
λū(0)γ+γ jv(1)

must reproduce 2 Lorentz-invariant form factors (Dirac & Pauli) @ on-shell point
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Dipole picture diffractive DIS at NLO
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Inclusive diffraction, kinematics
γ∗ + A → X + A, differential in MX

l l ′

q

xPP

∆y ∼ lnM2
X ∼ ln 1/β

P P ′ gap ∆y ∼ ln 1/xP

▶ Momentum transfer t = (P − P ′)2

▶ Gap size xP, target evolution rapidity ∼ ln 1/xP
▶ Diffractive system mass M2

X , β = Q2/(Q2 +M2
X )

▶ Virtuality Q2

▶ Lower xP than dijets (e.g. at EIC)

xBj = xPβ

(This talk: xP small, β not.)
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Diffractive DIS at leading order
▶ Full kinematics and impact parameter dependence

G. Beuf, H. Hänninen, T.L., Y. Mulian, H. Mäntysaari, arXiv:2206.13161

dσD
λ, qq̄

dMX
2 d|t |

=
Nc

4π

∫ 1

0
dz

∫
x⊥0x⊥1x̄⊥1x̄⊥2

I(2)
∆⊥

I(2)
MX

×
∑

f ,h0,h1

(
ψ̃γ∗

λ→q0̄q̄1̄

)†(
ψ̃γ∗

λ→q0q̄1

) [
S†

0 1
− 1

][
S01 − 1

]
zq+,x⊥0

(1 − z)q+,x⊥1

(Blue: shockwave target)

▶ qq̄ crossing shockwave: dipole S01

▶ Quadratic in dipole: sensitive to saturation
▶ “Transfer functions:” relate coordinates at shockwave to:

▶ Momentum transfer t = −∆⊥
2 I(2)

∆⊥
= 1

4π J0

(√
|t | ∥zx⊥ 0̄0 − (1 − z)x⊥ 1̄1∥

)
▶ Invariant mass I(2)

MX
= 1

4π J0

(√
z(1 − z)MX∥r̄⊥ − r⊥∥

)
Now to NLO
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NLO radiative corrections

▶ Emission before target

▶ Squares already in G. Beuf, H. Hänninen, T.L., Y. Mulian, H. Mäntysaari arXiv:2206.13161
▶ Contain leading lnQ2 contribution, which we rederive in arXiv:2206.13161

(Mysterious “Wüsthoff” contribution, used in famous Golec-Biernat+Wüsthoff papers)

▶ Emission after target

▶ Interferences =⇒ simplify with some of the virtual corrections
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NLO virtual

See also Boussarie et al 2014: diffractive jets,

Caucal et al 2021 inclusive

▶ Vertex corrections:
known 1-loop γ → qq̄ wavefunction

▶ Gluon crosses shockwave, but not the cut:
▶ Loop corrections to amplitude,

tree level wavefunctions
▶ 3-point operator of Wilson lines
▶ BK/JIMWLK evolution of LO amplitude

▶ Final state interactions
(Propagator corrections {} →
State renormalization, in fact = 0 in dim. reg.)
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NLO diffractive DIS cross section
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Calculation in 2401.17251 [hep-ph]
Beuf, T.L. , Paatelainen, Mäntysaari, Penttala

We have calculated all these contributions
▶ Diffractive structure function:

clean IR-safe, [perturbative = experimental] final state definition MX !
(No fragmentation function, jet definition)

=⇒ Divergences must cancel
▶ Explicit expressions will not fit in the slides, but there in 2401.17251 [hep-ph]

▶ Technically: A+ = 0 gauge Hamiltonian perturbation theory = LCPT

Some features of the calculation:
▶ Divergence structure
▶ Treatment of energy denominators
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Regularization and divergences

Regularization procedure in LCPT
▶ Transverse momentum in 2 − 2ε dimensions =⇒ 1

ε divergences, collinear or UV

▶ Longitudinal k+: cutoff k+ > α, α→ 0 =⇒ 1/α, ln2 α, lnα divergences

1. UV 1
ε and 1

ε lnα divergences:
γ∗ → qq̄ vertex, gluon crossing shock,
wavefunction renormalization

2. Collinear 1
ε :

wavef. renormalization, final state emission
3. 1/α : normal and instantaneous exchange

4. ln2 α from final state exchange and emission
(MX restriction matters here!)

5. Remaining lnα absorbed into BK/JIMWLK

1. UV 1
ε e.g. in

Challenge: how to dig these out from diagrams?
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23/25

Final state corrections
How to dig out different types of divergences? Penttala

As an example: consider 1st row
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Final state corrections
How to dig out different types of divergences? Penttala

As an example: consider 1st row
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“Beuf trick”: δ(MX
2 − . . . ) as imaginary part of “propagator”

Off-shell propagators = light cone energy denominators + MX constraint

M0 M1 M2

MX

M0 M1

MX

M2 M0

MX

M1 M2

δ(MX
2 − M2

2)

(M2
2 − M2

1 + iδ)(M2
2 − M2

0 + iδ)
+

δ(MX
2 − M2

1)

(M2
1 − M2

0 + iδ)(M2
1 − M2

2 − iδ)
+

δ(MX
2 − M2

0)

(M2
0 − M2

1 − iδ)(M2
0 − M2

2 − iδ)

=
1

2πi

[
1

(MX
2 − M2

0 − iδ)(MX
2 − M2

1 − iδ)(MX
2 − M2

2 − iδ)
− c.c.

]
(Note: sign of iδ essential)

▶ Then express numerator (⊥ momentum dot products) in terms of M2
0 ,M

2
1 ,M

2
2

▶ Combine before integration =⇒ separate different divergence types
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Conclusions, lecture 2

Lecture 2: NLO
▶ Dipole picture of DIS: γ∗ → qq̄
▶ Light cone quantization: partons in γ∗

▶ CGC: target is dense gluon field
▶ BK equation: add one soft gluon, absorb into redefinition of target

Lecture 2: NLO
▶ Dipole picture DIS total cross section available at NLO
▶ Being used to describe HERA data
▶ Quark masses included; longstanding issue of mass renormalization in LCPT
▶ Diffractive structure function at NLO calculated, implementation in progress.
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Heavy and light quarks

Elephant in the room: heavy quarks, simultaneous F2 & Fc
2 difficult also at LO

▶ Only have NLO cross sections for m = 0
▶ Data is for total F2 & Fc

2 , not light-quark
separately; charm is large fraction of F2

▶ Here: interpolated “light quark-only” dataset.
=⇒ fit with NLO dipole picture
Errors not correct (experimentalists needed for this)

▶ Result: achieve good fits, typically with larger
σ0 and slower evolution speed
(The αs scale parameter C allows this to adjust.)

▶ Lesson: F2 is not ideal for dipole picture
(known: aligned jet configurations)
=⇒ FL and Fc

2 for more reliable probes.

10−4 10−3 10−2

xBj

0.4

0.6

0.8

1.0

1.2

1.4

σ
r

Q 2
= 3.5 GeV 2

Q 2
=

18GeV 2

Q
2

=
45

G
eV 2

HERA data

LightQ data

Fit to HERA data

Fit to LightQ data
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Dirac and Pauli form factors

Γµ(q) = FD(q2/m2) γµ + FP(q2/m2)
qν

2m
iσµν

Ψ
γ∗

T →qq̄
LO +Ψ

γ∗
T →qq̄

NLO = δα0α1

eef

EDLO

{
ū(0)ε/λ(q)v(1)

[
1 +

(
αsCF

2π

)
VT
]
+

q+

2k+
0 k+

1

(P⊥·ε⊥λ)ū(0)γ
+v(1)

(
αsCF

2π

)
N T

+
q+

2k+
0 k+

1

(P⊥ · ε⊥λ)

P⊥
2

P⊥
jmū(0)γ+γ jv(1)

(
αsCF

2π

)
ST +

q+

2k+
0 k+

1

mū(0)γ+ε/λ(q)v(1)
(
αsCF

2π

)
MT

}
.

−
(
αsCF

2π

)
m2

P⊥
2 ST

∣∣∣∣
P⊥

2=−Q
2−m2

= FP(q2/m2)

−
(
αsCF

2π

)
1

(2z−1)
N T

∣∣∣∣
P⊥

2=−Q
2−m2

= FP(q2/m2)(
αsCF

2π

)
VT

∣∣∣
P⊥

2=−Q
2−m2

= −1 + FD(q2/m2) + FP(q2/m2)

MT
∣∣∣
P⊥

2=−Q
2−m2

= 0
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