Photons as research tools

the past and the future

Zakopane School, June 2025

Mieczyslaw Witold Krasny
LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP

Etang Leucate, France -- windfinder

Date locale	Dimanche, Juin 15					Lundi, Juin 16										
Heure locale	02h	05h	08h	11h	14h	17h	20h	23h	02h	05h	08h	11h	14h	17h	20h	23h
Direction du vent		_	_	1	1	1	1	1	1	4	1	4	4	1	_	
Vitesse du vent (bft)	3	2	4	4	4	5	5	5	5	5	5	5	4	4	4	4
D = (=1 = (===== 1, f))																
Rafale (max bft)	4	3	5	5	5	6	7	7	7	7	7	6	6	5	6	6
Couverture nuageuse	2							3	>	2		- `	- -	- `	- `	>
Type de précipitations					٥	٥	٥									
Précipitations (mm / 3h)					0.5	1.4	1.4									
Température (°C)	23	22	23	25	24	23	23	21	21	20	21	25	28	29	28	25
Pression d'air (hPa)	1019	1018	1019	1020	1020	1019	1020	1022	1022	1021	1021	1021	1020	1018	1018	1019
Direction des vagues				7020	<u>√</u>	<u> </u>	<u>\</u>	<u>\</u>	<u> </u>	<u>\</u>	٨	√ √	1020	<u>\</u>	4	۵۱۵۱
Hauteur des vagues (m)	0.3	0.4	0.3	0.5	0.6	0.9	1	0.9	0.8	0.7	0.5	0.6	0.7	0.6	0.6	0.4
Période de temps (s)							1									
	- 5	6	5	4	3	3	3	3	3	3	2	2	3	2	2	2

The Future:

The Gamma Factory project for CERN

Tool and Concept driven progress in science

"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to <u>discover</u> new things that have to be explained" - F. Dyson

"Gamma Factory" project

The Gamma Factory proposal for CERN[†]

[†] An Executive Summary of the proposal addressed to the CERN management.

Mieczyslaw Witold Krasny*

LPNHE, Universités Paris VI et VII and CNRS-IN2P3, Paris, France

e-Print: 1511.07794 [hep-ex]

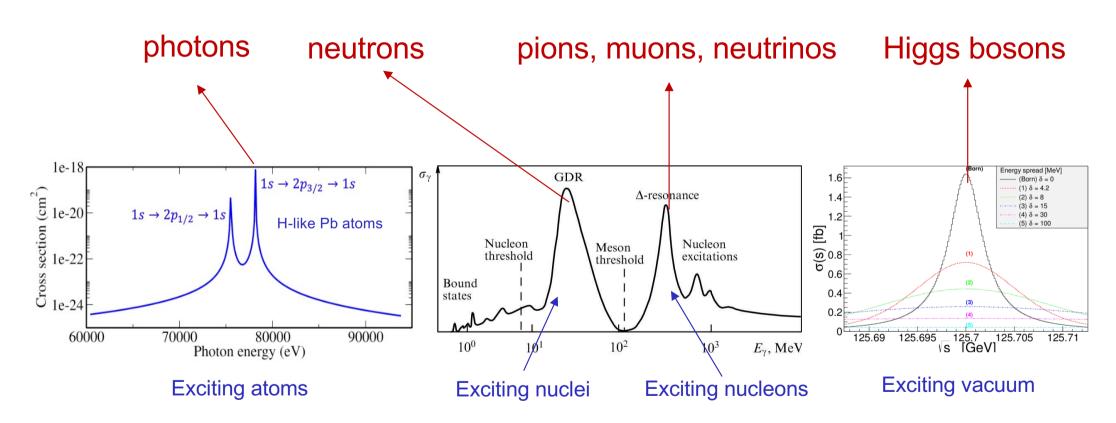
~100 physicists form 40 institutions have contributed so far to the Gamma Factory studies

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴, G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci², J. Bieroń⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴, K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴, K. Dupraz¹¹, Y. Dutheil², K. Dzierżęga⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶, T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska², M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh², A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, D. Nutarellii¹¹, L.J. Nevay¹, V. Pascalutsa²⁸, Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawan², S. Redaelli², Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,0}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann², R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stochlker¹⁷, A. Surzhykov²¹, I. Tolstikhina⁶, F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

Gamma Factory studies are anchored and supported by the CERN Physics

Beyond Colliders (PBC) framework.

More info on all the GF group activities:


https://indico.cern.ch/category/1087

We acknowledge the crucial role of the CERN PBC "framework" in bringing our accelerator tests, GF-PoP experiment design, software development and physics studies to their present stage!

Gamma Factory: "Novel research tools made from light"

- 1. Atomic traps of highly-charged atoms: novel research domain of fundamental (gravitational waves, nuclear clocks, basic symmetries), precision atomic and nuclear physics)
- 2. High intensity polarised photon(γ)-beams (intensity leap by~7 orders of magnitude)
- Novel, high intensity sources of polarised electrons, polarised positrons, polarised muons, CP and flavour-tagged neutrinos, neutrons and radioactive ions (intensity/brightness leap >3 orders of magnitude)
- 4. Laser cooling methods of high-energy hadronic beams (unprecedented precision of controlling particle beams and reaching highest partonic luminosities at the future high energy hadronic colliders)
- 5. Electron beam for ep collisions in the LHC interaction points (unique partonic emittance diagnostic tool for high energy hadron colliders

Gamma Factory exploits - for the first time – the resonant photon collisions

Rationale behind the Gamma Factory initiative

1. Curiosity

- How to efficiently "accelerate" photons?
 → high energy atomic beams
- The science of **high energy** ($\gamma_L >> 1$) atomic beams (production, storage, cooling, collision aspects) has, so far, not been developed. Atomic beams are very special -- they can be manipulated and controlled with unprecedented precision
- New quantum physics beam effects (beams of "Schrödinger cats")
- No simulation framework existed -- it had to be created and benchmarked
- New challenges for the laser technology

• <u>Sociological curiosity</u>:

Can the particle, nuclear, atomic and accelerator and applied physics expertise be merged into a joint multidisciplinary project?

• Political curiosity:

Can such a novel multidisciplinary project be developed **and implemented** in a "High Energy Physics" laboratory such as CERN?

2. Restoring a balance of the high-energy and highintensity frontiers for particle-beams based science

- Main CERN mission: high energy frontier (detailed Higgs studies at the HL-LHC, FCC-ee)
- High intensity frontier (dark matter, neutrino mass puzzle(s), families, lepton universality, etc...

Gamma Factory can significantly improve the present intensity limits of the:

- γ -beams by a factor >10⁷ \rightarrow 10¹⁸ γ /sec,
- muon beams by a factor of 10^3 , $\rightarrow 7 \times 10^{13} \,\mu/\text{sec}$,
- polarised positron beams by a factor of 10³, →:10¹⁶ e+/sec,
- quasi-monochromatic MeV neutron beams of →:10¹⁶ neutrons/sec,
- radioactive ion beams →:10¹² ions/sec

3. Continuation of the CERN "extracted beams" research?

- SPS has demonstrated operation with cycle intensity 2-4x10¹³ protons delivering 4x10¹⁹ protons/year for the SPS fixed target programme, (PSB can deliver 10²⁰ protons/year for the ISOLDE programme)
- If LHC is used in the future as the source of extracted beams (3.5 10¹⁴ circulating protons with ~1 hour filling/ramping), then maximally 10¹⁸ (fast extraction) protons/year can be delivered for the LHC fixed target programme

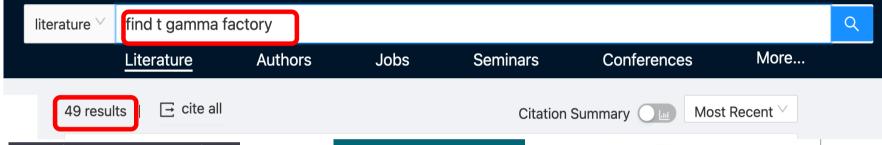
Gamma Factory could extract ~10²⁵ //year for a fixed target programme (MHz repetition rate). Efficient extraction of the RF power in the form of particle beams!

4. Empty time slot for the Gamma Factory physics programme?

- Gamma Factory can extend significantly the scope of the LHC-based physics programme (with new questions and new tools)
- ... at a relatively low cost (~1% of the cost of the FCC-ee)

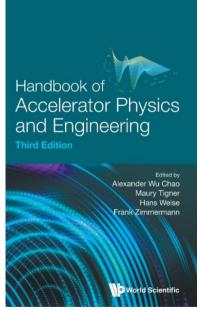
5. Energy consumption and sustainability

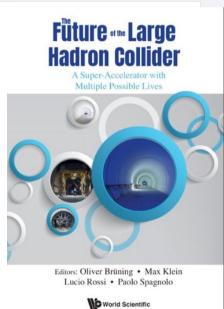
	Cost-estimate /BCHF	AC-Power /MW	Comments				
Infrastructure	5.5		100km tunnel and surface infrastructure				
FCC-ee	5	260-350	+1.1BCHF for the Top stage (365GeV)				
FCC-hh	17	580					


Gamma Factory beam-driven, sub-critical reactor (with the efficient transmutation of its waste) could potentially provide the necessary AC plug power needs for the growing CERN accelerator infrastructure.

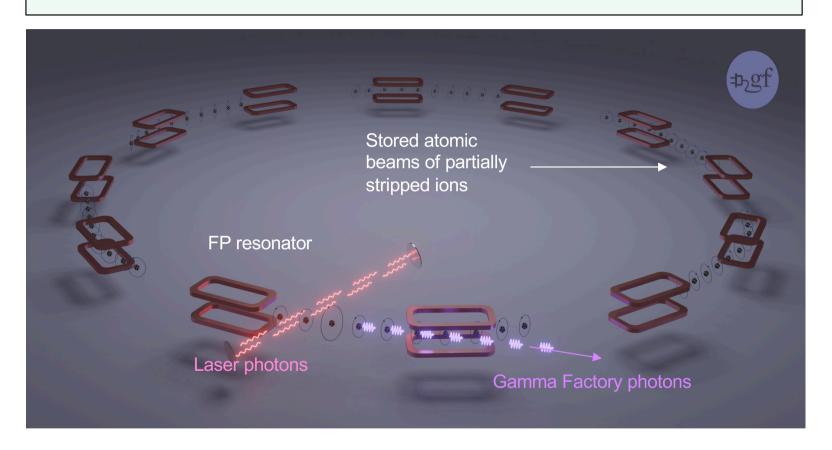
6. Opening novel research opportunities at CERN

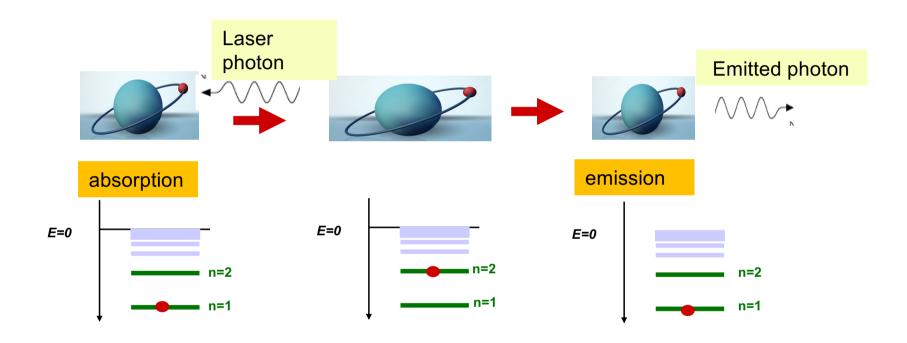
- particle physics (precision QED and EW studies, vacuum birefringence, Higgs physics in $\gamma\gamma$ collision mode, rare muon decays, precision neutrino physics, QCD-confinement studies, ...);
- nuclear physics (nuclear spectroscopy, cross-talk of nuclear and atomic processes, GDR, nuclear photo-physics, photo-fission research, gamma polarimetry, physics of rare radioactive nuclides,...);
- atomic physics (highly charged atoms, electronic and muonic atoms, pionic and kaonic atoms);
- **astrophysics** (dark matter searches, gravitational waves detection, gravitational effects of cold particle beams, $^{16}O(\gamma,\alpha)^{12}C$ reaction and S-factors...);
- fundamental physics (studies of the basic symmetries of the universe, atomic interferometry,...);
- accelerator physics (beam cooling techniques, low emittance hadronic beams, high intensity polarised positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and flavour-tagged neutrino beams, ...);
- applied physics (accelerator driven energy sources, fusion research, medical isotopes and isomers precision lithography).


GF studies: published papers (INSPIRE) and books



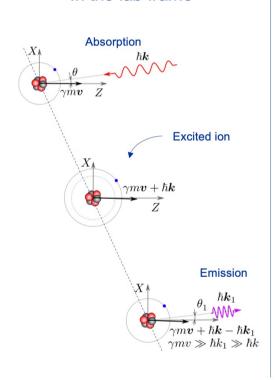
books

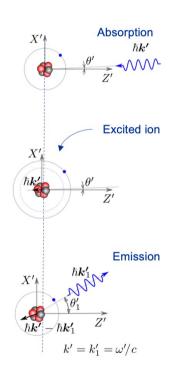



16

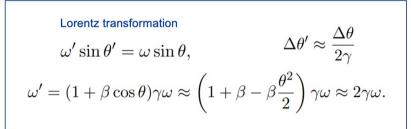
Gamma Factory – basic principles

Gamma Factory photon source


Resonant absorption and emissions of photons by atoms


Photon acceleration -- Energy leap:

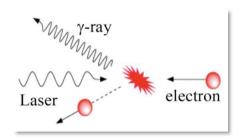
High energy atomic beams play the role of passive light-frequency converters:


In the lab frame

In the ion frame

Absorption

Emission


$$\begin{split} \omega_1 \sin \theta_1 &= \omega' \sin \theta_1' \ \Rightarrow \ \sin \theta_1 = \frac{\sin \theta_1'}{\gamma (1 + \beta \cos \theta_1')}, \\ \omega_1 &= \gamma (1 + \beta \cos \theta_1') \omega' \approx 2 \gamma^2 (1 + \beta \cos \theta_1') \omega. \\ \\ \boldsymbol{\nu}^{\text{max}} &\longrightarrow \left(4 \ \gamma_{\text{L}}^{2}\right) \ \boldsymbol{\nu}_{\text{i}} \end{split}$$

 $\gamma_1 = E/M$ - Lorentz factor for the ion beam -- 25-6500 for the CERN beams

Photon acceleration - Intensity and efficiency leap:

large cross-section for atomic collisions

Inverse Compton scattering

Cross-section

Electrons:

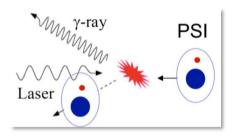
$$\sigma_e = 8\pi/3 \times r_e^2$$

r_e - classical electron radius

$$\sigma_{e} = 6.6 \times 10^{-25} \, \text{cm}^{2}$$

Requirements

E_{beam} = 1.5 GeV


LINAC or LWFA

Electron fractional energy loss: emission of 150 MeV photon:

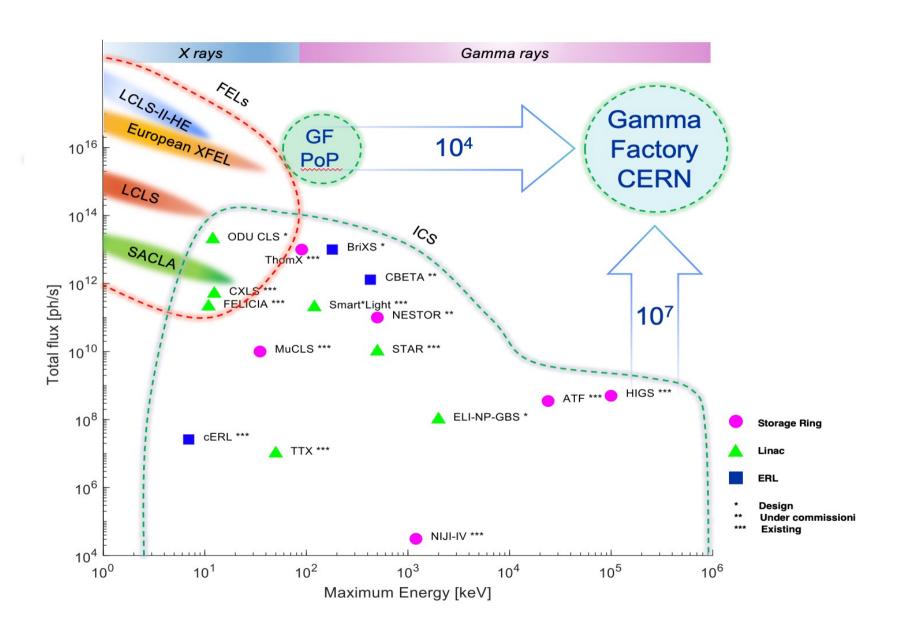
$$E_{\nu}/E_{beam} = 0.1$$

(electron is lost!)

Gamma Factory

Example: Pb, hydrogen-like ions, stored in LHC y_i = 2887

Partially Stripped Ions:


$$\sigma_{res} = \lambda_{res}^2 / 2\pi$$

 λ_{res} - photon wavelength in the ion rest frame $\sigma_{res} = 5.9 \times 10^{-16} \, cm^2$

Electron fractional energy loss: emission of 150 MeV photon:

$$E_{\gamma}/E_{beam} = 2.6 \times 10^{-7}$$

(ion undisturbed!)

Extraordinary properties of the GF photon source

1. Point-like, small divergence

 $ightharpoonup \Delta z \sim I_{PSI-bunch} < 7$ cm, $\Delta x, \Delta y \sim \sigma^{PSI}_{x}$, $^{PSI}_{y} < 50$ μ m, $\Delta(\theta_{x})$, $\Delta(\theta_{y}) \sim 1/\gamma_{L} < 1$ mrad

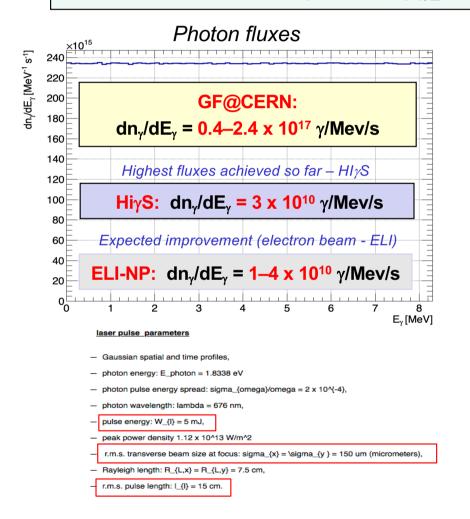
2. Huge jump in intensity:

> More than 7 orders of magnitude with respect to existing (being constructed) γ-sources

3. Very wide range of tuneable energy photon beam :

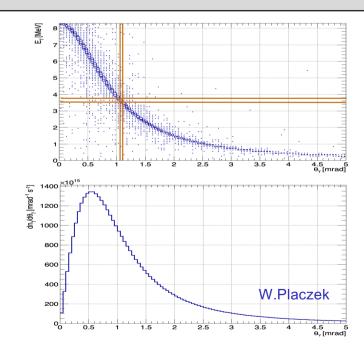
> 10 keV - 400 MeV -- extending, by a factor of ~1000, the energy range of the FEL photon sources

4. Tuneable polarisation:

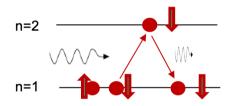

 \triangleright γ -polarisation transmission from laser photons to γ -beams of up to 99%

5. Unprecedented plug power efficiency (energy footprint):

➤ LHC RF power can be converted to the photon beam power. Wall-plug power efficiency of the GF photon source is by a factor of ~300 better than that of the DESY-XFEL!

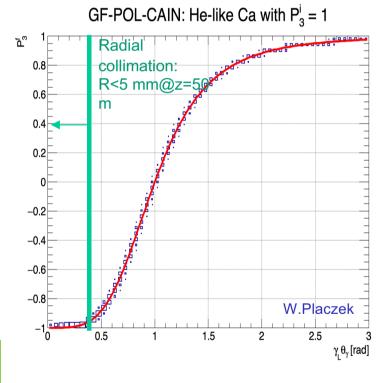

(assuming power consumption of 200 MW - CERN and 19 MW - DESY)

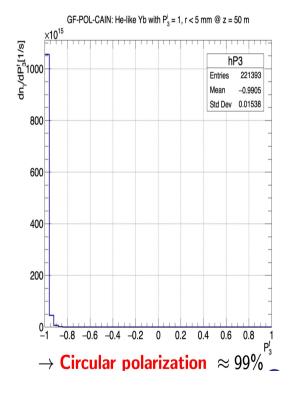
A concrete example: Nuclear physics application: He-like, LHC Calcium beam, (1s->2p)_{1/2} transition, TiSa laser, 20 MHz FP cavity


6. Highly-collimated monochromatic γ -beams:

- the beam power is concentrated in a narrow angular region (facilitates beam extraction),
- ightharpoonup the $(E_{\gamma}, \Theta_{\gamma})$ correlation can be used (collimation) to "monochromatize" the beam

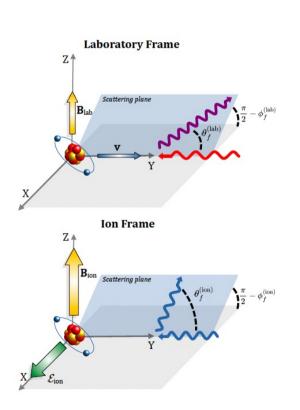
Polarised (and/or twisted) GF photon beams

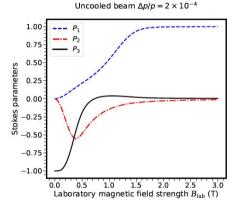

A trick: Pauli blocking

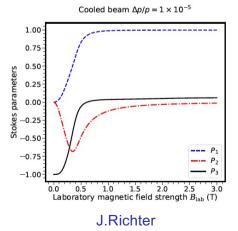


 $nS_0 \rightarrow n'P_1 \rightarrow nS_0$

Closed transition in Helium-like atoms (n=1, n' =2) preserve initial polarisation of the laser light

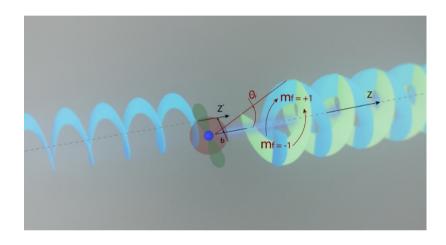

1s² 1S₀ 1s¹ 2p¹ 1P₁ transition in He-like atoms





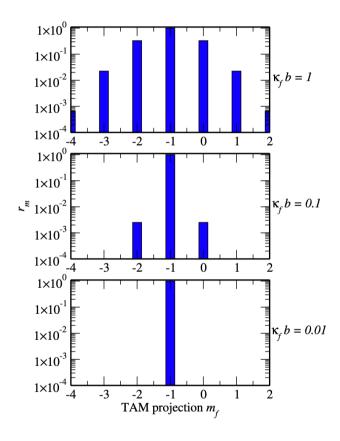
For more details see presentations at our recent, Gamma Factory workshop: https://indico.cern.ch/event/1076086/

GF method of controlling the polarisation and angular momentum of the photon beam:



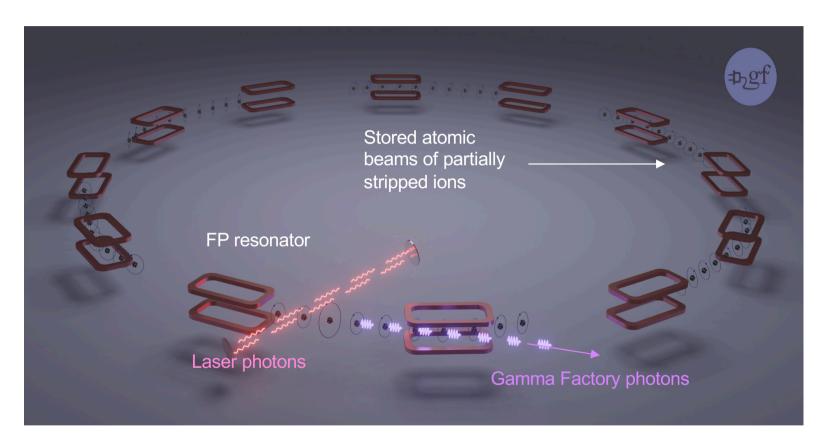
Use of the external magnetic field to measure the photon polarisation specified in terms of the three Stokes Parameters: P₁, P₂, and P₃.

Measure the angular distribution
Of the electrons/positrons produced in
the photon conversion process to
determine experimentally the
Stokes parameters of the GF
photon source.



Resonant scattering of plane-wave and twisted photons at the Gamma Factory

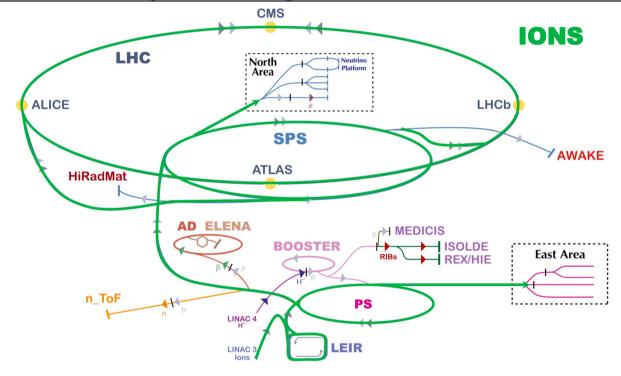
Valeriy G. Serbo Novosibirsk State University, RUS-630090, Novosibirsk, Russia and Sobolev Institute of Mathematics, RUS-630090, Novosibirsk, Russia


 $\label{eq:continuous} \mbox{Andrey Surzhykov} \\ \mbox{\it Physikalisch-Technische Bundesanstalt, $D-38116$ Braunschweig, $Germany$}$ Institut für Mathematische Physik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany and Laboratory for Emerging Nanometrology Braunschweig, D-38106 Braunschweig, Germany

Andrey Volotka School of Physics and Engineering, ITMO University, RUS-199034, Saint-Petersburg, Russia (Dated: November 27, 2024)

TAM – Total Angular Momentum of the GF photons

Gamma Factory – feasibility proof steps

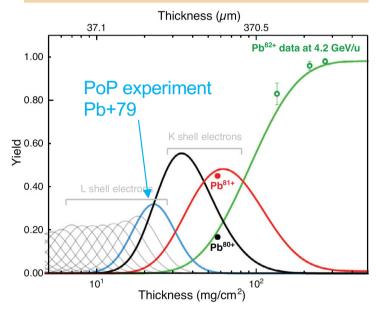


Novel technology:

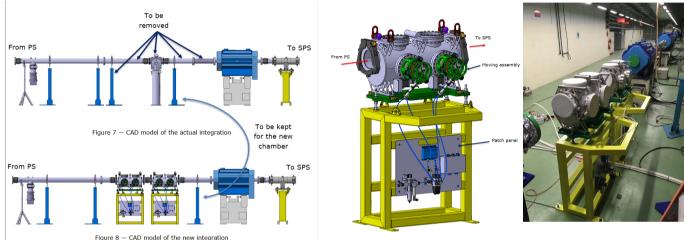
Resonant scattering of laser photons on ultra-relativistic atomic beam

CERN as the GF project host:

re-use of already existing accelerator infrastructure


Gamma Factory (additional) beam requirements:

- ion stripping scheme,
- storage of atomic beams in high-energy rings: SPS and LHC


Step 1: Requisite TT2 stripper system installed

Stripping of Pb+54 ions in the TT2 PS-> SPS transfer line

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

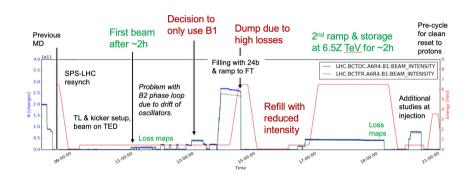
Felix M. Kröger,* Günter Weber, Simon Hirlaender, Reyes Alemany-Fernandez, Mieczyslaw W. Krasny, Thomas Stöhlker, Inga Yu. Tolstikhina, and Viacheslav P. Shevelko

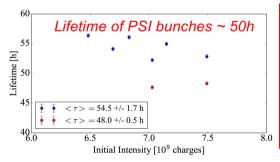
R. Alemany-Fernandez (BE.OP), E. Grenier-Boley and D. Baillard (SY.STI)

The two tanks of the new stripper system were installed during YETS 2021-2022 and YETS 2022-2023. Four stripper foil mechanisms are operating at ~Hz frequency.

follow + P

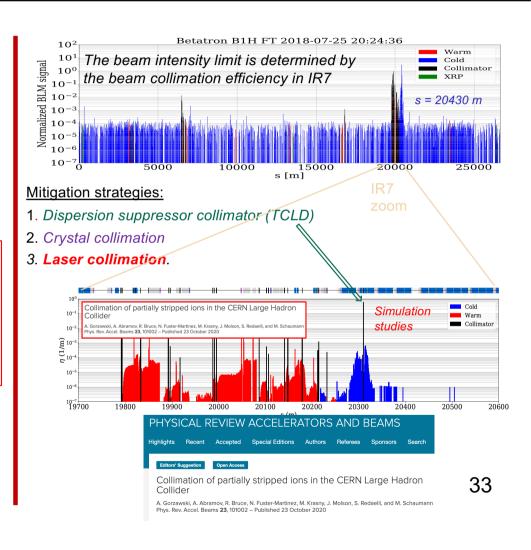
A joint Fermilab/SLAC publication

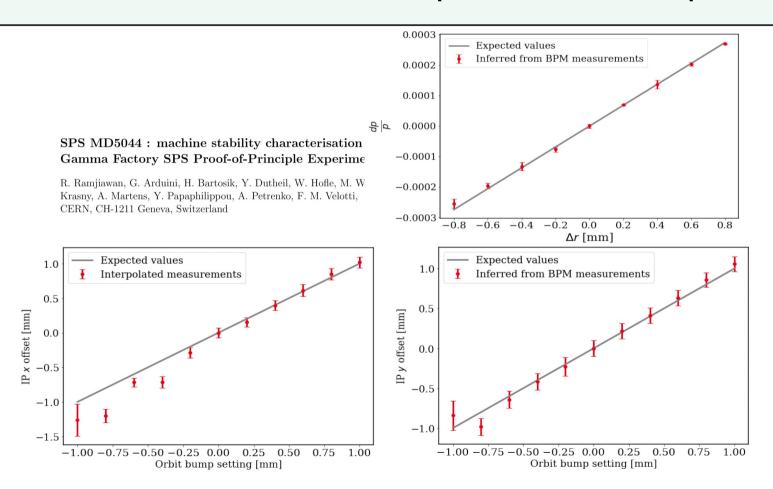

LHC accelerates its first "atoms"

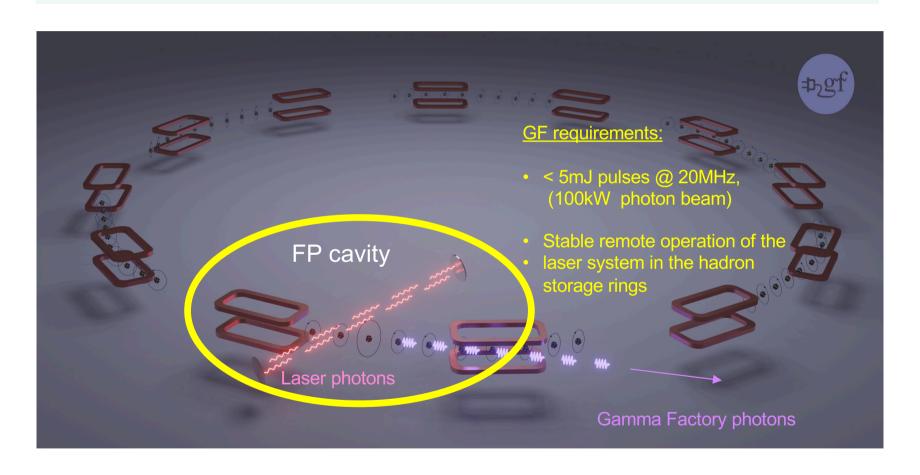

07/27/18 | By Sarah Charley

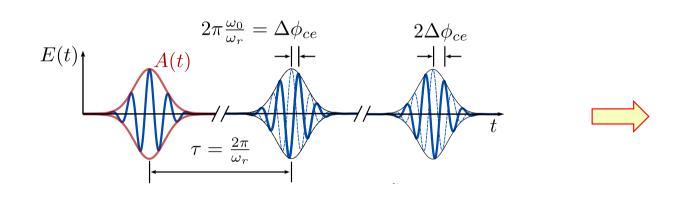
Lead atoms with a single remaining electron circulated in the Large Hadron Collider.

https://home.cern/about/updates/2018/27/lhc-accelerates-its-first-atoms
https://www.sciencealert.com/the-large-hadron-collider-just-successfully-accelerated-its-first-atoms
https://www.forbes.com/sites/meriameberboucha/2018/07/31/lhc-at-cern-accelerates-atoms-for-the-first-time/#36db60ae5cb
https://www.livescience.com/63211-lhc_atoms-with-electrons-light-speed.html
https://interestingengineering.com/cerns-large-hadron-collider-accelerates-its-first-atoms
https://www.sciencenews.org/article/physicists-accelerate-atoms-large-hadron-collider-first-time
https://insights.globalspee.com/article/9461/the-lhc-successfully-accelerated-its-first-atoms
https://www.maxisciences.com/lhc/le-grand-collisionneur-de-hadrons-lhc-accomplit-une-grande-premiere_art41268.html
https://www.symmetrymagazine.org/article/lhc-accelerates_is-first-atoms


Step 2: Atomic beams stored in in the LHC




CERN-ACC-NOTE-2019-0012


Step 3: Requisite precision of the momentum and beam position control at the collision point with laser photons

Laser photons

Towards the first integration of the Fabry-Pérot (FP) cavity in the hadron storage ring

GF requirements:

< 5mJ pulses @ 20MHz, (100kW photon beam)

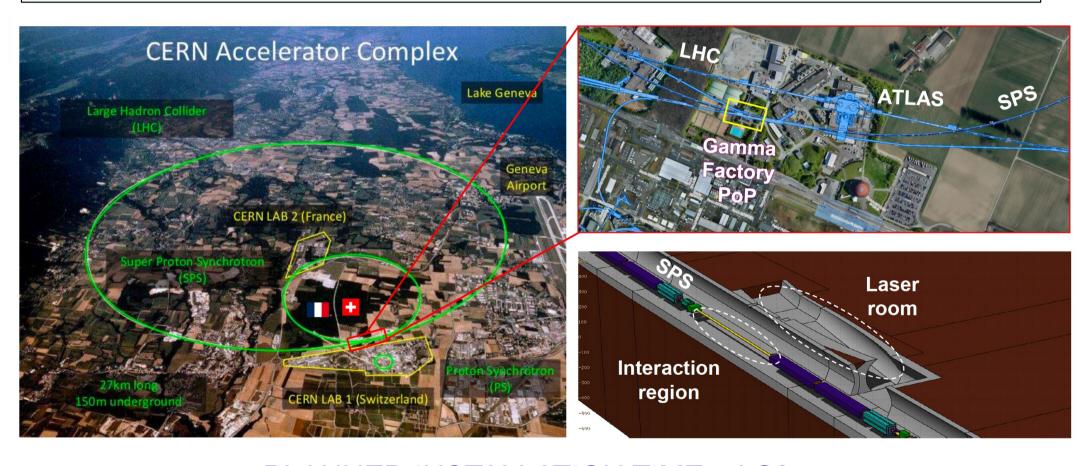
Step 4: World record of the stored laser photon beam power – satisfying the full GF research programme

RESEARCH ARTICLE | JUNE 20 2024

Stable 500 kW average power of infrared light in a finesse 35 000 enhancement cavity

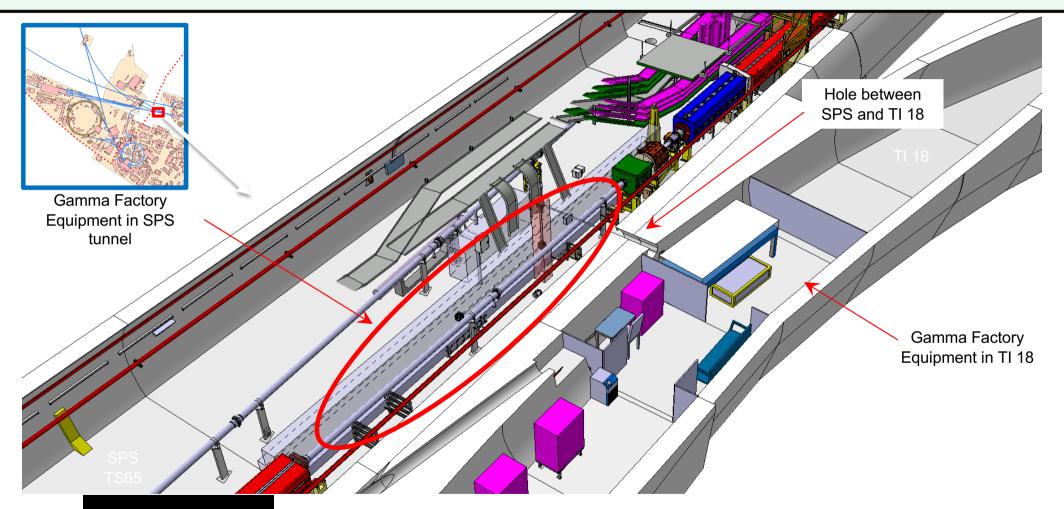
```
X.-Y. Lu ; R. Chiche ; K. Dupraz ; F. Johora ; A. Martens ; D. Nutarelli ; Y. Peinaud ; V. Soskov; A. Stocchi; F. Zomer ; C. Michel ; L. Pinard ; E. Cormier ; J. Lhermite ; X. Liu ; Q.-L. Tian ; L.-X. Yan ; W.-H. Huang ; C.-X. Tang ; V. Fedosseev ; E. Granados ; B. Marsh ; E. Granados ; B. Marsh ; Check for updates

H. Author & Article Information

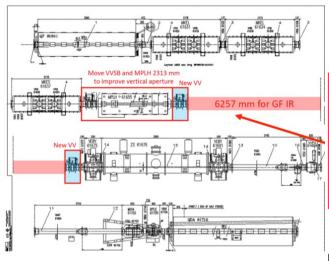

Appl. Phys. Lett. 124, 251105 (2024)

https://doi.org/10.1063/5.0213842

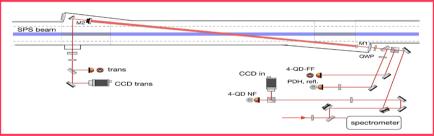
Article history 


Aurélien Martens
On behalf of IJCLab ILE group
```

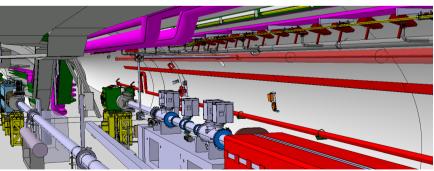
FINAL STEP: Gamma Factory Proof-of-Principle experiment


PLANNED INSTALLATION TIME - LS3

Gamma Factory Proof-of-principle experiment


Gamma Factory Proof-of-Principle (PoP) SPS experiment

SPS LSS6 zone



F-P cavity length - 3.75 m -- vertically tilted by 2..6 deg

F-P cavity

F-P cavity – "in beam" position

'BTV' system: YAG:Ce + camera scintillation photons per mm² 500000 Remotely controlled manipulator 400000 0.02 vertical (m) 300000 200000 -0.02100000 -0.040.02 0.04 0.06 horizontal (m) Central opening for ion beam passage Laser-ion interaction Point Ion beam direction

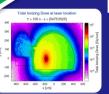
Status of the Gamma Factory PoP experiment

Laser system

- · Laser oscillator procured, accepted, tested...
- Successful demonstration paired to enhancement cavity (>700 kW!)
- Tender for 100 W amplifier completed, will be sent to IJCLab (addendum #2 to MoU) in 2025.

Laser beamline

- · Measurement of SPS vibrations with interferometer.
- Simulations of laser coupling and structure resonances completed
- · Beamline support was designed, constructed, nstalled at SPS



Fabry Perot cavity

- Working with EN-MME on a design update.
- Test at IJCLab were performed at a higher repetition rate, need to perform at 40 MHz
- Mock-up construction at CERN + testing is currently being considered.

PSI beam studies

- Demonstration in 2018, several runs until now to validate lifetime.
- Production of ions and lifetime (ELISOL-type RIB source) - standard technique
- Beam dynamics studies for spatio-temporal overlap

Radiation studies

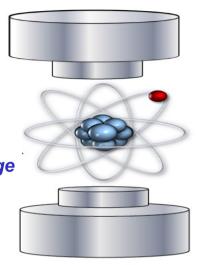
- Installation of BATMONs (waiting for readout).
- · FLUKA simulations have been carried out
- To be determined the suitable electronics that can be used for the control systems (with R2E).

TI-18 tunnel (laser lab)

- Opening and inspection was carried out at the end of 2023
- 3D scan completed
- Cabling requests were completed + PLAN already in the schedule for LS3. Resources not committed.

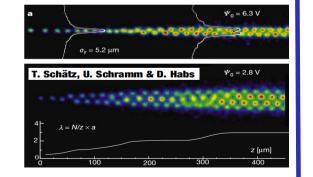
Scientific programme – selected examples

New research opportunities


- particle physics (precision QED and EW studies vacuum birefringence, Higgs physics in $\gamma\gamma$ collision mode, rare muon decays, precision neutrino physics, QCD-confinement studies, ...);
- **nuclear physics** (nuclear spectroscopy, cross-talk of nuclear and atomic processes, GDR, nuclear photo-physics, photo-fission research, gamma polarimetry, physics of rare radioactive nuclides,...);
- atomic physics (highly charged atoms electronic and muonic atoms, pionic and kaonic atoms);
- **astrophysics** (dark matter searches, gravitational waves detection, gravitational effects of cold particle beams, $^{16}O(\gamma,\alpha)^{12}C$ reaction and S-factors...);
- fundamental physics (studies of the basic symmetries of the universe, atomic interferometry,...);
- accelerator physics beam cooling techniques low emittance hadronic beams, high intensity polarised positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and flavour-tagged neutrino beams, ...);
- applied physics (accelerator driven energy sources, fusion research, medical isotopes and isomers precision lithography).

GF experimental programme with atomic beams

Atomic Physics: highly-charged, "small-size" atoms

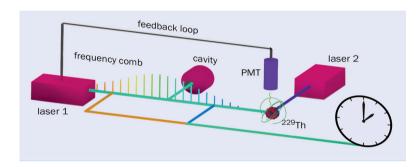

Atomic rest-frame

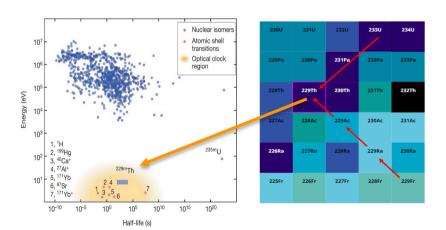
Trapped stationary atoms
Exposed to pulsed magnetic
and electric fields of the storage
ring

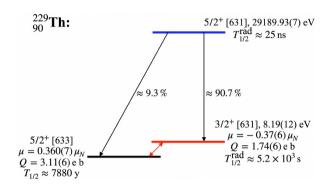
letters to nature

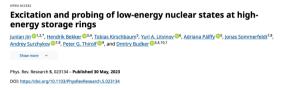
Opening new research opportunities in atomic physics:

- Highly-charged atoms very strong (~10¹⁶ V/cm) electric field (QED-vacuum effects)
- \triangleright Small size atoms (electroweak effects, $\sin^2\theta_W$, ...
- Hydrogen-like and Helium-like atomic structure (calculation precision and simplicity)
- Atomic degrees of freedom of trapped highly-charged atoms can be resonantly excited by lasers

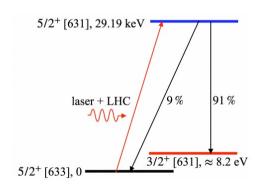


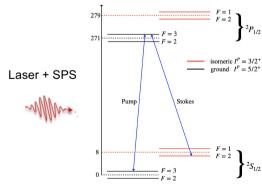

From atomic to nuclear clocks: 229mTh isomer beam


CERNCOURIER

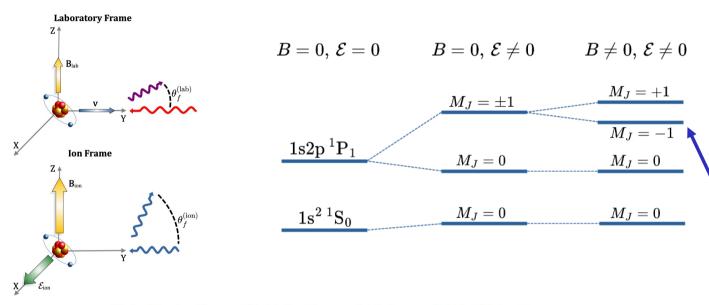

APPLICATIONS | FEATURE

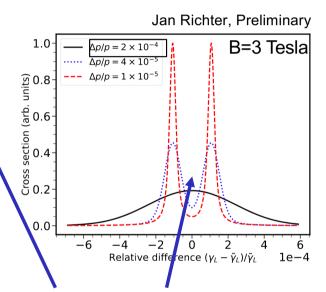
From atomic to nuclear clocks





Two "GF" ways of producing ^{229m}Th isomer with high efficiency


1. Excitation in bare Th nuclei



2. Excitation in H- or Li- like Th ions $\frac{279}{F} = \frac{F=1}{F=2} \mathbf{1}_{2p}$

Accelerator and Atomic physics interplay: very precise control of high energy beams – a path to gravitational wave detection

Controlling the Resonant Scattering Process of Photons on Relativistic Ion Beams Using Strong External Electromagnetic Fields

Jan Richter, ^{1, 2})* Mieczysław Witold Krasny, ^{3, 4} Jan Gilles, ^{1, 5} and Andrey Surzhykov^{1, 5}

¹ Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

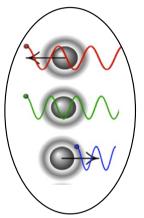
² Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

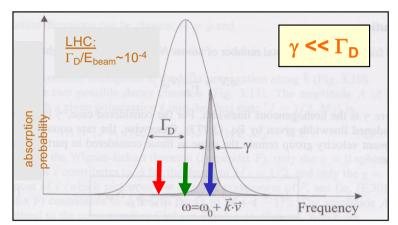
³ LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3,

Tour 33, RdC, 4, pl. Jussieu, 75005 Paris, France

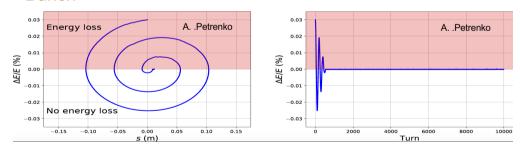
⁴ CERN, BE-ABP, 1211 Geneva 23, Switzerland

⁵ Institut für Mathematische Physik, Technische Universität Braunschweig,

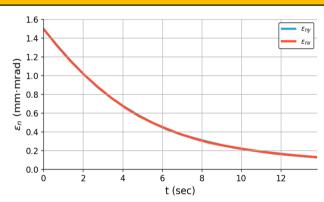

Mendelssohnstrasse 3, D-38106 Braunschweig, Germany


To appear in Phys.Rev

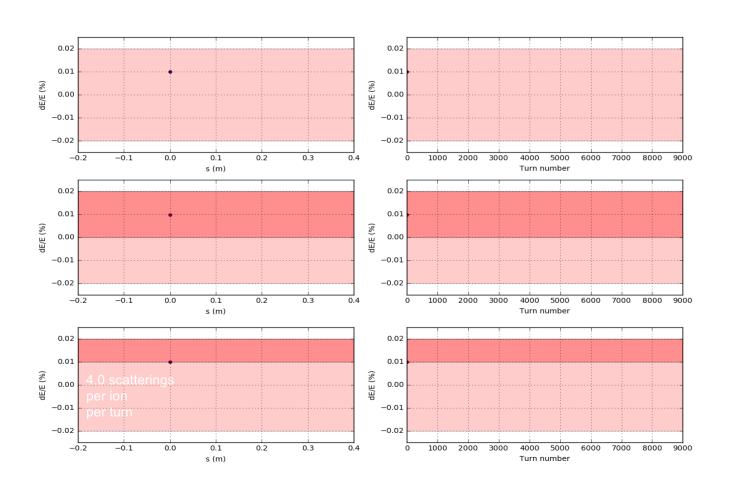
Observing Zeman splitting of the $M_j = +/-1$ sublevels of the excited He-like Ca atoms allows us to control the degree of cooling of the LHC beam


GF experimental programme with cold isoscalar-ion beams

Accelerator Physics: Gamma Factory "cold" atomic beams



Beam cooling speed: the laser wavelength band is chosen such that only the ions moving in the laser pulse direction (in the bunch rest frame) can resonantly absorb photons.

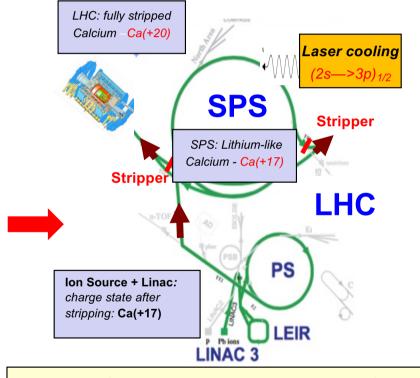

Opens a possibility of forming at CERN hadronic beams of the required longitudinal and transverse emittances within a seconds-long time scale

Simulation of laser cooling of the lithium-like Ca(+17) bunches in the SPS: transverse emittance evolution.

High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams M.W. Krasny (Paris U., VI-VII and CERN), A. Petrenko (CERN and Novosibirsk, IYF), W. Płaczek (Jagiellonian U.) (Mar 25, 2020)
Published in: *Prog.Part.Nucl.Phys.* 114 (2020) 103792 • e-Print: 2003.11407 [physics.acc-ph]

Gamma Factory beam cooling technique to reduce the longitudinal beam emittance (principle borrowed from atomic physics)

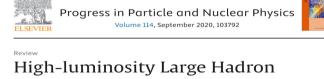
Particle Physics: Gamma Factory path to HL-LHC:


Studies of the implementation scheme with laser-cooled isoscalar Ca beams

$$\mathcal{L} = f \frac{n_1 n_2}{4\pi \sqrt{\epsilon_x \, \beta_x^* \, \epsilon_y \, \beta_y^*}}$$

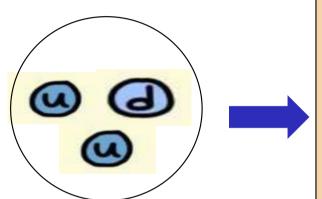
Two complementary ways to **increase** collider **luminosity** for fixed $n_1, n_2,$ and f:

- \blacktriangleright reduce $eta_{\!\scriptscriptstyle X}{}^*$ and $eta_{\!\scriptscriptstyle V}{}^*$
- ightharpoonup reduce ε_{x} and ε_{v}


HL-LHC – β^* reduction by a factor of 3.7 (new inner triplet)

Reduction of the transverse x,y, emittances by a factor of 5 can be achieved in 9 seconds (top SPS energy)

The merits of cold isoscalar beams


- higher precision in measuring SM parameters in CaCa than in pp collisions
- Possible unique access to exclusive Higgs boson production in photon photon collisions?

High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams ☆

M.W. Krasny ^{a b} △ ☒ , A. Petrenko ^{c b}, W. Płaczek ^d

Unbiased measurement of the EW processes at the LHC by using isoscalar ion rather than proton beams - WHY?

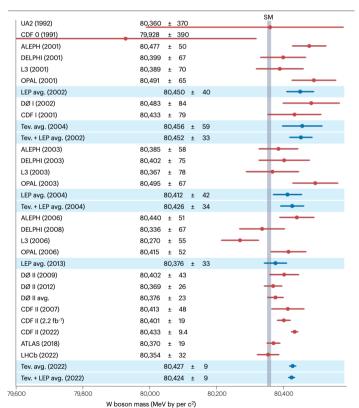
u and **d** quarks have different charges, weak isospin and vector and axial couplings.

For EW-physics: proton beams are equivalent to neutrino and electron beam mixed in not precisely known proportions.

In addition the relative distributions of the valence and sea u and d quarks determine the effective W/Z boson polarisation. Proton beams -> polarisation of W cannot be precisely controlled.

Isoscalar (A=2Z) ion beams

Profit from the flavour symmetry of strong interactions to to equalize the distributions of the u and d quarks: $u_{v,s}^{A=2Z,Z}(x,k_t,Q^2) = d_{v,s}^{A=2Z,Z}(x,k_t,Q^2)$

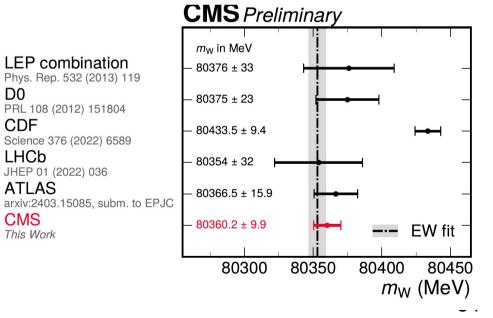

M.W. Krasny, F. Dydak, F. Fayette, W. Placzek, A. Siodmok, Eur. Phys. J. C69 (2010) 379-397.

F. Fayette, M.W. Krasny, W. Placzek, A. Siodmok, Eur. Phys. J. C63 (2009) 33-56.

M.W. Krasny, F. Fayette, W. Placzek, A. Siodmok, Eur. Phys. J. C51 (2007) 607-617.

M.W. Krasny, S. Jadach, W. Placzek, Eur. Phys. J. C44 (2005) 333-350.

nature reviews physics	https://doi.org/10.1038/s42254-023-00682-
Perspective	Check for update
The precision me	easurement
of the Wboson n	
its impact on phy	
its impact on priy	SICS
Ashutosh V. Kotwal ♥ ⊠	
Abstract	Sections


CMS Physics Analysis Summary

Contact: cms-pag-conveners-smp@cern.ch

2024/09/17

Measurement of the W boson mass in proton-proton collisions at $\sqrt{s}=13\,\mathrm{TeV}$

The CMS Collaboration

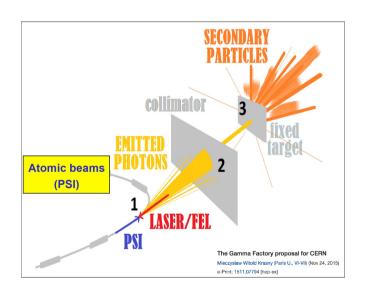
Unconstrained PDF degrees of freedom for the pp collisions at the LHC energies

Assume for a while: $s(x)=\overline{s}(x)$, $c(x)=\overline{c}(x)$, $b(x)=\overline{b}(x)$ then:

- 5 sea-quark flavours (u,d,s,c,b) + 2 valence quark flavours (u^(v), d^(v))
 unknown PDFs:
- 4 constraints coming from the measurement of precision observables
- 7-4=3 degrees of freedom in the flavour-dependent pdf's remain unconstrained at the LHC (external input)

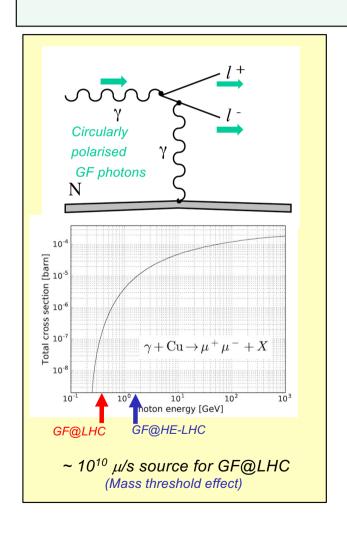
Important note:

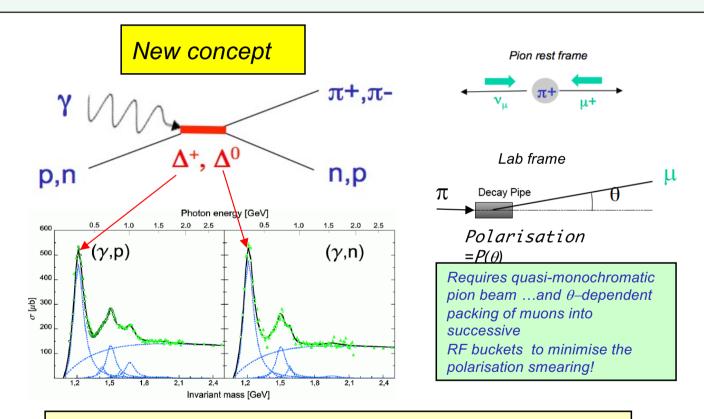
At the Tevatron (lower energy) only the first quark family was relevant. In addition $\overline{p}p$ collisions. This leaves only 2 (out of 7) flavour dependent pdf's. They are over-constrained.


Comparison of the Higgs physics reach in FCC-ee, LHeC and HL(AA)LHC*

Progress in Particle and Nuclear Physics Volume 114, September 2020, 103792 Review High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams M.W. Krasny ** B. S. A. Petrenko ** b., W. Ptaczek **	Diagra m	σ _{prod} [pb]	Higgs/year	Collider	Experiment	Backg.
FCC-ee semi-inclusive (HZ)	e ⁺ Z H e ⁻ Z Z	200	200000 (1000fb ⁻¹)	To be constructed	To be constructed	tiny
LHeC inclusive	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.033	33 (100fb ⁻¹)	To be constructed	To be constructed	large
HL(AA)LHC* Exclusive γγ	γ H	550	260 (0.47fb ⁻¹)	existing	4 exp. existing	small (no nuclear remnants)
HL-HE-(AA)LHC* Exclusive γγ	Y H	2600	1220 (0.47fb ⁻¹)	New LHC dipoles	4 exp existing	small (no nuclear remnants)

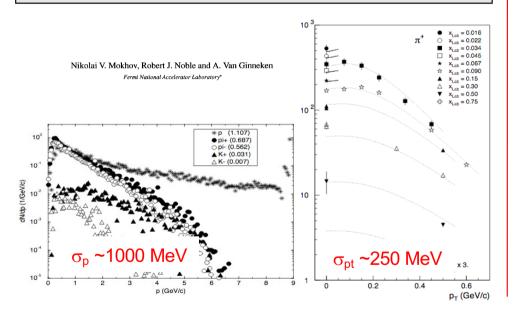
^{*)} HL(AA)LHC: (1) BNL-like performance of the ion injectors, (2)GF beam cooling at the SPS,


(3) BNL-like performance of stochastic cooling at the LHC injection (presented table: CaCa collisions)


GF experimental programme with high intensity photon beams

- ➤ <u>Polarised positrons</u> potential gain of up to a factor of 10⁴ in intensity with respect to the KEK positron source, satisfying both the LEMMA muon–collider and the LHeC requirements
- Muons potential gain by a factor of 10^3 in intensity with respect to the PSI muon source, charge symmetry $(N\mu^+ \sim N\mu^-)$, polarisation control
- Neutrinos fluxes comparable to NuMAX but: (1) Very Narrow Band Beam, driven by the small spectral density pion beam and (2) unique possibility of creating flavour- and CP-tuned beams driven by the beams of polarised muons
- Neutrons a comparable neutron flux with respect to the future neutron spallation sources e.g. at ESS
 but quasi monoenergetic MeV neutrons
- Radioactive (neutron-rich) ions potential gain of up to a factor 10⁴ in intensity with respect to e.g. ALTO

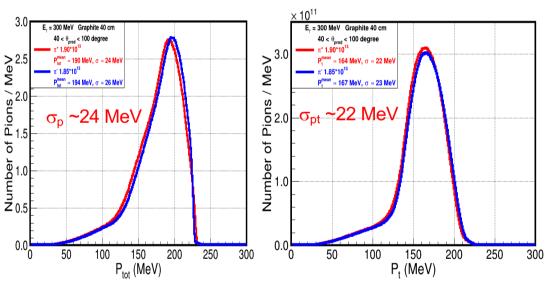
Two novel ways of producing polarised muons by photons in GF

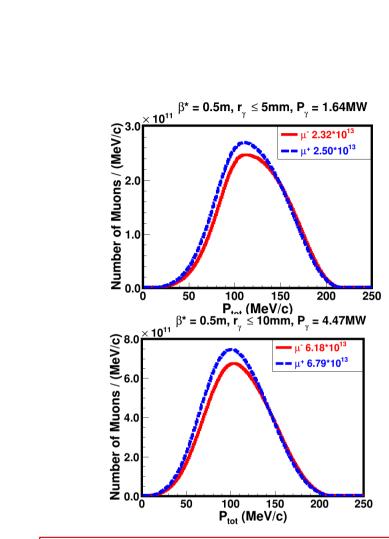

High intensity source: $2x10^{13}$ (10^{14}) μ^+ and μ^- per second for the 2X0 graphite (deuterium) target and 1 MW, 300 MeV photon beam!

Pion spectral density

8 GeV proton beam

For $\lambda_i = 2$ **graphite** target:

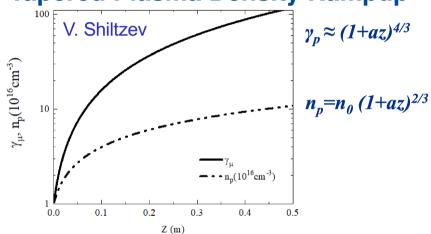

~ 4.1 x 10¹⁴ π +/s and ~ 2.6 x 10¹⁴ π -/s for 1 MW p beam



300 MeV GF γ-beam

For $\lambda_i = 2$ **graphite** target :

~ 3 x 10¹⁴ π ⁺ and π ⁻/s for 10 MW γ beam



Gamma Factory high-intensity muon and positron source: Exploratory studies Armen Apyan^{1,*} Mieczysław Witold Krasny^{2,*} and Wiesław Płaczek⁴ A. Alikhanyan National Laboratory (AANL), 2 Alikhanian Brothers St., 0036 Yerevan, Armenia LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris, France CERN, BE-ABP, 1211 Geneva 23, Switzerland Institute of Applied Computer Science and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. Losisiewicza II, 30-348 Krakow, Poland

Plasma Wakefield Accelerator-Based Low Emittance Muon Source

Tapered Plasma Density Rampup

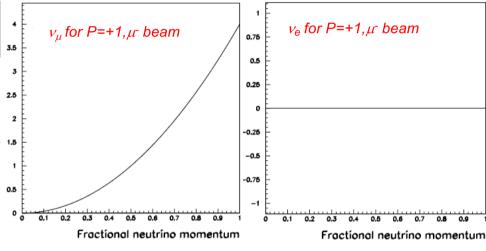
Plasma density and muon energy in tapered PWA-based 10 GeV muon source with normalized acceptance of 25 μm - corresponding to

The importance of muon (longitudinal) polarisation

Precise control of CP and flavour composition of the μ -beam driven neutrino source

$$\mu^{\pm} \to e^{\pm} + \nu_e(\bar{\nu}_e) + \bar{\nu}_{\mu}(\nu_{\mu})$$

- The GF source for isoscalar targets is "charge-symmetric"!
- Selection of $v_e \overline{v_\mu}$ or $\overline{v_e} v_\mu$ beam by changing the sign of collected pions
- Control of the relative \overline{v}_e/v_μ (v_e/\overline{v}_μ) fluxes by changing muon polarisation


$$\frac{d^2N}{dxd\Omega} = \frac{1}{4\pi} [f_0(x) \mp \mathcal{P}_{\mu} f_1(x) \cos \theta]$$

$$x = 2E_{\nu}/m_{\mu}$$

 \mathcal{P}_{μ} is the muon polarization

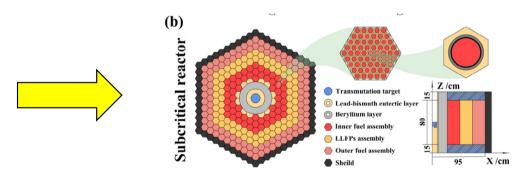
 θ is the angle between the neutrino momentum vector and the muon spin direction

	$f_0(x)$	$f_1(x)$		
ν_{μ} , e	$2x^2(3-2x)$	$2x^2(1-2x)$		
$ u_e$	$12x^2(1-x)$	$12x^2(1-x)$		

Conceptually optimal experiment to search for CP violation in the neutrino sector:

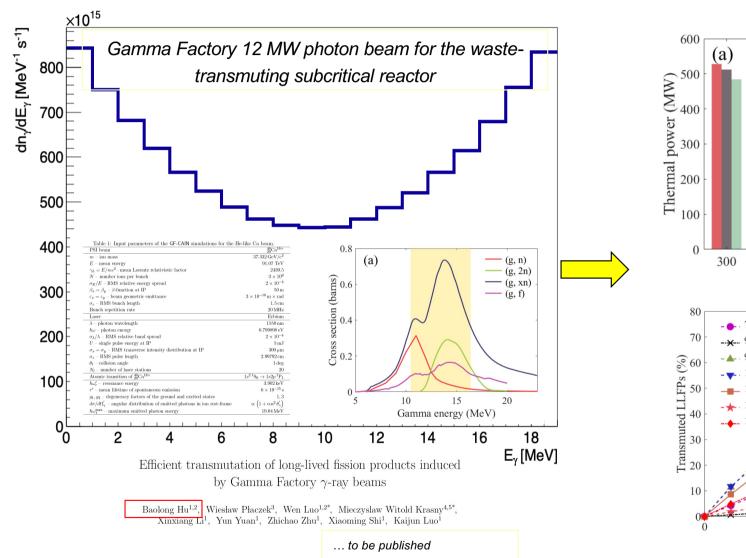
The experiment would compare the oscillation probabilities of $\nu_{\mu} \to \nu_{\rm e}$, with the ν_{μ} flux obtained from the decay under zero forward angle from fully polarized μ^{-} , and of $\bar{\nu}_{\mu} \to \bar{\nu}_{\rm e}$, with the $\bar{\nu}_{\mu}$ flux obtained from the decay under zero forward angle from fully polarized μ^{+} .

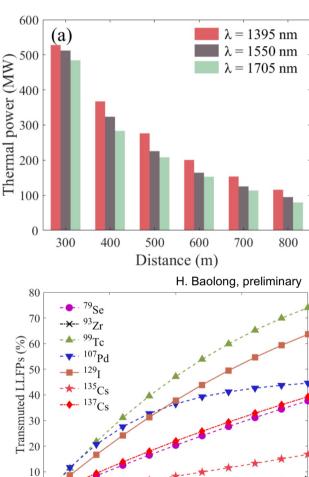
Applied Physics: Photon-beam-driven energy source



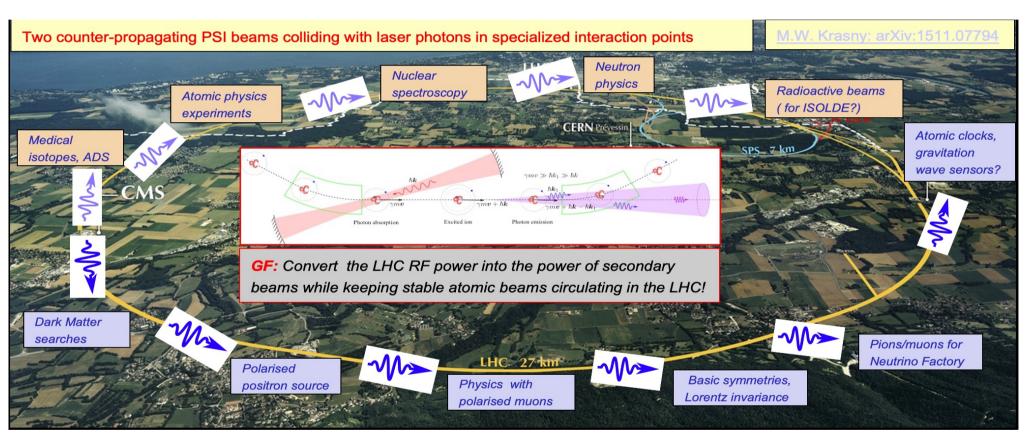
Best use of the CERN expertise to produce rather than buy the plug-power:

GF- Photon-beam-driven energy source (ADS)


Satisfying three conditions;


- requisite power for the present and future CERN scientific programme
- operation safety (a subcritical reactor)
- efficient transmutation of the nuclear waste (very important societal impact if demonstrated at CERN –given its reputation)

APS April Meeting 2023
Minneapolis, Minnesota (Apr 15-18)


M06 Invited Accelerate Solving Energy Crisis: From Fission to Fusion
Room: MG Salon F - 3rd Floor Sponsor: DPB FIP Chair: Christine Darve, European Spallation Source
Invited Speakers: Hamid Ait Abderrahmane, Mieczyslaw Witold Krasny, Ahmed Diallo, Alireza Haghighat

Irradiation time (years)

... the GF-future of the LHC?

A potential place of Gamma Factory in the future CERN research programme

- The next CERN high-energy frontier project may take long time to be approved, built and become operational, ... unlikely before 2048 (FCC-ee) or 2050+ (μ-collider)
- The **present** LHC **research programme** will certainly reach **earlier** (~2034?) its discovery **saturation** (little physics gain by a simple extending its pp/pA/AA running time)
- A strong need will certainly arise for a novel multidisciplinary programme which could re-use ("co-use")
 the existing CERN facilities (including LHC) in ways and at levels that were not necessarily thought of when the machines were designed

The Gamma Factory research programme could fulfil such a role. It can exploit the existing world unique opportunities offered by the CERN accelerator complex and CERN's scientific infrastructure (not available elsewhere) to conduct new, diverse, and vibrant research.