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Outline

Lecture 1: basics
▶ Dipole picture of DIS
▶ Light cone quantization
▶ Color Glass Condensate
▶ BK equation

Lecture 2: NLO
▶ Dipole picture DIS at NLO
▶ Diffractive structure function at NLO
▶ Mass renormalization LCPT and dipole picture DIS with quark masses
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Dipole picture of DIS
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Inclusive DIS in collinear factorization

▶ Proton consists of partons
▶ Struck by γ∗: interaction time short

=⇒ partonic interaction factorizes
▶ LO γ∗ + q → q counts quarks

=⇒ PDF’s
▶ NLO: also gluon-initiated

▶ High Q2 logs resummed into DGLAP
▶ Q2 ≫ Λ2

QCD and W 2 ≫ Λ2
QCD

Nonperturbative physics parametrized by PDF’s
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Inclusive DIS in dipole picture

Different frame: γ∗ moving fast; not proton

r

z

1-z

▶ γ∗ consists of partons
▶ Partons struck by target gluon field:

interaction time short =⇒ structure of γ∗ frozen
▶ LO: γ∗ is only qq̄ dipole
▶ NLO corrections: also include γ∗ → qq̄g
▶ qq̄ dipole of size r ∼ 1/Q

▶ High W 2 logs resummed into BK/BFKL
▶ W 2 ≫ Q2

Nonperturbative physics: q/g+p scattering amplitudes
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Photon wavefunction and dipole amplitude

σ̂

P

γ∗ z

1− z

rT

High energy: we assume (lifetime/timescale) factorization between

▶
∣∣ψγ∗→qq̄(r⊥, z)T ,L

∣∣2: probability for photon to fluctuate into q̄q
▶ 2N imaginary part of the forward elastic scattering amplitude,

i.e. the total qq̄ cross section; optical theorem

σγ∗p
T ,L =

∫
d2r⊥ dz

∣∣∣ψγ∗→qq̄(r⊥, z)T ,L

∣∣∣2 2ImA
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Remarks: same process in IMF

Dipole picture diagram in collinear picture
▶ Looks like formally higher order (NLO DIS)

▶ Does not describe valence quarks

However: leading contribution at small-x

▶ The valence quark distribution is small
▶ DGLAP sea quarks come from gluons: xq(x ,Q2) ∼ αs lnQ2xg(x ,Q2) αs lnQ2 ∼ αs

▶ Same diagram contains both
▶ γ∗ + g → q + q̄ : a NLO DIS process ∼ αs
▶ 1 DGLAP split g → q + q̄, ∼ αs + LO DIS process γ∗ + q → q

▶ Split between these two is scheme dependent
▶ Matching dipole and collinear pictures not very clear beyond leading log

(where only xg(x ,Q2) matters)
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Light Cone Perturbation Theory and γ∗ light
cone wave function
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Quantizing the photon: LCPT

▶ Recall: want to understand the partonic content of the photon
▶ Unlike proton, γ∗ is a perturbative object: calculable
▶ The theoretical tool of choice is Light Cone Perturbation Theory

What is Light Cone Perturbation Theory (LCPT)?
▶ Heisenberg picture: time-dependent operators Â(t),

equal-time commutation relations [Â(t), B̂(t)] known.
▶ Then solve equation of motion ∂t Â(t) = −i[Â(t), Ĥ(t)]
▶ LCPT: choose the “time” variable to be light-like: x+ = 1√

2
(t + z)

Advantages and disadvantages
+ Only physical degrees of freedom =⇒ partonic interpretation
+ Maximal number of commuting Lorentz generators
+ Longitudinal boosts are easy =⇒ high energy
- 3d rotational invariance is hard
- Connection to lattice, hadron rest frame difficult
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Idea of LCPT calculation

▶ Know free particle Fock states: |γ∗⟩0, |qq̄⟩0, |qq̄g⟩0 etc.
▶ Interacting states are superpositions of these:

|γ∗⟩ = (1 + . . . )|γ∗⟩0 + ψγ∗→qq̄ ⊗ |qq̄⟩0 + ψγ∗→qq̄g ⊗ |qq̄g⟩0 + . . .

▶ Calculate in QM perturbation theory, e.g. ground state |0⟩ wavefunction:

ψ0→n =
∑

n

⟨n| V̂ |0⟩
En − E0

+ . . .

▶ Here 1/∆E is ∼ the lifetime of the quantum fluctuation from 0 to n

▶ “Energy” E is conjugate to “time”, LC time is x+ =⇒ LC energy k−

▶ Note: energy not “conserved,” only 3-momentum k⃗ = (k+,k⊥) is
Connection to Feynman perturbation theory
▶ Matrix elements ⟨n| V̂ |m⟩ are vertices in Feynman rules
▶ LC energy denominators from propagators, integrating over k− with pole
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Let’s calculate ψγ
∗→qq̄

Steps for calculating light cone wave function:

ψγ∗
T/L→qq̄ =

−eef δαβ
q− − p− − p′−

[
ūh(p)ε/λ,T/L(q)vh′(p′)

]
p⃗,h, α

p⃗ ′,h′, β

γ∗T,L: q, ελ

10
▶ Color factor δαβ and electric charge eef

▶ Energy denominator k−
0 − k−

1
▶ Matrix element ūε/vh′

▶ Fourier transform to transverse coordinate space
(Why coordinate space? Eikonal scattering, will come back to this)
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Matrix element

ūh(p)ε/λ,T/L(q)vh′(p′) with

h,h′ = ±1
2
; λ = 0 = L, λ = ±1 = T

p⊥,h; p+ = zq+

p′
⊥,h

′; p′+ = (1 − z)q+

q⊥,q+, ελ k⊥ ≡ p⊥ − zq⊥

▶ Transv. polarization vector (LC gauge ε+ = 0 !!)

εµλ=±(q) = (0, q⊥·ε⊥λ

q+ , ε⊥λ)
q⊥=0−→ (0, 0, ε⊥λ),

▶ Circularly polarized 2d polarization vectors ε⊥± = 1√
2

(
∓1
−i

)
▶ Longit. polarization effectively εµλ=0(q) = (0,

√
Q2−q⊥2

q+ , q⊥√
Q2−q⊥2

)
q⊥=0−→ (0, Q

q+ ,0),

▶ Using tables for matrix elements T polarization is

ūε/v =
2δh,−h′√
z(1 − z)

(
zδλ,2h − (1 − z)δλ,−2h

)
ε⊥λ · k⊥ + δh,h′δλ,2s

√
2m√

z(1 − z)
.

Remarks:
▶ Only relative center-of-mass momentum k⊥ = p⊥ − zq⊥
▶ Quark helicity conserving ∼ k⊥ + helicity-flip ∼ m
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Energy denominator

p⊥, p+ = zq+

p′
⊥ = q⊥ − p⊥, p′+ = (1 − z)q+

q⊥,q+ k⊥ ≡ p⊥ − zq⊥

Energy denominator (q− − k− − k ′−)−1 (On-shell momenta!)

q− − p− − p′− = −


−q−︷ ︸︸ ︷
Q2

2q+
+

p−︷ ︸︸ ︷
p⊥2 + m2

2zq+
+

p′−︷ ︸︸ ︷
(p⊥ − q⊥)2 + m2

2(1 − z)q+


1

q− − p− − p′− =
−2q+z(1 − z)

Q2z(1 − z) + m2︸ ︷︷ ︸
≡Q̄2

+k⊥
2 .

▶ Also only relative center-of-mass momentum k⊥ = p⊥ − zq⊥
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Fourier transform

Scattering at high energy is eikonal: transverse position of parton does not change
=⇒ Fourier-transform k⊥ → r⊥

k⊥

q⊥ − k⊥

q⊥ → 0 r

L:
∫

d2k⊥eik⊥·r⊥ 1

k⊥
2 + Q̄2

∼ K0(rQ̄)

T :

∫
d2k⊥eik⊥·r⊥ k i

k⊥
2 + Q̄2

∼ r i

r
K1(rQ̄)

▶ Recall Q̄2 ≡ z(1 − z)Q2 + m2.
▶ Note asymptotics K0,1(x) ∼ e−x =⇒ enforces r ∼ 1/Q.
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DIS dipole frame: summary

▶ High energy DIS: γ∗ fluctuates into qq̄, which scatters off target

σγ∗p
T ,L =

∫
d2r⊥ dz

∣∣∣ψγ∗→qq̄(r , z)T ,L

∣∣∣2 2N

▶ Typical dipole size: r ∼ 1/Q
▶ Used optical theorem: 2N is total cross section

▶ can also take |N |2 : elastic scattering (diffractive DIS)
▶ Assuming that fixed-size dipoles are basis that diagonalizes ImT

▶ In general: high energy/eikonal approximation: x⊥ is fixed;
( does not imply zero momentum transfer!)
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The Color Glass Condensate
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What is the target made of?

▶ So what is the dipole amplitude?
▶ At high energy: dominantly gluons

▶ Experimentally: small x gluon distribution is larger than the quark one.
▶ High

√
s: QCD radiation builds up the target by adding gluons to it.

Color Glass Condensate (CGC)
Many gluons in the target =⇒ classical gluon field Aµ.

Sum all diagrams with n gluon lines

A
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Scattering off CGC target

A

pµ

Quark in classical color field: Dirac equation!

(i∂/− gA/)ψ(x) = 0

(Note: A/ = Aµ
aγµta is Nc × Nc ⊗ 4 × 4-matrix )

High energy: eikonal approximation

▶ Gluon is spin 1: it couples to a vector: ∼ pµAµ

▶ For high energy particle the only vector available is pµ

▶ pµ has one large component: p+ =⇒ pµAµ ∼ p+A− =⇒ only need A−

Ansatz for DE: ψ(x) = V (x)e−ip·xu(p), plug in eq. Nc × Nc-matrix!

=⇒ ∂+V (x+, x−,x⊥) = −igA−(x+, x−,x⊥)V(x+, x−,x⊥)

This is solved by path-ordered exponential

V (x+, x−,x⊥) = P exp

{
−ig

∫ x+

dy+A−(y+, x−,x⊥)

}
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Eikonal propagation

▶ Now we know the scattering S-matrix for quark states
Incoming free quark |qi(x⊥)⟩ at x+ → −∞ is, at x+ → ∞

Ŝ(−∞,∞)
∣∣qi(p+,x⊥)

〉
=

[
P exp

{
−ig

∫ ∞

−∞
dy+A−(y+, x−,x⊥)

}]
ji

∣∣qj(p+,x⊥)
〉

outgoing state linear superposition of color rotated quarks.
▶ In the high energy limit quark wavefunction oscillates like eip+x−

with large p+

=⇒ x−-dependence negligible compared to this =⇒ approximate x− = 0
glass in CGC

Scattering described by 2-d field of SU(Nc)-matrices

V (x⊥) ≡ P exp

{
−ig

∫ ∞

−∞
dx+A−(x+, x− = 0,x⊥)

}
— The Wilson line
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Dipole amplitude and Wilson lines

Incoming dipole becomes (color neutral, normalized! ; V (y⊥)†jk = V (y⊥)∗kj for antiquark)

|in⟩ = δii′√
Nc

|qi(x⊥)q̄i′(y⊥)⟩ Ŝ |in⟩ = δii′√
Nc

Vji(x⊥)V
†
i′ j′(y⊥)

∣∣q(x⊥)jq̄(y⊥)j′
〉

Count outgoing dipoles in this state

S =
1√
Nc

⟨qk(x⊥)q̄k(y⊥)| in⟩ = δii′

Nc
δkjδkj′Vji(x⊥)V

†
i′ j′(y⊥) =

1
Nc

trV (x⊥)V †(y⊥)

Dipole amplitude in the CGC
Relate DIS amplitude N to a microscopical description of the target:

Nqq̄ = 1 − 1
Nc

trV (x⊥)V †(y⊥)

(Imaginary unit convention Sfi = ⟨f | Ŝ |f ⟩ = 1 + iTfi σtot = 2ImTii N ≡ ImTii Sii = δii −N + imag )
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Saturation of the dipole cross section
Basic features following from

Nqq̄ = 1 − 1
Nc

trV (x⊥)V †(y⊥)

▶ Small dipoles:
▶ At x⊥ = y⊥ : V (x⊥)V †(y⊥) = 1.
▶ At r = 0 color neutral system, should not

scatter by the strong interaction!
▶ Nqq̄(r) ∼ r2 =⇒ perturbative limit

▶ Large dipoles
▶ Fully uncorrelated Wilson lines:〈

trV (x⊥)V †(y⊥)
〉
= 0

▶ Large dipoles r ≳ 1/Qs scatter with Nqq̄ ≲ 1

0.01 0.1 1
rΛ

QCD

0

0.2

0.4

0.6

0.8

1

N

k √ α
s

r √ α
s

y = ln 1/x

x

▶ Know that Nqq̄ grows at x → 0
=⇒ turnover from N ≪ 1 to N ∼ 1 happens at smaller r ∼ Rs when

√
s → 0

Nonperturbative weak coupling unitarization = Saturation
Saturation scale Qs = 1/Rs = inverse distance for turnover
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The Balitsky-Kovchegov equation
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Power counting

▶ Leading order (LO)
▶ Add one soft gluon =⇒ Leading Log (LL),

resum by BK evolution
▶ Add one gluon, but not necessarily soft:

Next-to-Leading Order (NLO) (need to subtract
the soft gluon!)

▶ Add two gluons, one of them soft: NLL
=⇒ resum by NLO BK equation

σ ∼
LO︷ ︸︸ ︷
O(1)+

LL︷ ︸︸ ︷
O(αs ln 1/x) +

NLO︷ ︸︸ ︷
O(αs)+

NLL︷ ︸︸ ︷
O(α2

s ln 1/x)

▶ Current research: NLO & NLL

q+

k+
g
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What happens if one radiates a gluon?

p, i, s

k ,a, λ, k+ = zp+

p′ = p − k ,p′+ = (1 − z)p+j, s′

ψq→qg(z,k⊥) =
1

p⊥2

2p+ − k⊥
2

2k+ − p′
⊥

2

2p′+

ūs′(p′)(−g)ta
ji ε/

∗(k)us(p)

Full matrix element (take quark mass m = 0)

ūs′(p′)(−g)ta
ji ε/

∗(k)us(p) =
−2gta

ji

z
√

1 − z
(δλ,2s + (1 − z)δλ,−2s)q⊥ · ε⊥∗

λ, q⊥ = k⊥ − zp⊥

Focus on the soft (or slow) gluon limit z → 0:

ψq→qg(k+,k⊥) ≈
−2zp+

k⊥
2

−2gta
ji δss′

z
k⊥ · ε⊥∗

λ =
4gta

ji p+

k⊥
2 k⊥ · ε⊥∗

λ
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IR divergences in gluon emission

Squaring the wave function we get a “probability for gluon emission”

dPq→qg =
∣∣ψq→qg(k+,k⊥)

∣∣2 dk+ d2k⊥
2k+(2π)3 ∼ dz

z
d2k⊥

k⊥
2

( ∑
λ=±1

εiε
∗
j = δij

)

This has 2 types of divergences:

collinear
∫

0
d2k⊥
k⊥

2 Cancels in emission from color neutral dipole.

soft
∫
∼0

dz
z Not really divergence, but needs to be resummed

▶ The limit z → 0: large qq̄g invariant mass: Mqq̄g → ∞
▶ We are working in the “s = ∞” eikonal approximation
▶ Physically, one must however have M2

qq̄g < s =⇒ z ≳ [⊥]/s
(where “⊥” is some relevant transverse momentum scale.)

▶ Thus “divergence” is a sign of a large log ∼ αs ln s ∼ αs ln 1/x

Resum this large log using the Balitsky-Kovchegov equation
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Soft gluons and large logs, idea of RGE
y
≡

ln
k+

p
(y

)
γ
∗ (

y
)

p
(y

+
∆

y
)
γ
∗ (

y
+
∆

y
) ▶ Emitted gluons have z between 1 and x :

each gluon contributes ∼ αs ln 1/x
▶ For x small αs ln 1/x ∼ 1 =⇒ all n gluon

emissions contribute same =⇒ resum
▶ Resummation by renormalization

Is the gluon at y a part of γ∗ or of p?
Physical cross section is the same.

σγ∗p =

gluons up to y are part of proton︷ ︸︸ ︷∣∣∣ψγ∗→qq̄
∣∣∣2
y
⊗ 2N qq̄+p

y +
∣∣∣ψγ∗→qq̄g

∣∣∣2
y
⊗ 2N qq̄g+p

y + . . .

=
∣∣∣ψγ∗→qq̄

∣∣∣2
y+∆y

⊗ 2N qq̄+p
y+∆y +

∣∣∣ψγ∗→qq̄g
∣∣∣2
y+∆y

⊗ 2N qq̄g+p
y+∆y + . . .︸ ︷︷ ︸

gluons up to y+∆y are part of proton

Can calculate
∣∣ψγ∗→qq̄

∣∣2
y ’s =⇒ get differential equation for unknown N
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Quick derivation of the BK equation
Let’s put this idea into practice. We will
▶ Calculate ψγ∗→qq̄g(z)
▶ Take soft gluon limit z → 0
▶ Reabsorb the gluon to become a part of the target
▶ Get evolution equation for qq̄ cross section

We need:

In the soft gluon limit z → 0 this calculation simpfies, because

ψγ∗→qq̄g ≈ ψγ∗→qq̄
(
ψq→qg + ψq̄→q̄g

)
This is true only for limit z → 0 where k−

qq̄g − k−
γ∗ ≈ k−

g ∼ 1/z
(In the full kinematics the gluon emission knows about the γ∗, not just the emitting parent q/q̄ =⇒ this
makes full NLO cross section computation much complex)
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Gluon emission from coordinate space dipole
First step: Fourier-transform the gluon emission wavefunction to coordinate space

ψq→qg(k+, r⊥) =
∫

d2k⊥
(2π)2 eik⊥·r⊥ψq→qg(k+,k⊥) = −i2p+

2gta
ji

2π
ε⊥ · r⊥

r⊥2 δs,s′

Second step: sum emission from quark and antiquark (note relative sign!)
i,x⊥, zq+

j,y⊥, (1 − z)q+

r⊥

i,x⊥

j,y⊥

r′⊥

i,x⊥

j,y⊥

a, z⊥, z ′
a, z⊥, z ′

r⊥ − r′⊥

|γ∗⟩int = |γ∗⟩+
∫

z,r⊥
C(r⊥)ψγ∗→qq̄(z, r⊥) |qi(x⊥, z)q̄i(y⊥, 1 − z)⟩

+

∫
z,r⊥,r′⊥

ψγ∗→qq̄(z, r⊥)
∫

dz ′

4πz ′
−i2g

2π
ta
ji

[
(x⊥ − z⊥) · ε⊥
(x⊥ − z⊥)2 − (y⊥ − z⊥) · ε⊥

(y⊥ − z⊥)2

]
×
∣∣qi(x⊥, z)q̄j(y⊥, 1 − z)ga(z⊥, z ′)

〉
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Virtual term

(Take a “unitarity” shortcut instead of calculating loop diagram)

|γ∗⟩int = |γ∗⟩+
∫

z,r⊥
C(r⊥)ψγ∗→qq̄(z, r⊥) |qi(x⊥, z)q̄i(y⊥, 1 − z)⟩+ . . .

Gluon emission =⇒ correct the normalization of |qq̄⟩ by C(r⊥) = 1 +O(αs)

Nc |C(r⊥)|2 =

Nc − (2g)2

(2π)2

1
4π

ta
ij ta

ji

∫
dz ′

z ′

∫
d2r′⊥

∑
λ=±1

∣∣∣∣ (x⊥ − z⊥) · ε⊥λ

(x⊥ − z⊥)2 − (y⊥ − z⊥) · ε⊥λ

(y⊥ − z⊥)2

∣∣∣∣2

= Nc − αs

π2

Nc
2 − 1
2

∆y
∫

d2r′⊥
r⊥2

r′⊥
2(r⊥ − r′⊥)2

∑
λ=±1

ε
(λ)
i ε

(λ)∗
j = δij
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Crucial step: move the gluon to the target

Absorb corrections from gluon to a redefinition of the qq̄ amplitude

N y+∆y
qq̄ = N y

qq̄ +
αs

π2

Nc
2 − 1

2Nc

∫ y+∆y

y
d ln 1/z ′

∫
d2r′⊥

r⊥2

r′⊥
2(r⊥ − r′⊥)2

[
N ln 1/z′

qq̄g −N ln 1/z′

qq̄

]
Dipole scattering on new target N y+∆y

qq̄ is

▶ Dipole scattering off original target N y
qq̄

▶ Dipole emits a gluon into rapidity interval [y , y +∆y ],
which scatters off target

▶ Normalization of original dipole is corrected
(There are now less dipoles in γ∗)

Almost there
Want equation for Nqq̄: but enocuntered new quantity Nqq̄g.

=⇒ Relate to Nqq̄ in large Nc approximation
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Gluon at large Nc

▶ At large Nc =⇒ gluon = qq̄ pair
(not dipole!)

▶ Nc
2 − 1 gluon colors ≈ Nc

2

quark-antiquark pair colors.

▶ Had |q(x⊥)q̄(y⊥)g(z⊥)⟩
▶ Approximate by

|q(x⊥)q̄(z⊥)q(z⊥)q̄(y⊥)⟩

ta
ij ≈ i

j

ta
ij

j i

a

≈
j i

i
j

ta
ij

i,x⊥

a, z⊥

j,y⊥

≈ i, z⊥
j, z⊥

i,x⊥

j,y⊥

Now, instead of Nqq̄g, we need Nqq̄qq̄;
amplitude for simultaneous scattering of two dipoles.

(Note: the gluon is not becoming a new dipole, but the common end of two new dipoles.)
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Two dipole scattering amplitude
▶ N is really scattering probability;
▶ S = 1 −N is probability not to scatter

For two dipoles:
▶ No scattering: neither dipole scatters =⇒ Sqq̄qq̄ = Sqq̄Sqq̄

▶ Scattering probability Nqq̄qq̄ = 1 − Sqq̄qq̄ = 1 − (1 −Nqq̄)(1 −Nqq̄)

Thus we end up with the approximation:

Nq(x⊥)q̄(y⊥)g(z⊥) ≈ Nq(x⊥)q̄(z⊥) +Nq(z⊥)q̄(y⊥) −Nq(x⊥)q̄(z⊥)Nq(z⊥)q̄(y⊥)

and our equation is

N y+∆y
qq̄ = N y

qq̄ +
αs

π2

Nc
2 − 1

2Nc

∫ y+∆y

y
d ln 1/z ′

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

×
[
N ln 1/z′

qq̄ (x⊥, z⊥) +N ln 1/z′

qq̄ (z⊥,y⊥)−N ln 1/z′

qq̄ (x⊥, z⊥)N ln 1/z′

qq̄ (z⊥,y⊥)

−N ln 1/z′

qq̄ (x⊥,y⊥))
]

Which is easy to write differentially in y
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Summary

Balitsky-Kovchegov equation (∼1995)

∂yN (r⊥) =
αsNc

2π2

∫
d2r′⊥

r⊥2

r′⊥
2(r′⊥ − r⊥)2

[N (r′⊥) +N (r⊥ − r′⊥)−N (r′⊥)N (r⊥ − r′⊥)−N (r⊥)]

This is the basic tool of saturation physics.
▶ Given initial condition N (r⊥) at y = y0 the equation predicts the scattering

amplitude at larger y = smaller x = higher
√

s.
▶ Drop nonlinear term: BFKL equation
▶ Divergences at r′⊥ → 0 and r′⊥ → r⊥ regulated because N (0) = 0 due to color

neutrality.
▶ Enforces black disk limit N < 1
▶ Coupling αs should depend on distance (some combination of r⊥, r′⊥, r⊥ − r′⊥)
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Conclusions, lecture 1

▶ Dipole picture of DIS: γ∗ → qq̄
▶ Light cone quantization: partons in γ∗

▶ CGC: target is dense gluon field
▶ BK equation: add one soft gluon, absorb into redefinition of target

Lecture 2: NLO
▶ Dipole picture DIS at NLO
▶ Diffractive structure function at NLO
▶ Mass renormalization LCPT and dipole picture DIS with quark masses
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What the solution of BK looks like

BK can be solved numerically

▶ Small dipoles r ≲ 1/Qs scatter very
little

▶ Large dipoles r ≳ 1/Qs scatter with
probability almost one, but not more

▶ Saturation scale in between grows
with ln 1/x .

0.01 0.1 1
rΛ

QCD

0

0.2

0.4

0.6

0.8

1

N

k √ α
s

r √ α
s

y = ln 1/x

x

(Actually cheating, this plot is a solution of JIMWLK,
which generalizes BK)

Remember, for F2, FL convolute this with the ψγ∗→qq̄

σγ∗p
T ,L =

∫
d2b⊥ d2r⊥ dz

∣∣∣ψγ∗→qq̄(r , z)T ,L

∣∣∣2 2N (r⊥,b⊥, x)

Fits HERA data (x < 0.01 & Q2 moderate) extremely well
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