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Observed in DDπ  decay 
[Nature Physics 18 (2022) 751]

Doubly charmed tetraquark
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Creation/ annihilation of hadron(s) "h" Time dependence        energy levels

Total momentum Finite-volume states of h's quantum numbers

Lattice QCD
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Field theory as a statistical system

Monte-Carlo simulation produces correlation functions

used to extract finite-volume energy levels


NO CLEAR DEFINITION OF SCATTERING!



Finite–volume scattering formalism
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Lüscher, Volume dependence of the energy spectrum in massive QFTs 
Rummukainen & Gottlieb, Resonance scattering phase shifts on a non-rest frame lattice 
Kim, Sachrajda, Sharpe, Finite-volume effects for two hadron states in moving frames
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One-dimensional scattering in the infinite volume

V ψ(x) ∝ cos(k |x | + δ(k))

V

Periodic boundary conditions

kL
2

+ δ(k) = nπ

Quantization condition

One-dimensional “scattering” problem in the finite volume
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One-dimensional scattering in the infinite volume

V ψ(x) ∝ cos(k |x | + δ(k))

V

Periodic boundary conditions

kL
2

+ δ(k) = nπ

Quantization condition

One-dimensional “scattering” problem in the finite volume
Quantization condition

Known special function
Matrices in the angular momentum space

Power-law volume dependence related to the unitarity cut: on-shell particles travel large distances



Properties of the S matrixS-matrix theory
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Analyticity (causality)  
Unitarity (probability conservation) 

Poincaré symmetry (frame independence) 
Crossing symmetry (particles—antiparticles) 

Internal symmetries (charge, isospin, G-parity)

Unitarity of the S operator

The transition operator T is

ConnectedDisconnected
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s = (E⋆)2

K−matrix parametrization

Phase−shift



One Particle Exchange Short Range Interactions
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The three-body amplitude

Three–particle unitarity

Dawid & Szczepaniak, Bound states in the B-matrix formalism for the three-body scattering

Jackura et al. (JPAC), Phenomenology of Relativistic 3-to-3 Reaction Amplitudes within the Isobar Approximation
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Two-body reactions: pion-kaon

99
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Light mesons at maximal isospin

π+ π+

π+ K+

K+K+
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Light mesons at maximal isospin

π+ π+

π+ K+
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volume: (L/a)3 x (T/a) = 963 x 192 
masses: Mπ = 130 MeV and MK = 500 MeV 
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Time dependence of correlators



Two-kaon spectrum
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Energies constrain the amplitude via the QC
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Two-body amplitudes

Pealez & Rodas, Dispersive πK–πK and ππ–KK amplitudes from scattering data

Garcia-Martin et al., The pion–pion scattering amplitude

Two-body scattering amplitudes at “physical” quark masses!
11

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner 
“Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD”
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Two-body amplitudes

π+π+ phase shift π+K+ phase shift

Pealez & Rodas, Dispersive πK–πK and ππ–KK amplitudes from scattering data

Garcia-Martin et al., The pion–pion scattering amplitude

Two-body scattering amplitudes at “physical” quark masses!
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Chiral extrapolation
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Low-energy scattering parameters as functions of quark masses
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Dispersive analysis

HadSpec
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S–wave scattering length P–wave scattering length

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner 
“Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD”



Reactions of three light mesons

Light mesons at maximal isospin

π+ π+

π+ K+

K+K+

π+

π+π+ π+

K+

K+

K+
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tmin/a
aΔ

E la
b

CLS Nf = 2+1 “E250” ensemble

volume: (L/a)3 x (T/a) = 963 x 192 
masses: Mπ = 130 MeV and MK = 500 MeV 
spacing: a = 0.063 fm 
number of configurations: 505

Time dependence of correlators

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner 
“Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD”
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Three-kaon spectrum
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Energies constrain the three-body K matrix via the QC

Threshold expansion of the three-body forces
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Three-meson amplitudes Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner 
“Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD”

Ladder amplitude
(pairwise interactions)

Short−range amplitude
(contact interactions)



Initial reaction plane

π+

π+
π+

Euler angles
(φ, ϑ, ψ)

Final reaction plane

π+

π+

π+
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Three-meson amplitudes

Scattering 3π –> 3π (JP=0–)→

Solution of the three-body integral equations: 
— non-zero partial waves in two-body sub channels 
— non-zero total angular momentum 
— non-trivial three-body forces 
– physical quark masses & chiral extrapolation

All amplitudes (JP=2–)Equilateral triangle 
configuration of momenta

Dawid, Draper, Hanlon, Hörz, Morningstar, Romero-López, Sharpe, Skinner 
“Two- and three-meson scattering amplitudes at physical quark masses from lattice QCD”



Summary

Toward determining hadronic resonances from LQCD 
 Considerable progress in the three-body finite-volume formalisms 

 Chiral dependence of the two-body scattering parameters 

 Evidence for non-zero three-body force in 3K system 

 Three-meson amplitudes at the physical pion mass
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Amplitude ResonancesLattice QCD Spectrum

E

Finite Volume Infinite Volume

QC
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The a1(1420)?

Most interesting states require inclusion three-body channels 
χc1(3872), N*(1440), a1(1260), a1(1420), π1(1600),... 
   
Bumps in complicated line-shapes can correspond to  
kinematic enhancements and not genuine resonances…

Amplitude analysis

COMPASS, Triangle singularity as the origin of a1(1420)

20



K matrix parametrization

21

This is the K matrix parametrization

• Analyticity on the first Riemann sheet 
• Bound-states & resonances correspond to poles 
• Branch cuts correspond to open channels

Principle of "nearby singularities"

K−matrix parametrization

Phase−shift

Unitarity implies (Cayley transform)

where the K operator is Hermitian .
If S is symmetric, K is real .



REFT formalism*

Relativistic, model-independent, three-particle quantization condition 
Hansen, Sharpe, PRD 90 (2014) 11, 116003

Poisson summation formula



REFT three-body integral equations
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One−particle exchanges

Short−range amplitude External−state rescatterings

Equivalence of three-particle scattering formalisms 
Jackura, Dawid, Fernandez-Ramirez, et al., PRD 100 (2019) 3, 034508

Three-body scattering: Ladders and Resonances 
Mikhasenko, Wunderlich, Jackura, et al., JHEP 08 (2019) 080

Equivalence of relativistic three-particle quantization conditions 
Blanton, Sharpe, PRD 102 (2020) 5, 054515

Diagrams by Andrew Jackura



Three-body amplitudes*

24

Pictures by A. Jackura (arXiv:2208.10587, arXiv:2312.00625)

On-shell three-body elastic amplitude depends on eight kinematical variables: 
- two angles defining orientation of the initial-state pair 
- two angles defining orientation of the final-state pair 
- one angle defining orientation between spactators (pairs) 
- invariant mass of the initial and final pair 
- total energy
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Pictures by A. Jackura (arXiv:2208.10587, arXiv:2312.00625)

On-shell three-body elastic amplitude depends on eight kinematical variables: 
- two angles defining orientation of the initial-state pair 
- two angles defining orientation of the final-state pair 
- one angle defining orientation between spactators (pairs) 
- invariant mass of the initial and final pair 
- total energy

Pair−spectator amplitude



Status of the formalism and applications
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3 identical spinless particles [Hansen & Sharpe; Hammer, Pang, Rusetsky; Mai & Döring]  
(Applications: 3π+, 3K+, as well as φ4 theory)    
Mixing of two-and three-particle channels for identical spinless particles [Briceño, Hansen, Sharpe] 
(Step on the way to N*(1440) → Nπ, Nππ, etc.)    
3 degenerate but distinguishable spinless particles, e.g., 3π with isospin 0,1,2,3 [Hansen, Romero-López, Sharpe] 
(Potential applications: ω(782), a1(1260), h1(1170), π(1300), ...) 
3 nondegenerate spinless particles [Blanton & Sharpe]  
(Potential applications: Ds

+D0π−) 

2 identical+1 different spinless particles [Blanton & Sharpe]  
(Applications: π+π+K+, K+K+π+) 
3 identical spin-1⁄2 particles [Draper, Hansen, Romero-López, Sharpe] 
(Potential applications: 3n, 3p, 3Λ) 
DDπ for all isospins (also BBπ, KKπ) [Draper, Hansen, Romero-López, Sharpe]  
(Potential applications: Tcc → D*D, incorporating the left-hand cut) 
Multiple three-particle channels: ηππ+KKπ [Draper & Sharpe]  
(Potential applications: b1(1235), η(1295))

From S. Sharpe, Multiparticle scattering from LQCD, Amplitudes24 
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weakly interacting system in the      and    
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decay 
Yan et al., arXiv:2407.16659
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From S. Sharpe, Multiparticle scattering from LQCD, Amplitudes24 



Extracting correlators and energies*
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Generalized eigenvalue problem

and other tricks
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Spectrum of 3K+

Multi−hadron operators

Hanlon, Hörz, Morningstar, Skinner

preliminary
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Fitting the two- and three-body K matrices*

Models of  the two-body and three-body interactions 

Correlated fits of  several systems

Draper, Romero-López, Sharpe

Two−bo
dy

QC Three−body QC

s−wave scattering lengths p−wave πK scattering length

preliminary

Threshold expansion

27



Generalizing to DDπ

28

The amplitude becomes a matrix describing coupled-
channel scattering between pairs and spectators of 
different angular momenta (PW mixing allowed)

JP = 1+

Partial-wave projection of the one-particle exchange in three-body scattering amplitudes 
Jackura, Briceño, PRD 109, 096030 (2024)

(DD)π(Dπ)D(Dπ)D(Dπ)D

(DD)π

(Dπ)D

(Dπ)D

(Dπ)D

D
D

Driving processes

π π

D

D
D

π
π

π
D

D D

D

Dawid, Romero-López, Sharpe, arXiv:2409.17059 



Including three-body forces

Matrix-integral equation governed by the symmetric 
three-body K matrix and two-body rescatterings.

 

Implementing the three-particle quantization condition for ππK and related systems 
Blanton, Romero-López, Sharpe, JHEP 02 (2022) 098

Threshold expansion

The last term contributes, for instance,

29

Relative two−body momentum in a pair
Boost to pair′￼s rest frame

JP = 1+

Solution of another integral equation is unnecessary 
for certain models of the three-body K matrix

′￼

Dawid, Romero-López, Sharpe, arXiv:2409.17059 
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Analytic continuation

In a nutshell 
• We need to avoid crossing the singularities while integrating 
• Achieved by contour deformations, addition of discontinuities, ... 
• Multi-valuedness of the amplitude originates from collisions of the 

contour with: poles (two-body threshold) and branch points (three-
body threshold), 

• Riemann sheets defined by a monodromy

Singularities One-particle exchange

Two-body amplitude

s/m2 = 9.01 − 0.01i

q
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Integration kernel

Deformed contour

Singularities of the ladder equation

Self-consistency of the deformed contour

31

Domain of  
non-analyticity

Extrapolation to the desired momentum p′￼ ⟶ qφb

Addition of discontinuity  
to the integration kernel Δ(p′￼, s, p) ∝ 2πi

s/m2 = 8.6 − 0.05i

zrobic 05.03.2024
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Blatt−Biederharn parametrizationPartial-wave mixing amplitude

(a) we find a sub-threshold complex pole (agreement with the NR EFT analysis)  
(b) simple model of three-body forces is enough to describe data 
(c) partial-wave mixing is small (not shown here) 
(d) Dπ S-wave scattering is (almost) negligible (not shown here)

Observations: 
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DD* threshold

left−hand cut

first sheet

second sheet

Im
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