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Lecture |: summary



Lecture | summary: nonthermal fixed points
Nonthermal fixed point: self-similar evolution in time at weak coupling

ft.p) = A(0) X f, (B()p) with A(0) = (t/t,y)” and B(t) = (t/tref)ﬁ

Relevant for QCD thermalization and for cold atomic gases

Significant simplification in the dynamics, as it reduces to a rescaling

Different systems might exhibit the same exponents ( — universality)

Nonthermal fixed points act as attractors for a large class of initial states
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Lecture | summary: quasinormal modes

Quasinormal modes: frequency eigenmodes of systems with dissipation

Explain the attractive nature of (near-)equilibrium states:
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1103.3452 with Janik & Witaszczyk 2203.16549 with Du, Schlichting
& Svensson
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Lecture | summary: hydrodynamics

Framework for describing relaxation of spatial iInhomogenerties

Macroscopic construction based on effective field theory principles

Microscopic input: equation of state and transport coefficient

Quasinormal mode manifestation: sound waves, shear mode

Working horse for simulating nuclear collisions:

QCD dynamics >  relativistic fluid mechanics
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What will happen now!?



The goal of these lectures

two key theoretical mechanisms underlying
state of the art understanding of thermalization in QCD are
nonthermal fixed points and attraction to equilibrium

\4

novel phenomena in table top experiments
with cold atomic gases far from equilibrium
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L ecture |l teaser

First take on quasinormal modes of nonthermal fixed points:

far from equilibrium

hydrodynamics \
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experimentally confirmed
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Setup



Kinetic theory setup

We will be using (relativistic) 1sotropic kinetic theory
0. f(t,p) = CIf1(t,p)

Example of C[ f]: the Fokker-Planck QCD collision kernel
see e.g. 1402.5049 by Blaizot, Wu & Yan

Copl f1(tp) ~ [ =000 ) + 50,1+ 1)

%)
L= = , & = const,
q
3
where I, :Nc/ d’p SF(L+ 1),
— 2N, / d3p f
(2
. . . . 4 1
This collision kernel leads to a nonthermal fixed point with a = ——=and = — =
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Result |:
extending nonthermal fixed points to earlier times



Prescal | ng 1810.10554 by Berges and Mazeliauskas

Scaling with slowly varying in time exponents

ft.p) = A() X £, (B()p) with A() = (t/t1)™" and  B() = (t/1,,0)""

might precede the exact scaling with a, f constant

Important for theory and experiment, since makes scaling visible much earlier
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Nonthermal attractor
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Prescal | ng 1810.10554 by Berges and Mazeliauskas

Scaling with slowly varying in time exponents
. a(r) p@)
ft.p) ~ A(t) X f. (B()p) with A1) = (t/te) " and  B(t) = (t/1,)

might precede the exact scaling with a, f constant

Important for theory and experiment, since makes scaling visible much earlier
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The Orlgln Of (Pre)scallng 2307.07545 with Mazeliauskas and Preis

Overoccupation simplifies C[ f(t, p)] as the highest power of f dominates
C[f(t,p)] ~ "dPl .o ( . )fK c.g. K2<—>2 — 3

This might make it possible to factor out t-dependence for A(7) f, (B(t)p) :
CLf(t, p)] = A@/=B(0)* CLf{(p = B(O)p)]

Overoccupation leads to most of the energy (or particle number) in the relevant
range of momenta

Imposing conservation of energy (or particle number) leads then to

A@®) ~ B@®)° witho =4 (oro = 3)
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Kinetic theory setup

We will be using (relativistic) 1sotropic kinetic theory
0. f(t,p) = CIf1(t,p)

Example of C[ f] is the Fokker-Planck QCD collision kernel

1 \ 1
Coplf1p) ~ L [Iaﬁap@zap |+ 50,017 1+f>>]

dp| |
(27T)3.f~

d3p
I, = 2N,
b /(277)3

This collision kernel leads to a direct cascade in the UV

1/15

where I, = Nc/




The Orlgln Of (Pre)scallng 2307.07545 with Mazeliauskas and Preis

Overoccupation simplifies C[ f(t, p)] as the highest power of f dominates

This might make it possible to factor out t-dependence for A(7) f, (B(t)p) :
CLf(t, p)] = A@/=B(0)* CLf{(p = B(O)p)]

Overoccupation leads to most of the energy (or particle number) in the relevant
range of momenta, but the simplified kernel alters conservation properties

Imposing conservation of energy (or particle number) leads then to

A(t) ~ B(t)° with (or o = 3)
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Prescaling as dimensionality reduction
2307.07545 with Mazeliauskas and Preis

All in all; overoccupation + conservation factorizes then the Boltzmann equation

B 1 [o+D - lfs(B) here

1
8;B(t) Dy C[fs](p) B

\ N\

time dependence momentum dependence
(closed form eom for B(?))

Vast reduction of complexity in a sense of dimensionality reduction
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Ph)’S'CS Of Prescallng 2307.07545 with Mazeliauskas and Preis

The solutions of

B)' "% | [04+P 3l fs() here L
0,B(t) p C[fs](P) p

predict the prescaling as

B — I
B(t) = (52) =7 win ﬁ<r>=/3><logt<t t)

ref

Prescaling 1s then just a scaling with an inrtial-condition dependent offset of time

B(t > t.)~ (tif)ﬁ (1= Boof +--.)
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Experimental
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2312.09248 by Gazo, Karalliev, Satoor, Eigen, Gatka and Hadzibabic
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t (ms)
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We start with a quasi-pure interacting 2D condensate of
7 x 10* atoms of 39K in the lowest hyperfine state, confined in a
square box trap of size L = 50 um [40]. The interactions in the
gas, characterized by the scattering length a, are tuneable via
the magnetic Feshbach resonance at 402.7 G [41]. To prepare
our far-from-equilibrium initial states, we temporarily turn off
the interactions (a — 0) and shake the gas with a spatially
uniform oscillating force F' (see Fig. 1A). This destroys the
condensate and, as previously studied in 3D [42, 43], results in
an isotropic highly nonthermal f distribution. After preparing
one of the three different initial states i1-i3 shown in Fig. 1A,
we stop the shaking, reinstate the interactions (a — 30 ay,
where ag is the Bohr radius), and let the gas relax. The states
i1-i3 do not have a defined temperature, but E = [ (k) dk,
where € = 27h?k3n; /(2m) and m is the atom mass, gives
the total energy. We get E/kg = 4.1(3) mK, 2.2(3) mK, and
1.0(3) mK, for i1-i3 respectively; in all cases E is sufficiently
low for a condensate to emerge during relaxation [44].
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Some perspectives from prescaling

Nonthermal fixed points = overoccupation + dimensionality reduction

(Pre)scaling Is then a consequence of the equations of motion

Prescaling exhausts the dimensionally reduced ansatz f(¢, p) =~ A(r) X f, (B(t)p)

Prescaling even at this level does not seem to have much to do with hydro
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Result Il
transient QNMs of nonthermal fixed points



Key idea behind

2502.01622 with De Lescluze

There is sense in which nonthermal fixed points are static: f.(p)

As a result, the notion of quasinormal mode approach makes sense
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Quasinormal modes of nonthermal fixed points

2502.01622 with De Lescluze

On a nonthermal fixed point: directly before that:
f(t,p) ~ ( un1/t0) fscaling [( unl/tO)ﬁ ] ( um/tO) f(t,p) z]gcaling [( um/tO)ﬂ ]
Wlth tuni =1 — I + Z um/tO 5f£2 [ unl/t()) ]
__________ BT
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~1.08 " Im(Q)
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Kinetic theory setup

We will be using (relativistic) 1sotropic kinetic theory
0. f(t,p) = CIf1(t,p)

Example of C[ f] is the Fokker-Planck QCD collision kernel

Copl f1(tp) ~ [ =000 ) + 50,1+ 1)

%)
L= — : < = const,
q

d3
where I, = Nc/ ),

(2m

I, — 2N, /(d3p !

. . . . 4 1
This collision kernel leads to a nonthermal fixed point with a = ——=and = — =
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Holographic quasinormal modes (QNMs)

Horowitz and Hubeny hep-th/9909056; Kovtun and Starinets hep-th/0506 | 84

Strongly-coupled QFTs relax via dual QNMs: &g, ~ 6(T,,,) ~ ol 0 1+iGE
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/ lots of short-lived excitations

Consequences for thermalization

\ a few long-lived hydrodynamic modes
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Quasinormal modes of nonthermal fixed points

2502.01622 with De Lescluze

On a nonthermal fixed point: directly before that:

f(t,p) ~ ( um/tO) fscaling [( unl/t())ﬁ ]

with 1, =t—t

__________ . = L)
-10 -05 | 0.5 1.0
-0.2
-04
~-0.6m
—0.8:
-1 Ol @)

10/15



Quasinormal modes of nonthermal fixed points

2502.01622 with De Lescluze

On a nonthermal fixed point: directly before that:
p —a p
f(tap) ~ ( um/tO) fécaling [( unl/t()) ] ( um/tO) f(t,p) zf;caling [( un1/t0) ]
. —iQ
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Experimental
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2312.09248 by Gazo, Karalliev, Satoor, Eigen, Gatka and Hadzibabic
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We start with a quasi-pure interacting 2D condensate of
7 x 10* atoms of 39K in the lowest hyperfine state, confined in a
square box trap of size L = 50 um [40]. The interactions in the
gas, characterized by the scattering length a, are tuneable via
the magnetic Feshbach resonance at 402.7 G [41]. To prepare
our far-from-equilibrium initial states, we temporarily turn off
the interactions (a — 0) and shake the gas with a spatially
uniform oscillating force F' (see Fig. 1A). This destroys the
condensate and, as previously studied in 3D [42, 43], results in
an isotropic highly nonthermal f distribution. After preparing
one of the three different initial states i1-i3 shown in Fig. 1A,
we stop the shaking, reinstate the interactions (a — 30 ay,
where ag is the Bohr radius), and let the gas relax. The states
i1-i3 do not have a defined temperature, but E = [ (k) dk,
where € = 27h?k3n; /(2m) and m is the atom mass, gives
the total energy. We get E/kg = 4.1(3) mK, 2.2(3) mK, and
1.0(3) mK, for i1-i3 respectively; in all cases E is sufficiently
low for a condensate to emerge during relaxation [44].

-
o
[$,]

—_
o
>

—_
o
w

(tuni/tref)_af(t’ p) (pmz)

0.0

05 1 2

(tuni /tref)ﬂp (Um_1 )



Quasinormal modes of nonthermal fixed points

2502.01622 with De Lescluze

On a nonthermal fixed point: directly before that:
f(t’p) ~ ( um/tO) fécaling [( unl/t())ﬁ ] ( um/tO) f(t’p) z]gcaling [( un1/t0)ﬂ ]
Wlth tuni =1 — I + Z um/tO 5fQ [ unl/tO) ]
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Experimental
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We start with a quasi-pure interacting 2D condensate of
7 x 10* atoms of 39K in the lowest hyperfine state, confined in a
square box trap of size L = 50 um [40]. The interactions in the
gas, characterized by the scattering length a, are tuneable via

the magnetic Feshbach resonance at 402.7 G [41]. To prepare
our far-from-equilibrium initial states, we temporarily turn off
the interactions (a — 0) and shake the gas with a spatially
uniform oscillating force F' (see Fig. 1A). This destroys the
condensate and, as previously studied in 3D [42, 43], results in
an isotropic highly nonthermal f distribution. After preparing
one of the three different initial states i1-i3 shown in Fig. 1A,
we stop the shaking, reinstate the interactions (a — 30 ay,
where ag is the Bohr radius), and let the gas relax. The states
i1-i3 do not have a defined temperature, but E = [ (k) dk,
where € = 27h?k3n; /(2m) and m is the atom mass, gives
the total energy. We get E/kg = 4.1(3) mK, 2.2(3) mK, and
1.0(3) mK, for i1-i3 respectively; in all cases E is sufficiently
low for a condensate to emerge during relaxation [44].
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Result llI:
hydrodynamics of nonthermal fixed points



Holographic quasinormal modes (QNMs)

Horowitz and Hubeny hep-th/9909056; Kovtun and Starinets hep-th/0506 | 84

Strongly-coupled QFTs relax via dual QNMs: &g, ~ 6(T,,,) ~ ol 0 1+iGE
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/ lots of short-lived excitations

Consequences for thermalization

\ a few long-lived hydrodynamic modes
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Hydrodynamics of nhonthermal fixed points
2504.18754 with Berges, Denicol and Preis

On a nonthermal fixed point: directly before that:
f(t,p) ~ ( un1/t0) fscaling [( unl/tO)ﬁ ] ( un1/t0) f(t,p) zf;caling [( um/tO)ﬂ ]
Wlth tuni =1 — I + Z um/tO 5f£2 [ unl/t()) ]
__________ .
-1.0 -05 | 0.5 1.0
-0.2
-0.4 adding spatial momentum e'9*

_06m splits this mode into propagating
- sound waves with scaling transport
-0.8 coefficients

-1 Ol
indeed prescaling is no hydro ——— | Im(Q)
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What we do in practice
2504.18754 with Berges, Denicol and Preis

f(t,p) — (tuni/tO)a fscaling [(tuni/lb)ﬂp] + 5f(x'uap)

Input: |
with  of(s, p) ~ p,p, =" (x")
Method: take truncated low moments expansion of the Boltzmann equation
| that was used before to derive MIS/DNMR-type equations

Outcome 1) ~ (i trep)”

for 2-2 7. ()Dr"" = — 7" + n(t) e + ... WIth " A
scattering 70— (energy density)

() 15
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° ° *
Qualltatlve CrOSSCheCk 2504.18754 with Berges, Denicol and Preis

(D" = — 7" + n(t)o"" + ...

l

. . . 2 1 1 He
restrict to homogenous isotropization: ##* = diag <O, — EAP(t),gAP(t),gAP(t)>
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Quasinormal modes of nonthermal fixed points

2502.01622 with De Lescluze

On a nonthermal fixed point: directly before that:

f(t,p) ~ ( um/tO) fscaling [( unl/t())ﬁ ]

with 1, =t—t

__________ . = L)
-10 -05 | 0.5 1.0
-0.2
-04
~-0.6m
—0.8:
-1 Ol @)

10/15



° ° *
Qualltatlve CrOSSCheCk 2504.18754 with Berges, Denicol and Preis

(D" = — 7" + n(t)o"" + ...

l

. . . 2 1 1 He
restrict to homogenous isotropization: ##* = diag <O, — EAP(t),gAP(t),gAP(t)>

AP B 1 B bref é_m_ y
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ImPI ICATUIONS 50, 15754 with Berses, Denicol and Preis

Comparing the nonthermal fixed point liquid with near-equilibrium liquids
requires going beyond the n/s paradigm, as this ratio is now time dependent

4 both nonthermal

— fixed point
5 equilibrium
1

7, X (energy density) \

One idea: consider the ratio
2
=~ 3 in holography

Using 7 ()Dn* = — 2" + y(t)e* + ... to model iInhomogeneous nonthermal fixed
point phenomena eying experimental confirmations in cold atomic gases
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Extends to QCD kinetic theory (A1 = g% X 3)

Variance of Pr/(e/3)

Decay rate of variance

2203.16549 with Du, Schlichting & Svensson
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ImPI ICATUIONS 50, 15754 with Berses, Denicol and Preis

Comparing the nonthermal fixed point liquid with near-equilibrium liquids
requires going beyond the n/s paradigm, as this ratio is now time dependent

4 both nonthermal

— fixed point
5 equilibrium
1

7, X (energy density) \

One idea: consider the ratio
2
=~ 3 in holography

Using 7 ()Dn* = — 2" + y(t)e* + ... to model iInhomogeneous nonthermal fixed
point phenomena eying experimental confirmations in cold atomic gases
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Summary



Summary

Prescaling Is the scaling with correctly accounted for the origin of time

Consequence: nonthermal fixed points extend to earlier times
2307.07545 with Mazeliauskas and Preis

The emergence of nonthermal fixed points can be thought of as originating

from the decay of transient quasinormal modes around them
2502.01622 with De Lescluze

Adding spatial momentum reveals hydrodynamic modes and opens a window
on studying iInhomogeneous nonthermal fixed points
2504.18754 with Berges, Denicol and Preis
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Open problems (cold atoms / theory)
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