Three-body scattering in Lattice QCD

Sebastian M. Dawid

WUNIVERSITY of WASHINGTON

Cracow School of Theoretical Physics, Zakopane, 19.06.2025

Acknowledgements

All the work described in this talk was done in collaboration with these most kind and honorable people

Zach Draper (UW)

Andrew Hanlon (KSU)

Fernando Romero-López (U. Bern)

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner "Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"

Ben Hörz (Intel)

Colin Morningstar (CMU)

Stephen Sharpe (UW)

Sarah Skinner (CMU)

New exotic discoveries

LHCb collaboration, Koppenburg, List of hadrons observed at the LHC

New exotic discoveries

LHCb collaboration, Koppenburg, *List of hadrons observed at the LHC*

The three-body program $\det_{k,\ell,m_{\ell}} \left[\mathcal{K}_{3}^{-1}(E) + F_{3}(E, \boldsymbol{P}, L) \right] = 0$ **Finite Volume** Quantization Condition Lattice QCD Spectrum

Hansen & Sharpe, Relativistic, model-independent, three-particle quantization condition

Mai & Döring, Three-body unitarity in finite volume

Müller, Pang, Rusetsky & Wu., Relativistic-invariant formulation of the NREFT three-particle quantization condition

Jackura, Dawid, Fernandez-Ramirez, et al. (JPAC), Equivalence of three-particle scattering formalisms

Blanton & Sharpe, Equivalence of relativistic three-particle quantization conditions

$$C(\tau) = \int_{L} \underbrace{e^{-i\boldsymbol{P}\cdot\boldsymbol{x}}}_{\text{Total momentum}} \langle \Omega | \mathcal{O}_{h}(\tau, \boldsymbol{x}) \mathcal{O}_{h}^{\dagger}(0, \boldsymbol{0}) | \Omega \rangle \propto \sum_{n} |\langle \Omega | \mathcal{O}(0, \boldsymbol{0}) | \underline{h}, \underline{P}, \underline{n} \rangle|^{2} \underbrace{e^{-E_{n}\tau}}_{\text{Finite-volume states of h's quantum numbers}}$$

Creation/ annihilation of hadron(s) "h" Finite-volume states of h's quantum numbers Time dependence \rightarrow energy levels

Field theory as a statistical system

$$= \int \mathcal{D}\left[\psi, \overline{\psi}\right] \mathcal{D}[U] e^{-S_F[\psi, \overline{\psi}, U] - S_G[U]}$$

Monte-Carlo simulation produces **correlation functions** used to extract **finite-volume energy levels**

NO CLEAR DEFINITION OF SCATTERING!

Finite-volume scattering formalism

One-dimensional scattering in the infinite volume

One-dimensional "scattering" problem in the finite volume

Lüscher, Volume dependence of the energy spectrum in massive QFTs Rummukainen & Gottlieb, Resonance scattering phase shifts on a non-rest frame lattice Kim, Sachrajda, Sharpe, Finite-volume effects for two hadron states in moving frames

 $\psi(x) \propto \cos(k |x| + \delta(k))$

Quantization condition

$$\frac{kL}{2} + \delta(k) = n\pi$$

Finite-volume scattering formalism

One-dimensional scattering in the infinite volume

One-dimensional "scattering" problem in the finite volume

Lüscher, Volume dependence of the energy spectrum in massive QFTs Rummukainen & Gottlieb, Resonance scattering phase shifts on a non-rest frame lattice Kim, Sachrajda, Sharpe, Finite-volume effects for two hadron states in moving frames

Finite-volume scattering formalism

One-dimensional scattering in the infinite volume

One-dimensional "scattering" problem in the finite volume

Lüscher, Volume dependence of the energy spectrum in massive QFTs Rummukainen & Gottlieb, Resonance scattering phase shifts on a non-rest frame lattice Kim, Sachrajda, Sharpe, Finite-volume effects for two hadron states in moving frames

Power-law volume dependence related to the unitarity cut: on-shell particles travel large distances

Properties of the S matrix

Analyticity (causality) Unitarity (probability conservation) Poincaré symmetry (frame independence) Crossing symmetry (particles–antiparticles) Internal symmetries (charge, isospin, G-parity)

Properties of the S matrix

Analyticity (causality) Unitarity (probability conservation)

Properties of the S matrix

Analyticity (causality) Unitarity (probability conservation)

Properties of the S matrix

Analyticity (causality) Unitarity (probability conservation)

The three-body amplitude

 $\mathcal{M}_3 = \mathcal{M}_2 \mathcal{B} \mathcal{M}_2 + \mathcal{M}_2 \int \mathcal{B} \rho_3 \mathcal{M}_3$

Jackura et al. (JPAC), Phenomenology of Relativistic 3-to-3 Reaction Amplitudes within the Isobar Approximation

Dawid & Szczepaniak, Bound states in the B-matrix formalism for the three-body scattering

The three-body amplitude

Jackura et al. (JPAC), Phenomenology of Relativistic 3-to-3 Reaction Amplitudes within the Isobar Approximation

Dawid & Szczepaniak, Bound states in the B-matrix formalism for the three-body scattering

Two-body reactions: pion-kaon

Light mesons at maximal isospin

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner **"Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"**

Two-body reactions: pion-kaon

Light mesons at maximal isospin

CLS $N_f = 2+1$ "E250" ensemble

volume: $(L/a)^3 x (T/a) = 96^3 x 192$ masses: $M_{\pi} = 130$ MeV and $M_{K} = 500$ MeV spacing: a = 0.063 fm number of configurations: 505 Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner **"Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"**

Two-body reactions: pion-kaon

Light mesons at maximal isospin

CLS $N_f = 2+1$ "E250" ensemble

volume: $(L/a)^3 x (T/a) = 96^3 x 192$ masses: $M_{\pi} = 130$ MeV and $M_K = 500$ MeV spacing: a = 0.063 fm number of configurations: 505 Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner **"Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"**

 $\widehat{C}(t) v_n(t,t_0) = \lambda_n(t,t_0) \widehat{C}(t_0) v_n(t,t_0)$

Two-kaon spectrum

Energies constrain the amplitude via the QC $\frac{q}{M}$

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner **"Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"**

$$= \cot \delta_0(q) = \sum_{n=0}^{n < n_{\max}} b_n \left(\frac{q^2}{M^2}\right)^n$$

Two-kaon spectrum

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner "Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"

Cutoff	2.27M
Description	s,d was
χ^2	56.7
DOF	40-3=3
p	0.020
b_0^{KK}	-2.621(
b_1^{KK}	0.59(2
b_2^{KK}	0 (fixe
D_0^{KK}	-0.059(

Two-body amplitudes

Garcia-Martin et al., The pion-pion scattering amplitude

Pealez & Rodas, Dispersive πK - πK and $\pi \pi$ -KK amplitudes from scattering data

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner **"Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"**

Two-body scattering amplitudes at "physical" quark masses!

Two-body amplitudes

 $\pi^+\pi^+$ phase shift

Garcia-Martin et al., The pion-pion scattering amplitude

Pealez & Rodas, Dispersive πK - πK and $\pi \pi$ -KK amplitudes from scattering data

Two-body scattering amplitudes at "physical" quark masses!

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner "Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"

Chiral extrapolation

Low-energy scattering parameters as functions of quark masses

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner **"Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"**

Reactions of three light mesons

Light mesons at maximal isospin

CLS $N_f = 2+1$ "E250" ensemble

volume: $(L/a)^3 x (T/a) = 96^3 x 192$ masses: $M_{\pi} = 130$ MeV and $M_{K} = 500$ MeV spacing: a = 0.063 fm number of configurations: 505 Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner **"Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"**

 $\widehat{C}(t) v_n(t, t_0) = \lambda_n(t, t_0) \widehat{C}(t_0) v_n(t, t_0)$

Three-kaon spectrum

Energies constrain the three-body K matrix via the

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner "Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"

Three-meson amplitudes

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner "Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD"

Summary

Finite Volume

Toward determining hadronic resonances from LQCD

- Considerable progress in the three-body finite-volume formalisms
- Chiral dependence of the two-body scattering parameters
- Series of the se
- Maintain Three-meson amplitudes at the physical pion mass

Infinite Volume

THANK YOU

Amplitude analysis

COMPASS, Triangle singularity as the origin of $a_1(1420)$

The a₁(1420)?

Most interesting states require inclusion three-body channels $\chi_{c1}(3872), N^*(1440), a_1(1260), a_1(1420), \pi_1(1600),...$

Bumps in complicated line-shapes can correspond to **kinematic enhancements** and not genuine resonances...

K matrix parametrization

Unitarity implies (Cayley transform)

$$S = \frac{\mathbb{1} + iK}{\mathbb{1} - iK}$$

where the *K* operator is Hermitian. If *S* is symmetric, *K* is real.

Principle of "nearby singularities"

- Analyticity on the first Riemann sheet
- Bound-states & resonances correspond to poles
- Branch cuts correspond to open channels

$$T = K + iKT$$

This is the K matrix parametrization

K-matrix parametrization $\mathcal{M}_{\ell}(s) = \frac{1}{\mathcal{K}_{\ell}^{-1}(s) - i\rho(s)}$ Phase-shift $\mathcal{K}_{\ell}^{-1}(s) = \frac{q^{\star}}{8\pi\sqrt{s}} \cot(\delta_{\ell}(s))$

REFT formalism*

Relativistic, model-independent, three-particle quantization condition Hansen, Sharpe, PRD 90 (2014) 11, 116003

 $\det_{k,\ell,m} \left[\mathbb{1} - \mathcal{K}_3(E^*) F_3(E, P, L) \right] = 0$

REFT three-body integral equations

Diagrams by Andrew Jackura

Short-range amplitude

One-particle exchanges

Three-body scattering: Ladders and Resonances Mikhasenko, Wunderlich, Jackura, et al., JHEP 08 (2019) 080

Equivalence of three-particle scattering formalisms Jackura, Dawid, Fernandez-Ramirez, et al., PRD 100 (2019) 3, 034508

Equivalence of relativistic three-particle quantization conditions Blanton, Sharpe, PRD 102 (2020) 5, 054515

External-state rescatterings

Three-body amplitudes*

Pictures by A. Jackura (arXiv:2208.10587, arXiv:2312.00625)

On-shell three-body elastic amplitude depends on eight kinematical variables: - two angles defining orientation of the initial-state pair - two angles defining orientation of the final-state pair - one angle defining orientation between spactators (pairs) - invariant mass of the initial and final pair - total energy

Three-body amplitudes*

Pictures by A. Jackura (arXiv:2208.10587, arXiv:2312.00625)

On-shell three-body elastic amplitude depends on eight kinematical variables: - two angles defining orientation of the initial-state pair - two angles defining orientation of the final-state pair - one angle defining orientation between spactators (pairs) - invariant mass of the initial and final pair - total energy

Pair-spectator amplitude

3 identical spinless particles [Hansen & Sharpe; Hammer, Pang, Rusetsky; Mai & Döring] (Applications: $3\pi^+$, $3K^+$, as well as ϕ^4 theory)

Mixing of two-and three-particle channels for identical spinless particles [Briceño, Hansen, Sharpe] (Step on the way to N*(1440) \rightarrow N π , N $\pi\pi$, etc.)

(Potential applications: $\omega(782)$, $a_1(1260)$, $h_1(1170)$, $\pi(1300)$, ...)

3 nondegenerate spinless particles [Blanton & Sharpe] (Potential applications: $D_s^+ D^0 \pi^-$)

2 identical+1 different spinless particles [Blanton & Sharpe] (Applications: $\pi^+\pi^+K^+$, $K^+K^+\pi^+$)

3 identical spin-1/2 particles [Draper, Hansen, Romero-López, Sharpe] (Potential applications: 3n, 3p, 3Λ)

DDπ for all isospins (also BBπ, KKπ) [Draper, Hansen, Romero-López, Sharpe]

(Potential applications: $T_{cc} \rightarrow D^*D$, incorporating the left-hand cut)

Multiple three-particle channels: ηππ+KKπ [Draper & Sharpe]

(Potential applications: $b_1(1235)$, $\eta(1295)$)

- 3 degenerate but distinguishable spinless particles, e.g., 3π with isospin 0,1,2,3 [Hansen, Romero-López, Sharpe]

3 identical spinless particles [Hansen & Sharpe; Hammer, Pang, Rusetsky; Mai & Döring] (Applications: $3\pi^+$, $3K^+$, as well as ϕ^4 theory)

Mixing of two-and three-particle channels for identical spinless particles [Briceño, Hansen, Sharpe] (Step on the way to N*(1440) \rightarrow N π , N $\pi\pi$, etc.)

(Potential applications: $\omega(782)$, $a_1(1260)$, $h_1(1170)$, $\pi(1300)$, ...)

3 nondegenerate spinless particles [Blanton & Sharpe] (Potential applications: $D_s^+ D^0 \pi^-$)

2 identical+1 different spinless particles [Blanton & Sharpe] (Applications: $\pi^+\pi^+K^+$, $K^+K^+\pi^+$)

3 identical spin-1/2 particles [Draper, Hansen, Romero-López, Sharpe] (Potential applications: 3n, 3p, 3Λ)

DDπ for all isospins (also BBπ, KKπ) [Draper, Hansen, Romero-López, Sharpe]

(Potential applications: $T_{cc} \rightarrow D^*D$, incorporating the left-hand cut)

Multiple three-particle channels: ηππ+KKπ [Draper & Sharpe]

(Potential applications: $b_1(1235)$, $\eta(1295)$)

weakly interacting system in $\pi^+\pi^+$ and $\pi^+\pi^+\pi^+$ Hansen et al., Phys. Rev. Lett. 126 (2021), 012001

- 3 degenerate but distinguishable spinless particles, e.g., 3π with isospin 0,1,2,3 [Hansen, Romero-López, Sharpe]

3 identical spinless particles [Hansen & Sharpe; Hammer, Pang, Rusetsky; Mai & Döring] (Applications: $3\pi^+$, $3K^+$, as well as ϕ^4 theory)

Mixing of two-and three-particle channels for identical spinless particles [Briceño, Hansen, Sharpe] (Step on the way to N*(1440) \rightarrow N π , N $\pi\pi$, etc.)

(Potential applications: $\omega(782)$, $a_1(1260)$, $h_1(1170)$, $\pi(1300)$, ...)

3 nondegenerate spinless particles [Blanton & Sharpe] (Potential applications: $D_s^+ D^0 \pi^-$)

2 identical+1 different spinless particles [Blanton & Sharpe] (Applications: $\pi^+\pi^+K^+$, $K^+K^+\pi^+$)

3 identical spin-1/2 particles [Draper, Hansen, Romero-López, Sharpe] (Potential applications: 3n, 3p, 3Λ)

DDπ for all isospins (also BBπ, KKπ) [Draper, Hansen, Romero-López, Sharpe]

(Potential applications: $T_{CC} \rightarrow D^*D$, incorporating the left-hand cut)

Multiple three-particle channels: ηππ+KKπ [Draper & Sharpe]

(Potential applications: $b_1(1235)$, $\eta(1295)$)

weakly interacting system in $\pi^+\pi^+$ and $\pi^+\pi^+\pi^+$

Hansen et al., Phys. Rev. Lett. 126 (2021), 012001

decay $a_1(1260) \to \rho^0 \pi^- \to \pi^- \pi^+ \pi^-$

Sadasivan et al., Phys. Rev. D 105 (2022) 5, 054020

- 3 degenerate but distinguishable spinless particles, e.g., 3π with isospin 0,1,2,3 [Hansen, Romero-López, Sharpe]

3 identical spinless particles [Hansen & Sharpe; Hammer, Pang, Rusetsky; Mai & Döring] (Applications: $3\pi^+$, $3K^+$, as well as ϕ^4 theory)

Mixing of two-and three-particle channels for identical spinless particles [Briceño, Hansen, Sharpe] (Step on the way to N*(1440) \rightarrow N π , N $\pi\pi$, etc.)

(Potential applications: $\omega(782)$, $a_1(1260)$, $h_1(1170)$, $\pi(1300)$, ...)

3 nondegenerate spinless particles [Blanton & Sharpe] (Potential applications: $D_s^+ D^0 \pi^-$)

2 identical+1 different spinless particles [Blanton & Sharpe] (Applications: $\pi^+\pi^+K^+$, $K^+K^+\pi^+$)

3 identical spin-1/2 particles [Draper, Hansen, Romero-López, Sharpe] (Potential applications: 3n, 3p, 3Λ)

DDπ for all isospins (also BBπ, KKπ) [Draper, Hansen, Romero-López, Sha

(Potential applications: $T_{cc} \rightarrow D^*D$, incorporating the left-hand cut)

Multiple three-particle channels: ηππ+KKπ [Draper & Sharpe]

(Potential applications: $b_1(1235)$, $\eta(1295)$)

weakly interacting system in $\pi^+\pi^+$ and $\pi^+\pi^+\pi^+$

Hansen et al., Phys. Rev. Lett. 126 (2021), 012001

decay $a_1(1260) \to \rho^0 \pi^- \to \pi^- \pi^+ \pi^-$

Sadasivan et al., Phys. Rev. D 105 (2022) 5, 054020

- 3 degenerate but distinguishable spinless particles, e.g., 3π with isospin 0,1,2,3 [Hansen, Romero-López, Sharpe]

Extracting correlators and energies

$$C_{ij}(|t-t_0|)$$

$$\mathbf{es}^{\bigstar} \qquad \mathcal{O}_{3K^{+}}(\mathbf{P},t) = \sum_{\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}} c(\mathbf{p}_{1},\mathbf{p}_{2},\mathbf{p}_{3}) \mathcal{O}_{K^{+}}(\mathbf{p}_{1},t) \mathcal{O}_{K^{+}}(\mathbf{p}_{2},t) \mathcal{O}_{K^{+}}(\mathbf{p}_{2}$$

Fitting the two- and three-body K matrices*

Generalizing to DDT

 $\mathcal{D} = -\mathcal{M}_2 G \mathcal{M}_2 - \mathcal{M}_2 G \mathcal{D}$

The amplitude becomes a matrix describing coupledchannel scattering between pairs and spectators of different angular momenta (PW mixing allowed)

Dawid, Romero-López, Sharpe, arXiv:2409.17059

 $J^{P} = 1^{+}$

Partial-wave projection of the one-particle exchange in three-body scattering amplitudes Jackura, Briceño, PRD 109, 096030 (2024)

Including three-body forces

 $J^{P} = 1^{+}$

 $\mathcal{T} = \mathcal{K}_3 - \mathcal{K}_3 \, \rho \, \mathcal{L} \, \mathcal{T}$

Matrix-integral equation governed by the symmetric three-body K matrix and two-body rescatterings.

 $\mathcal{K}_3^{(ij)}(p,k) = \sum \mathcal{K}_{L,a}^{(i)}(p) \, \mathcal{K}_{R,a}^{(j)}(k)$

 $\mathcal{T} = \mathcal{K}_L^T [1 + \mathcal{I}]^{-1} \mathcal{K}_R$

Solution of another integral equation is unnecessary for certain models of the three-body K matrix

Implementing the three-particle quantization condition for $\pi\pi K$ and related systems Blanton, Romero-López, Sharpe, JHEP 02 (2022) 098

Dawid, Romero-López, Sharpe, arXiv:2409.17059

Threshold expansion

$$\mathcal{K}_3 = \mathcal{K}_3^{\text{iso},0} + \mathcal{K}_3^{\text{iso},1}\Delta + \mathcal{K}_3^B\Delta_2^S + \mathcal{K}_3^E t$$

$$\Delta = \frac{s - (2m_D + m_\pi)^2}{(2m_D + m_\pi)^2} \qquad t'_{22} = \frac{(p_2 - p'_2)^2}{(2m_D + m_\pi)^2}$$

The last term contributes, for instance,

$$\mathcal{K}_{3}(^{3}S_{1}|^{3}S_{1}) = \frac{2}{27} \mathcal{K}_{3}^{E} q_{p}^{\star} q_{k}^{\star} (\gamma_{p} + 2)(\gamma_{k} + 2)$$
Relative two-body momentum in a pair
Boost to pair's rest frame

Self-consistency of the deformed contour

Singularities of the ladder equation

 $d(p', s, p) = -G(p', s, p) - \int_{0}^{4} \frac{dq \, q^2}{(2\pi)^2 \omega_q} G(p', s, q) \mathcal{M}_2(q, s) \, d(q, s, p)$

Integration kernel

Extrapolation to the desired momentum $p' \longrightarrow q_{\omega b}$

 q_{max}

Addition of discontinuity to the integration kernel

 $\Delta(p',s,p) \propto 2\pi i$

Partial-wave mixing amplitude

 $\begin{bmatrix} \mathcal{M}_{DD^*}({}^{3}S_1|{}^{3}S_1) & \mathcal{M}_{DD^*}({}^{3}S_1|{}^{3}D_1) \\ \mathcal{M}_{DD^*}({}^{3}D_1|{}^{3}S_1) & \mathcal{M}_{DD^*}({}^{3}D_1|{}^{3}D_1) \end{bmatrix}$

-5.3 -5.7 -6.1 -6.5 -6.9 -7.3 -7.7

$$q_{b}^{-\ell'} \begin{bmatrix} \mathcal{K}_{DD^{*}}^{-1} \end{bmatrix}_{\ell',\ell} q_{b}^{-\ell} = \begin{pmatrix} \cos(\epsilon) & -\frac{1}{q_{b}^{2}}\sin(\epsilon) \\ q_{b}^{2}\sin(\epsilon) & \cos(\epsilon) \end{pmatrix} \begin{pmatrix} q_{b}\cot(\delta_{\alpha}) & 0 \\ 0 & q_{b}^{5}\cot(\delta_{\beta}) \end{pmatrix} \begin{pmatrix} \cos(\epsilon) & q_{b}^{2}\sin(\epsilon) \\ -\frac{1}{q_{b}^{2}}\sin(\epsilon) & \cos(\epsilon) \end{pmatrix}$$

$$\mathcal{K}_{3}^{E} = 1.9 \cdot 10^{5}$$

$$\overset{O.4}{\qquad 0.4} \quad \frac{\ln \epsilon}{0.4} \quad DD^{*} |_{\text{thr}} \quad DD^{*} |_{\text{thr}} \quad DD\pi |_{\text{thr}} \quad DD\pi |_{\text{thr}} \quad DD\pi |_{\text{thr}} \quad DD\pi |_{\text{thr}}$$

Blatt-Biederharn parametrization

Observations:

- (a) we find a sub-threshold complex pole (agreement with the NR EFT analysis)
- (b) simple model of three-body forces is enough to describe data
- (c) partial-wave mixing is small (not shown here)
- (d) $D\pi$ S-wave scattering is (almost) negligible (not shown here)

Partial-wave mixing amplitude

Blatt-Biederharn parametrization

Observations:

- (a) we find a sub-threshold complex pole (agreement with the NR EFT analysis)
- (b) simple model of three-body forces is enough to describe data
- (c) partial-wave mixing is small (not shown here)
- (d) $D\pi$ S-wave scattering is (almost) negligible (not shown here)

Partial-wave mixing amplitude

 $\mathcal{K}_3^E = 0$

 $\begin{bmatrix} \mathcal{M}_{DD^*}({}^{3}S_1|{}^{3}S_1) & \mathcal{M}_{DD^*}({}^{3}S_1|{}^{3}D_1) \\ \mathcal{M}_{DD^*}({}^{3}D_1|{}^{3}S_1) & \mathcal{M}_{DD^*}({}^{3}D_1|{}^{3}D_1) \end{bmatrix}$

$$q_{b}^{-\ell'} \left[\mathcal{K}_{DD^{*}}^{-1} \right]_{\ell',\ell} q_{b}^{-\ell} = \begin{pmatrix} \cos(\epsilon) & -\frac{1}{q_{b}^{2}}\sin(\epsilon) \\ q_{b}^{2}\sin(\epsilon) & \cos(\epsilon) \end{pmatrix} \begin{pmatrix} q_{b}\cot(\delta_{\alpha}) & 0 \\ 0 & q_{b}^{5}\cot(\delta_{\beta}) \end{pmatrix} \begin{pmatrix} \cos(\epsilon) & q_{b}^{2}\sin(\epsilon) \\ -\frac{1}{q_{b}^{2}}\sin(\epsilon) & \cos(\epsilon) \end{pmatrix} \\ \mathcal{K}_{3}^{E} = 1.9 \cdot 10^{5}$$

$$\begin{array}{c} \mathcal{K}_{3}^{E} = 1.9 \cdot 10^{5} \\ \mathcal{K}_{4}^{E} = 1.9 \cdot 10^$$

Blatt-Biederharn parametrization

Observations:

- (a) we find a sub-threshold complex pole (agreement with the NR EFT analysis)
- (b) simple model of three-body forces is enough to describe data
- (c) partial-wave mixing is small (not shown here)
- (d) $D\pi$ S-wave scattering is (almost) negligible (not shown here)

