Lensing of gravitational waves:
Fundamental physics, astrophysics, cosmology
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Gravitational lensing




Lensing of gravitational waves

» Same principle as for light: waves deflected by massive object on their path
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Different lens properties
— Different effect on the gravitational waves
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Lensing of gravitational waves

» Same principle as for light: waves deflected by massive object on their path

Low mass lens | Medium mass lens | High mass lens
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Strain

Strong lensing

» For strong lensing: Aqw < Riens , hence geometric optics approximation valid
— The frequency evolution is unchanged
» Several images having taken different paths
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Different images undergo
different (de)magnification

Time delay At:
Different images take

different paths
o Delays of minutes to months
o Example: Milky Way as lens
Schwarzschild time ~65 days

Morse phase Ay = mn:
Each image undergoes a
global phase shift, with

€ 0—11
n
727



Strong lensing: rates and searches
» Possibly ~1/year for Advanced LIGO, Virgo, KAGRA at design sensitivity

Y —
Observed rates L L/H L/H/V/K L/H/V/K (A+) L/H/V/K (Voyager)

Lensed events: total 0217050 yrt 0.657032 yrt 1.370 yrt 3.3 T yr ! 16.878¢ yrt
double  0.177508 yr? 0.507022 yr? 0.9270:30 yr Y 25102 yr ! 131753 yrt

triple  0.03270 510 yrt 011750 yr! 0.2310 02 yr Y 0.551075 yr ! 2.0700 yr!

quadruple  0.01175:90% yr—! 0.0381001% yr! 0.12700% yr~? 0.3070 18 yr* 1.6705 yrt
Unlensed events 370 yr* 1.1 x 10® yr™* 1.9 x 10% yr ! 5.8 x 10% yr* 31 x 10% yr*

Relative occurrence 1:1760 1:1650 1: 1500 1:1740 1:1830

» How to search for strongly lensed events?

Frequency evolution determined by binary black hole masses and spins
o Images have same frequency evolution:
Posterior probability densities for e.g. masses should be consistent

= Sky positions should be consistent
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A needle in a haystack

» To find a strongly lensed event, need to compare all pairs of detections

= |f N detections, false alarm probability grows as N?
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= Models predict distributions for time delays At and relative magnifications firel
o Folding these in makes the false alarm probability grow as N
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False Alarm Probability

Double Images
= Triple Images
Quadruple Images
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https://arxiv.org/pdf/2201.04619.pdf

» A first search for strongly lensed events in LIGO-Virgo data:
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So far nothing found...
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What about microlensing?

Frequency-dependent magnification:

hMicrO(f; 0, M-? ; y) = .hU(f; 9).|F'(f, M; > y)'

unlensed wave

magnification
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Why are (strongly) lensed gravitational waves interesting?

» Seeing 2 images with 3 detectors = seeing 1 signal with 6 virtual detectors

3 detectors 3 detectors 6 detectors



Why are (strongly) lensed gravitational waves interesting?

» Lensing allows for improved sky localization

» With four images:

Combined sky localization
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Why are (strongly) lensed gravitational waves interesting?

» Lensing allows for improved sky localization
» Sky error box must contain host galaxy, which will also be lensed
= Electromagnetic telescopes
+ requiring consistency of lensed galaxy with lensed gravitational wave
—> ldentification of the host galaxy
A way to find the host galaxy of a binary black hole merger
= Lens modeling: pin down location inside the galaxy with sub-arcsec precision

(3) Detailed lens modeling (2) By combining gravitational-wave

allows us to further localize the ;1 electromagnetic observations, we can

binary to two sub-arcsec regions

localize the lensed host galaxy

Hannuksela et al.,, MNRAS (2020)



Pinning down the sky location of the source

Sky location of the images and the source:
= 77 displacement of the source from line of sight Source (9 Ao A
= & positions of the images in the lens plane \
= 1= DsB and & = D10, l\ |
where Dg, D;, D;s are angular diameter distances Dis

Fermat potential: ¢(8,8) = %(9 —B)* —(8) — ¢ )\ i Ds
where deflection potential 7 N
P(x) = 1 /dzm' k(z') In|x — 2| D;

/s

with «(x) normalized surface mass density of the lens

Observer .’ v

Image locations are extrema of the Fermat potential:
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Pinning down the sky location of the source

» Image locations are extrema of the Fermat potential:
Vo B(G — B)? — ¢(9)] =0 “lens equation”

» |Image time delays and magnifications:

_DLD51+ZL 1 o 2 .
D g c [5(91 /6) ¢(91)]

ta; =
_ 9B
Hy = [1/ det (a—e)L:aj

» From gravitational wave observations:
= At =ta; —ta; differences in image arrival times (highly accurate)
. ij = [/ relative magnifications (less accurate)

» In the case of fourimages: 3 ,0;,i=1,...,4 together 10 unknowns
" Atyy/Atis, Atya/Aty, 2 observables that only depend on 3, 6;
= Lens equation: 4x2 = 8 constraints

= Assume lens sufficiently well modeled, i.e. function ¢¥(x) is known
—> Solve for 3, 6;



Two ways of measuring the Hubble constant

» Once 3,0, are known, calculate magnifications:

1 = [Udet (g_g)]e—%

= |Inthe image amplitudes: d;/v/#: —= dr luminosity distance to the source
= Redshift of the host galaxy known from EM measurements

= Fix cosmological parameters except for Hy

—— Measurement of H

> Differences in arrival time:

Af — Dy (Ho; 21)Ds(Ho; 2) 1 + 21,
tij =

[#(6;, 8) — ¢(6;,8)]

Drs(Hy; 21, 25) c

= 2L, Zs known from electromagnetic measurements
——> Measurement of Hy



Two ways of measuring the Hubble constant
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Science with lensed gravitational waves

» Localization of binary black hole events
o Link between black hole binaries
and their host galaxies

» High-redshift Hubble constant measurements

» Fundamental physics: How many polarizations?
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Science with lensed gravitational waves

» Localization of binary black hole events
o Link between black hole binaries
and their host galaxies

» High-redshift Hubble constant measurements
» Fundamental physics: How many polarizations?

» Probing higher-order modes in gravitational wave signals
o Better constraints on higher-order mode
content means better localization
o Better understanding of the binary:
Enhanced tests of the dynamics of GR
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Science with lensed gravitational wave

» Localization of binary black hole events
o Link between black hole binaries
and their host galaxies

» High-redshift Hubble constant measurements
» Fundamental physics: How many polarizations?

» Probing higher-order modes in gravitational wave signals
o Better constraints on higher-order mode
content means better localization
o Better understanding of the binary:
Enhanced tests of the dynamics of GR

> Alternative theories of gravity:
o Large extra dimensions
o Theories with friction
o Variable Planck mass

Compare luminosity distance measured

from GW versus EM

Finke et al., PRD (2021) Narola et al., PRD (2024)
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Thank you for your attention!
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