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Motivation

“ ….This behavior indicates that the spin polarization 
phenomena may be connected with the effects of chiral 
symmetry restoration. …..”

• As a starting point, it was 
natural to explore the 
multitude of condensates that 
were available to us from 
studies about pion 
condensation.

• Thus, chiral spiral was 
selected

Spin density Mass( time dependent)



Historical background
Bose- 

Einstein 
condensate

Superfluid He
Superconducting Metals

• A.B. Migdal  and Independently 
R.F. Sawyer and D.J. Scalapino 
proposed the existence of a 
Bose-Einstein condensate in 
pions in 1972.

Image credit : Wikipedia & ESA

Neutron stars



Chiral spirals as a potential ground state of 
matter
• Chiral spirals → Mean fields that are used to study pion 

condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]

• Have been studied thoroughly in last ~45 years



A spiral of condensates

• In chiral spirals we assume a periodic form for the mean fields 
given as

𝜎 = 𝑀cos 𝜙 , 𝜋 = 𝑀sin 𝜙 .

Externally given 
mean field of 
for scalar and 
pseudoscalar 
condensates.

Chiral 
symmetry

Dirac particles 
with chiral 
symmetry

𝑖ℏ 𝛾𝜇𝜕𝜇 − 𝜎 − 𝑖𝛾5𝜋 𝜓(𝑥) = 0,

Governed by

Interaction 

For example: NJL model with zero mass



Why Spirals?

We choose the following form for 𝜙,

𝜙 =
𝐪 ⋅ 𝐱

ℏ
𝐪 is called the inhomogeneity factor



One ansatz to solve them all

• The forms of the condensate turns our dynamical equation into a 
Dirac-like equation given as

𝑖ℏ 𝛾𝜇𝜕𝜇 − 𝑀𝑒𝑖𝛾5 𝐪⋅𝐱 /ℏ 𝜓(𝑥) = 0

• Can be solved using the ansatz [F. Dautry and E. M. Nyman, Nuclear Physics A 319, 
323 (1979).]

𝜓± 𝑥 = exp −
𝑖𝛾5

2

𝐪 ⋅ 𝐱

ℏ
𝜒± 𝐩 𝑒∓𝑖𝑝⋅𝑥/ℏ

• Ansatz → space dependence gone



One ansatz to solve them all
• Now we need to solve the eigensystem

± 𝑀 −
1

2
𝛕 ⋅ 𝐪 𝛕 ⋅ 𝐩

𝛕 ⋅ 𝐩 ∓ 𝑀 +
1

2
𝛕 ⋅ 𝐪

• The eigenvalues give the energy spectrum which features a split in energy for 
different spins (𝑞 > 0),

𝐸𝐩
(𝑟)

= 𝐩2 + 𝑞2/4 + 𝑀2 + −1 𝑟−1𝑞𝐸𝐩
∥ (𝑟 = 1,2).

Where, 𝐸𝐩
∥ = 𝑀2 + (𝑝3)2

+ : “Positive” energy
-  : “Negative” energy
𝛕 : Pauli matrices



Energy spectrum of the system

𝑟 = 2 < 𝑟 = 1
Natural 
inclination 
towards 
polarization

Wigner 
functions

Spinors



Spinors

𝜒±
𝑟

𝐩 = 𝑁±
𝑟

𝐸𝐩
𝑟

± −1 𝑟𝐸𝐩
∥ ∓

𝑞
2

𝑝1 + 𝑖𝑝2

±
𝑝3

𝑀 + −1 𝑟𝐸𝐩
∥

±
𝐸𝐩

𝑟
± −1 𝑟𝐸𝐩

∥ ∓
𝑞
2

𝑝1 + 𝑖𝑝2

𝑝3

𝑀 + −1 𝑟𝐸𝐩
∥

1

The factor 𝑁±
𝑟  is chosen such that the 

system is normalized to

𝜒+
(𝑟)†

(𝐩)𝜒+
(𝑟)

(𝐩) = 2𝐸𝐩
(𝑟)

, 𝜒−
(𝑟)†

(𝐩)𝜒−
(𝑟)(𝐩) = 2𝐸𝐩

(𝑟)
.

Orthogonality of the spinors is given as

Chiral spiral Free Dirac case

𝜒+
(𝑟)†

(𝐩) 𝜒+
(𝑠)

(𝐩) = 2𝐸𝐩
(𝑟)

𝛿𝑟𝑠 𝑢(𝑟)†
(𝐩)𝑢(𝑠)(𝐩) = 2𝐸𝐩𝛿𝑟𝑠

𝜒−
(𝑟)†

(𝐩) 𝜒−
(𝑠)(𝐩) = 2𝐸𝐩

(𝑟)
𝛿𝑟𝑠 𝑣(𝑟)†

(𝐩)𝑣(𝑠)(𝐩) = 2𝐸𝐩𝛿𝑟𝑠

𝜒+
(𝑟)†

(𝐩) 𝜒−
(𝑠)(−𝐩) = 0 𝑢(𝑟)†

(𝐩)𝑣(𝑠)(−𝐩) = 0

𝜒−
(𝑟)†

(−𝐩) 𝜒+
(𝑠)

(𝐩) = 0 𝑣(𝑟)†
(−𝐩)𝑢(𝑠)(𝐩) = 0

᪄𝜒+
(𝑟)

(𝐩) 𝜒−
(𝑠)(𝐩) = 0 ᪄𝑢(𝑟)(𝐩)𝑣(𝑠)(𝐩) = 0

᪄𝜒−
(𝑟)(𝐩) 𝜒+

(𝑠)
(𝐩) = 0 ᪄𝑣(𝑟)(𝐩)𝑢(𝑠)(𝐩) = 0

෍

𝑟=1

2
1

2𝐸𝐩
(𝑟)

𝜒+, 𝑎
(𝑟)

(𝐩)𝜒+, 𝑏
(𝑟)†

(𝐩) + 𝜒−, 𝑎
(𝑟)

(−𝐩)𝜒−, 𝑏
(𝑟)†

(−𝐩) = 𝛿𝑎𝑏.

The completeness relation reads



“Spin” of the spinors
• The 𝐩 → 0 limit reveals the relationship between the index (r ) 

and the direction of spin polarization.

𝜒+
(2)

(𝐩 → 0) = 𝑒−𝑖𝜙 |2𝑀 − 𝑞|

1
0
0
0

𝜒+
(1)

(𝐩 → 0) = −sgn(cos𝜃) 2𝑀 + 𝑞

0
1
0
0

𝜒−
(2)(𝐩 → 0) = |2𝑀 − 𝑞|

0
0
0
1

𝜒−
(1)(𝐩 → 0) = 𝑒−𝑖𝜙sgn(cos𝜃) 2𝑀 + 𝑞

0
0
1
0

“Up” “Down”

“Up” “Down”



The spinor fields
• The general field is thus given as

𝜓(𝑥) = න
𝑑3𝑝

(2𝜋ℏ)3/2
෍

𝑟=1,2

1

2𝐸𝐩
(𝑟)

𝑢(𝑟)(𝐩, 𝐱)𝑏𝑟(𝐩)𝑒−
𝑖
ℏ

𝑝⋅𝑥 + 𝑣(𝑟)(𝐩, 𝐱)𝑐𝑟
∗(𝐩)𝑒

𝑖
ℏ

𝑝⋅𝑥

• Where we have

𝑢(𝑟)(𝐩, 𝐱) = exp −
𝑖𝛾5

2

𝐪 ⋅ 𝐱

ℏ
𝜒+

(𝑟)
(𝐩) 𝑣(𝑟)(𝐩, 𝐱) = exp −

𝑖𝛾5

2

𝐪 ⋅ 𝐱

ℏ
𝜒−

(𝑟)(𝐩).

• These fields are actually quantum, check
{𝜓𝑎(𝑡, 𝐱), 𝜓𝑏

†(𝑡, 𝐲)} = 𝛿𝑎𝑏𝛿(3)(𝐱 − 𝐲),

{𝜓𝑎(𝑡, 𝐱), 𝜓𝑏(𝑡, 𝐲)} = {𝜓𝑎
†(𝑡, 𝐱), 𝜓𝑏

†(𝑡, 𝐲)} = 0,

• with 𝑏𝑟(𝐩) , 𝑐𝑟
†(𝐩) → standard anti-commutation relation



Wigner functions
• Wigner functions → Phase space distribution function in quantum 

systems
• For spin-1/2 systems, these are given as

𝑊𝑎𝑏 𝑥, 𝑘 = න  
𝑑

4
𝑦

(2𝜋ℏ)4
𝑒

−
𝑖𝑘⋅𝑦

ℏ ᪄𝜓𝑏 𝑥 +
𝑦

2
𝜓𝑎 𝑥 −

𝑦

2

𝑏𝑠
† 𝐩′ 𝑏𝑟 𝐩 = 𝛿 3 𝐩′ − 𝐩 𝑓𝐩(1 + 𝛇𝐩 ⋅ 𝛕)𝑠𝑟

𝑐𝑠
† 𝐩′ 𝑐𝑟 𝐩 = 𝛿 3 𝐩′ − 𝐩  ഥ𝑓𝐩 (1 + ത𝜻𝐩 ⋅ 𝛕)𝑠𝑟,

Axial current polarization

The only non zero exp. values



Clifford algebra decomposition of the Wigner 
function

• Decomposition of Wigner function is thus

𝑊𝑎𝑏 = ℱ + 𝑖𝛾5𝒫 + 𝛾𝜇𝒱𝜇 + 𝛾𝜇𝛾5𝒜𝜇 +
1

2
Σ𝜇𝜈𝒮𝜇𝜈

𝑎𝑏
.

• Components {ℱ, 𝒫, 𝒱𝜇 , 𝒜𝜇 , 𝒮𝜇𝜈} → Trace with 𝑊 

• Currents → Integrate the components over 4-momentum

Scalar Pseudoscalar Vector Axial vector Tensor

Gamma 
matrices

Clifford algebra
{𝛾𝜇 , 𝛾𝜈} = 2𝜂𝜇𝜈14×4

Γ = {1, 𝛾5, 𝛾𝜇, 𝛾𝜇𝛾5, Σ𝜇𝜈}

Basis for all 4 × 4 matrices



Vector and axial vector currents
• The spatial part of vector current vanishes (𝑉𝑖(𝑥)=0)
• The temporal part is

𝑉0(𝑥) = ∫ 𝑑4𝑘 𝒱0(𝑥, 𝑘) = ෍

𝑟=1

2

 න
𝑑3𝑘

2𝜋ℏ 3
𝑓𝐤

(𝑟)
− ᪄𝑓𝐤

(𝑟)
.

• For the axial vector, 𝐴0(𝑥)= 𝐴1(𝑥) = 𝐴2(𝑥) =0

𝐴3(𝑥) = ∫ 𝑑4𝑘 𝒜3(𝑥, 𝑘) = ෍

𝑟=1

2

 න
𝑑3𝑘

2𝜋ℏ 3

−1 𝑟𝐸𝐤
∥

𝐸
𝐤

(𝑟)
1 +

−1 𝑟−1𝑞

2𝐸𝐤
∥

𝑓𝐤
(𝑟)

+ ᪄𝑓𝐤
(𝑟)

.

• This shows good agreement with the formula obtained in [M. Kutschera, W. Broniowski,and A. 
Kotlorz, Nuclear Physics A 516, 566 (1990).] up to the internal degrees of freedom connected with 
flavor and color.



Effects of inhomogeneity on axial current

More inhomogeneity = More polarization
Polarization even at vanishing 
baryon chemical potential



The homogeneous limit
• When the inhomogeneity factor vanishes, the vector looks like

𝜒±
(𝑟)

(𝐩, 𝑞 → 0) =
(𝑝1)2 + (𝑝2)2

2𝐸𝐩
∥

𝐸(𝐩) ± (−1)𝑟𝐸𝐩
∥ 𝐸𝐩

∥ + (−1)𝑟𝑀

𝑝1 + 𝑖𝑝2

±(−1)𝑟
𝑝3

𝐸(𝐩) ± (−1)𝑟𝐸𝐩
∥ 𝐸𝐩

∥ + (−1)𝑟𝑀

±(−1)𝑟
𝑝3 𝐸(𝐩) ± (−1)𝑟𝐸𝐩

∥

(𝑝1 + 𝑖𝑝2) 𝐸𝐩
∥ + (−1)𝑟𝑀

𝐸𝐩
∥ + (−1)𝑟𝑀

𝐸(𝐩) ± (−1)𝑟𝐸𝐩
∥

• This looks nothing like the homogeneous case we know!



The homogeneous limit

• The real homogeneous limit is seen by taking linear combination 
of the limiting vectors

𝜒+
(𝑟)

(𝐩, 𝐪 = 0) = 𝑈𝑟𝑟′
𝑢𝑑

𝑟′
(𝐩) 𝜒−

(𝑟)(𝐩, 𝐪 = 0) = 𝑉𝑟𝑟′
𝑣𝑑

𝑟′
(𝐩)

• The matrices are Unitary
𝑈†𝑈 = 𝑉†𝑉 = 1

• The 𝑈 and 𝑉 matrices twist the 𝛇𝐩 & ത𝜻𝐩 vectors even at a vanishing 
inhomogeneity.



The homogeneous limit

𝜒±
𝑟

 (𝐩, 𝐪) 𝐸𝑝 + 𝑀
𝜑(𝑟)

𝛕 ⋅ 𝐩

𝐸𝑝 + 𝑀
𝜑(𝑟) , 𝐸𝑝 + 𝑀

𝛕 ⋅ 𝐩

𝐸𝑝 + 𝑀
𝜂(𝑟)

𝜂(𝑟)

𝑞 → 0 limit Polarized along
(0,0,1)

Expected effect

𝜒±
𝑟

 (𝐩, 𝐪)
𝑞 → 0 limit Polarized along

−
1

𝐸𝑝
∥(𝐸𝐩 + 𝑀)

𝑝1𝑝3, 𝑝2𝑝3, 𝐸𝑝
∥2 + 𝐸𝐩𝑀

Actual effect

𝑈𝑟𝑟′
𝑢𝑑

𝑟′
𝐩 , 𝑉𝑟𝑟′

𝑣𝑑
𝑟′

(𝐩)



Semiclassical expansion of the Wigner 
function
• One can obtain the dynamical equations for the Wigner function 

components,

Solved using the semiclassical expansion: 
𝐶 = 𝐶(0) + ℏ𝐶(1) + ℏ2𝐶(2)+. . . 
Where 𝐶 ∈ {ℱ, 𝒫, 𝒱𝜇, 𝒜𝜇, 𝒮𝜇𝜈}

𝐾𝜇𝒱𝜇 − 𝜎ℱ + 𝜋𝒫 =
𝑖ℏ

2
𝜕𝜇𝜋 𝜕𝑘

𝜇
𝒫 − 𝜕𝜇𝜎 𝜕𝑘

𝜇
ℱ ,

−𝑖𝐾𝜇𝒜𝜇 − 𝜎𝒫 − 𝜋ℱ = −
𝑖ℏ

2
𝜕𝜇𝜋 𝜕𝑘

𝜇
ℱ + 𝜕𝜇𝜎 𝜕𝑘

𝜇
𝒫 ,

𝐾𝜇ℱ + 𝑖𝐾𝜈𝒮𝜈𝜇 − 𝜎𝒱𝜇 + 𝑖𝜋𝒜𝜇 =
𝑖ℏ

2
𝑖 𝜕𝜈𝜋 𝜕𝑘

𝜈𝒜𝜇 − 𝜕𝜈𝜎 𝜕𝑘
𝜈𝒱𝜇 ,

𝑖𝐾𝜇𝒫 − 𝐾𝜈
ሚ𝒮𝜈𝜇 − 𝜎𝒜𝜇 + 𝑖𝜋𝒱𝜇 =

𝑖ℏ

2
𝑖 𝜕𝜈𝜋 𝜕𝑘

𝜈𝒱𝜇 − 𝜕𝜈𝜎 𝜕𝑘
𝜈𝒜𝜇 ,

𝑖 𝐾𝜇𝒱𝜈 − 𝐾𝜈𝒱𝜇 − 𝜖𝜇𝜈𝜏𝜎𝐾𝜏𝒜𝜎 −  𝜋 ሚ𝒮𝜇𝜈 +  𝜎𝒮𝜇𝜈 =
𝑖ℏ

2
𝜕𝛾𝜎 𝜕𝑘

𝛾
𝒮𝜇𝜈 − 𝜕𝛾𝜋 𝜕𝑘

𝛾 ሚ𝒮𝜇𝜈 .

Up to leading 
order in ℏ

𝑘𝜇𝒱(0)
𝜇

− 𝜎(0)ℱ(0) + 𝜋(0)𝒫(0) = 0

Put 𝑘 = 𝑘0, 0  
and 𝑞 ≠ 0 

Does not satisfy



Summary

• Spinors for chiral spirals were obtained.
• A general quantum field was constructed.
• Wigner function and all its components were computed.
• We discovered a twist in polarization in the limit of vanishing 

inhomogeneity.
• The computed exact functions were shown to disagree with the 

semiclassical expansion.

Thank You!



Appendix
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