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SIZE OF THE PHYSICAL SYSTEM (MOTIVATION)

What are the typical sizes?

« Typical size of the fireball in heavy ion collisions is a few fm.

 Neutron stars and compact stars built up from strongly
interacting matter (with extra structure) with a size ~ 10 km.

+ Several models with finite (different) size.
+ In field theoretical calculations (LSM, NJL, DS, etc): infinite size.

Why does it matter?

- The properties of the system can change significantly.
- Criticality in a finite system?
» The CEP and the first-order region might "disappear".

Might be studied in field theoretical models by implementating the finite size effects.




USUAL IMPLEMENTATION: MOMENTUM SPACE CONSTRAINTS

In the thermodynamic limit:

Z= / D¢ elS(?),

MF: ¢(X) = 6+ ¢(X), p = 0,

Z = Ueg, minimize Ugg ()

Finite size effects without losing the advantages Ugg?

Keep Ues, modify only
the momentum space.

Finity system
with linear size L
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e.g. for eLSM: Phys.Rev.D 108 (2023) 7, 076010



VOLUME DEPENDENCE




VOLUME DEPENDENCE OF THE PARTITION FUNCTION

There is more than the momentum space!

Z= / D), 5(¢) = / dx £((x), X) (1)

Constant, homogenous field + local Lagrangian: /d"x =V, M) BV

Integration over single R valued field ¢:
z = / Depe—Se(@) scalar feld, / = dpe—Se@® )
— 00

V dependence separates from the potential: Se=p8V-U(9)

The expectation value:

=2 [ dspesrue G
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The expectation value:
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Simple quark-meson type model (classical potential + fermionic thermal fluct.):
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V DEPENDENT WEIGHTS AND THE POTENTIAL

At finite V: -
W= [ dooro.V), POV —e Uz (©)
— 00
For a fixed T and p with multiple solutions in MF (1 fm =5 GeV™"):
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CORRECT V DEPENDENCE OF THE CONDENSATE (FIRST-ORDER)
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(@) AT SEVERAL SIZES
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V DEPENDENCE OF PHYSICAL QUANTITIES

V dependence of the free energy: d=-TInZ

Ecpectation value of ¢ and its fluctuations
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The pressure: P = —@, The particle number:  (N) = _9® 1/ d¢%e_'3v”
ov o 2 J_s Ou

Generally: (0) = 27" / de 0(¢) e=PVU(®) for O observables
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IN THE CROSSOVER REGION
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FLUCTUATION OF ¢

In the 1st order region x keeps increasing. E.g. at L = 40/GeV:

Reason: ~ V scaling at coexistence (see below)



SCALING




SCALING FUNCTIONS: CROSSOVER

Expectation:  o(tL°) oc L°, x(tL°) o L°®
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SCALING FUNCTIONS: CROSSOVER
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SCALING FUNCTIONS: SECOND ORDER

Expectation: o (tLP%/7) oc LBO/7=d (tLPO/7Y) o |2B0/7—d MF at 3D: hyperscaling violation
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SCALING FUNCTIONS: SECOND ORDER
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SCALING FUNCTIONS: FIRST ORDER

Expectation: o (tL3) oc L°, x(tL3) o L3 coexistance: x = Vxs + (a1 + x2)/2
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FIRST-ORDER CASE WITH DOUBLE GAUSSIAN

Using the double Gaussian approximation

A 2 d 2 d
_ —((p—01))— L T —((¢p—0 — L T
P(¢)) = W [e (( 1)%)—2x10m)L7 /(27x1) +e ((¢p—02)?)—2x20m)L° /(2 Xz)] (7)

with A is for the proper normalization /dd)P(d)) =1
Using (¢) = [ 6 6P(6), (¢%) = [ do 7P(&), and x = V/7((¢%) — (6)?) gives
() = Ui+ XUz (8)

Ld
x = xibi+x2U2+ ?()\1 — X2)?UqU, (9)

o . EP——
width introducing U; = W;/(W; + Ws), W; = x;/ze”L int29)/@0) -\ = g 4y
With 64/, = & & d0, X1/, = X £ dx, and assuming dx is small:

= )2 cosh (L = 2+ 2 602 cosh2 (41960 /7) (10)
Mo = T —(M=Xa)? cosh™2 (n(e1 — 02)/(27)) = X+—00% cosh* (nL%0/7) (10

Binder: Lect. Notes Phys. 409, 59 (1992)



CHECK AT L = 330 GEV

Peak from coexistence
is clearly visible

The sector projected
curves tend to MF

One may fit the x4 part
and remove it from full
(rough approximation)
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ADDING MOMENTUM SPACE CONSTRAINTS: SCALING

Contraints:

m low momentum
cutoff

m discretization
with PBC/APBC

No change in the
scaling for large V,
as expected.
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BARYON FLUCTUATIONS




(BARYON) NUMBER FLUCTUATIONS

Cumulants from the grand free energy ® = —TIn Z

e

Knp = — o (11)
hence (with ¢, the central moments)
K1 =0C = <N>,
Ky = Cp = <N2> — <N>2,
w3 = 3 = (N?) — 3(N*)(N) + 2(N)?,
Ko = Gy — 36 = (N%) — 4(N2)(N) + 12(N?)(N)? — 3(N?)? — 6(N)*
Quantities per volume can be related to those in MF

R = kin/V (12)

e.g. k1 = (n) is the number density.



BARYON FLUCTUATIONS VS PRESSURE

Both k, and the naive "derivative of the pressure" gives the correct MF limit

o 17O a0 0 oo
V ou? ou? ou? oV
N Voo S
q,MF_aanF
Xn _Tuz

(The difference decreases as V — o)

For each n, k, shows the same structure and behavior as xp, the chiral fluctuation.



BARYON FLUCTUATIONS

L = 40/GeV, increase in p similar to d(¢)/dh
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ALONG THE PHASE BOUNDARY

Along the boundary 7 direction with 7 = sgn(T — T¢)\/(T — T¢)? + (1 — p1c)?
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ALONG THE PHASE BOUNDARY

Along the boundary 7 direction with 7 = sgn(T — T¢)\/(T — T¢)? + (1 — p1c)?
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ALONG THE PHASE BOUNDARY

Along the boundary 7 direction with 7 = sgn(T — T¢)\/(T — T¢)? + (1 — p1c)?
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ALONG THE PHASE BOUNDARY

Along the boundary 7 direction with 7 = sgn(T — T¢)\/(T — T¢)? + (1 — p1c)?
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FLUCTUATIONS ALONG A “FREEZE-OUT”
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FLUCTUATIONS ALONG A “FREEZE-OUT”
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SUMMARY

« Finite size effects goes beyond the momentum space constraints.
 Physical quantities can be calculated from the V-dependent free-energy.
» Correct scaling can be reproduced - Importance of the coexistence.

+ No apparent CEP can be deduced as a maximum in the fluctuations.

 Fluctuations can be studied along the phase boundary and the freeze-out line.

« Other quantities to be calculated.
« Sensitivity to the relative location of CEP and the freeze-out.
 Structure with a disappearing CEP.
- Nontrivial V-dependent potential.

23 /23
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