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Motivation
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* As a starting point, it was

Polarization of spin-1/, particles with natu.ral to explore the
effective spacetime dependent masses multitude of condensates that
MMMM were available to us from

Radoslaw Ryblewski P StUdieS about pion
condensation.
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“....This behavior indicates that the spin polarization
phenomena may be connected with the effects of chiral
symmetry restoration. ..... ”



Historical background

Bose-
Einstein
condensate
Superfluid He
. A.B. Migdal and Independently ;G

R.F. Sawyer and D.J. Scalapino
proposed the existence of a
Bose-Einstein condensate in
pionsin 1972.

Neutron stars
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Chiral spirals as a potential ground state of
matter

* Chiral spirals = Mean fields that are used to study pion

condensation.;v schon and M. Thies, arXiv:hep-th/0008175.]

* Have been studied thoroughly in last ~45 years
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Non-uniform chiral phase in effective chiral

— Marek Kut
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How neutron star properties disfavor a nuclear chiral density
wave

Orestis Papadopoulos” and Andreas Schmitt ®’



A spiral of condensates

Externally given
mean field of
for scalar and
pseudoscalar
condensates.

Right-handed: Left-handed: Dirac pa rticles

Chiral with chiral  Apteraction

T
symmetry Symmetry

Governed by

Forexample: NJL model with zero mass

liky, 0% — o — iysm|yp(x) = 0,

* In chiral spirals we assume a periodic form for the mean fields

given as
o = Mcos(¢), m = Msin(¢).



Why Spirals?

We choose the following form for ¢,
_49-Xx
¢ = h

g is called the inhomogeneity factor




One ansatz to solve them all

* The forms of the condensate turns our dynamical equation into a
Dirac-like equation given as

e Can be solved using the ansatz [F. Dautry and E. M. Nyman, Nuclear Physics A 319,

323(1979).] _
Vs4q- X) +ip-x/h
5 7 ) x+(ple

Pi(x) = exp (—

* Ansatz = space dependence gone



One ansatz to solve them all

* Now we need to solve the eigensystem

+( M — l‘t . q T-p \ +: “Positive” energy
I 2 - : “Negative” energy
1 T : Pauli matrices
\ TP $<M+Et-q)/
* The eigenvalues give the energy spectrum which features a for

different spins (g > 0),
Eé”) = \/pz +q?/4+M? + (-1 qE)  (r =12).

Where, Ej = /M2 + (p3)2



Energy spectrum of the system

- Natural
— p=0 r=2<r=1 inclination
-==- pL=0p"=M towards

polarization

Spinors Wigner
functions




Spinors

ESY + (—1)E} F 1
pl + lpz
P
28 (p) = N "M+ (-1TE)
EX+(-DEpFL p3
pt+ip> M+ (-1)TE)
1

The factor NJ_(FT) iIs chosen such that the
system is normalized to

D xPm) =260, x O )x () = 26,

Orthogonality of the spinors is given as

Chiral spiral

Free Dirac case

;
s ) 1 (p) = 2E,67

u®" (p)u)(p) = 2E,8™

+
1O 0) x O (p) = 2E57

v (p)v©) (p) = 2E,67

:
x (P x O (=p) = 0

.I.
u (P (-p)=0

xOT—p) x O ) =0

.I.
v (—pyu(p) = 0

e xOm =0

2 (p)v® (p) = 0

7O xPm) =0

7 (p)u®(p) = 0

The completeness relation reads

2

Z 2 g™ lX+ w(PIX4 (@) + 1= p)x! (—p)] = 8ap-

r=1 p




“Spin” of the spinors

* The p — 0 limit reveals the relationship between the index (r)
and the direction of spin polarization.

“Up”

1
—i 0

1P - 0) = |2M—q|<0>
0

“Down”

0
)(J(rl)(p — 0) = —sgn(cosh)/2M + q <(1)>

0

0
x@ (- 0) =\/|2M—q|<g>
1

“Down”

0
¥D(p = 0) = e Psgn(cosh)/2M + g (2)
0




The spinor fields

* The generalfleld Is thus glven as

000 = [ sz 2 = WP 0b, )T + 00 (p ) (P

r=1,2 / E(r
* Where we have

lys q lys q - X
u®(p,x) = exp (- L2L=) V(@) v (px) = exp (- 22 xO ().

* These fields are actually quantum check

(W (t,%), ] (6, ¥)} = 8,58 (x —y),
(Wa (£, %), ¥, (&, Y)} = [l (6, %), Y1 (£, )} = 0,

* with b,-(p) , C,T (p) -2 standard anti-commutation relation



Wigner functions

* Wigner functions - Phase space distribution function in quantum

systems

* For spin-1/2 systems, these are given as

Wen (x k) = f

(I (b (p)) = 6P (p' — p)f, (1 +

Sp

) T)Sr

d4y

(2rh)*

<¢Z (x +§) ¥, (x —Z»

The only non zero exp. values

(clPNe (@) =8P -p) f 1 +

Axial current polarization

) T)sr;



Clifford algebra decomposition of the Wigner
function

' = {1’ 143 )/[,U )/MYSJ Z[ﬂl} Gamma Clifford algebra
Basis for all 4 x 4 matrices matrices v, vV} = 2n*V 1,444

* Decomposition of Wigner function is thus
ab = [:F + l]/5:P + )/MV + ]/M]/5dqu + > ,uv'S ]
« Components {F, P, V#, A, S*V} - Trace with W

Scalar Pseudoscalar Vector Axialvector Tensor

* Currents =2 Integrate the components over 4-momentum



Vector and axial vector currents

* The spatial part of vector current vanishes (V! (x)=0)
* The temporal partis

VOx) = [ d*kVO(x, k)—z j (Znh)g (£ - 7).
* Forthe axial vector, A°(x)= A (x) = Az(x) O

2
B ~ d*k (—1)TE) D"y =)
AB(x) = [ d*k A3 (x, k) = Zl J Tk Eli” [1 28] ](f + fio )

* This shows good agreement with the formula obtained in [M. Kutschera, W. Broniowski,and A.

Kotlorz, Nuclear Physics A516, 566 (1990).] UP to the internal degrees Of freedom connected with
flavor and color.



Effects of iInhomogeneity on axial current
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Polarization even at vanishing

More inhomogeneity = More polarization baryon chemnical potential




The homogeneous limit

* When the inhomogeneity factor vanishes, the vector looks like

\/E(p) + (—1)"E) \[Elﬂ +(-1)"™™
pl + lpz
p

J E(p) = (-1)E} \/ E)+ (-1)"™M
12 YAV
x5 (g - 0) =J(p y 2o p3JE(p) + (-D7Ep

26y (-1
(p* + ip?) /E,ﬂ + (1M
/Eg +(-1)"™M

JE® £ 08

3

+(-1)"

* This looks nothing like the homogeneous case we know!



The homogeneous limit

* The real homogeneous limit is seen by taking linear combination
of the limiting vectors

2 =0)=U""ul () xO(p.q=0)=V""vy (p)
* The matrices are Unitary
Utu =vtv =1

* The U and VV matrices twist the ¢, & ?p vectors even at a vanishing
Inhomogeneity.



The homogeneous limit

Expected effect

(r) T p
. ) @) .
g — 0 limit . n Polarized alon
2 (b @) VEp + M (& (p@)),JE +M (E e ) O
E,+ M T
p n

Actual effect

0 limit 1o 1 ;
A g T U g (p), VT vy (p)  Polarizedalong E" (E yv (p'p3, p2p3, EN? + EpM)



Semiclassical expansion of the Wigner
function

* One can obtain the dynamical equations for the Wigner function

components,
1 Up to leadin U _
K'Y, — oF +nP = %[(aun)(aﬁ?) ~(0.0)( %P orderinf £ kuVioy = 90F© + TPy =0
~iK# A, — 0P —7F = == [(3,m) (9 F) + (9,0)(8f:P)], Put k = (k°,0)

KyF +iK"Syy — oV, +ineA, = %[i(avﬂ)(a%cﬂu) — (8,0)(axW,)], andg # 0

~ h
iKEP — K,SVE — g AM + imVH = ‘7 [1(8,7) (32 V) — (3,0)(BLAM)],
in Does not satisfy
i(KFVY — KYVH) — eVI9K A, — TSHY + oSHY = > [(8,0)(a)s) — (8,m) (8} S*)].

Solved using the semiclassical expansion:
C — C(O) + hC(l) + hZC(2)+ .
Where C € {F,P, V¥, A, S*'}



Summary

* Spinors for chiral spirals were obtained.
* A general quantum field was constructed.
* Wigner function and all its components were computed.

* We discovered a twist in polarization in the limit of vanishing
Inhomogeneity.

* The computed exact functions were shown to disagree with the
semiclassical expansion.



Appendix

[5(#’ ~EJ ) F
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