

Lensing of gravitational waves: Fundamental physics, astrophysics, cosmology

Chris Van Den Broeck

Universiteit Utrecht

64th Cracow School of Theoretical Physics Zakopane, Poland, 15-23 June 2024

Gravitational lensing

Same principle as for light: waves deflected by massive object on their path

Different lens properties → Different effect on the gravitational waves

Same principle as for light: waves deflected by massive object on their path

Seo et al., arXiv:2110.03308

Same principle as for light: waves deflected by massive object on their path

Seo et al., arXiv:2110.03308

Pang et al., MNRAS (2020)

Same principle as for light: waves deflected by massive object on their path

Seo et al., arXiv:2110.03308

Pang et al., MNRAS (2020)

Wierda et al., ApJ (2021)

Strong lensing

➢ For strong lensing: λ_{GW} ≪ R_{lens}, hence geometric optics approximation valid
 ⇒ The frequency evolution is unchanged
 ➢ Several images having taken different paths

Strong lensing: rates and searches

Possibly ~1/year for Advanced LIGO, Virgo, KAGRA at design sensitivity

Observed rates	L	L/H	L/H/V/K	L/H/V/K (A+)	L/H/V/K (Voyager)
Lensed events: total	$0.21^{+0.10}_{-0.07} { m yr}^{-1}$	$0.65^{+0.32}_{-0.22} { m yr}^{-1}$	$1.3^{+0.6}_{-0.4}~{ m yr}^{-1}$	$3.3^{+1.7}_{-1.1} \mathrm{yr}^{-1}$	$16.8^{+8.4}_{-5.6} \mathrm{yr}^{-1}$
double	$0.17^{+0.08}_{-0.06}~{ m yr}^{-1}$	$0.50^{+0.25}_{-0.17} { m yr}^{-1}$	$0.92^{+0.46}_{-0.31} { m yr}^{-1}$	$2.5^{+1.2}_{-0.8} { m yr}^{-1}$	$13.1^{+6.5}_{-4.4}~{ m yr}^{-1}$
triple	$0.032^{+0.016}_{-0.011}~{ m yr}^{-1}$	$0.11^{+0.06}_{-0.04} { m yr}^{-1}$	$0.23^{+0.12}_{-0.08} { m yr}^{-1}$	$0.55^{+0.28}_{-0.19} { m yr}^{-1}$	$2.0^{+1.0}_{-0.7} { m yr}^{-1}$
quadruple	$0.011^{+0.005}_{-0.004}~{\rm yr}^{-1}$	$0.038^{+0.019}_{-0.013}~{ m yr}^{-1}$	$0.12^{+0.06}_{-0.04} { m yr}^{-1}$	$0.30^{+0.15}_{-0.10} { m yr}^{-1}$	$1.6^{+0.8}_{-0.6}~{ m yr}^{-1}$
Unlensed events	$370 { m yr}^{-1}$	$1.1\times 10^3~\rm yr^{-1}$	$1.9 imes 10^3 ext{ yr}^{-1}$	$5.8\times10^3~{\rm yr}^{-1}$	$31\times 10^3~{\rm yr}^{-1}$
Relative occurrence	1:1760	1:1650	1 : 1500	1 : 1740	1:1830

Wierda et al., ApJ (2021)

- How to search for strongly lensed events?
 - Frequency evolution determined by binary black hole masses and spins
 - Images have same frequency evolution:
 Posterior probability densities for e.g. masses should be consistent
 - Sky positions should be consistent

Haris et al., arXiv:1807.07062

A needle in a haystack

> To find a strongly lensed event, need to compare all pairs of detections

If N detections, false alarm probability grows as N²

ÇaliŞkan et al, PRD (2023)

Models predict distributions for time delays Δt and relative magnifications μ_{rel} Folding these in makes the false alarm probability grow as N

So far nothing found...

> A first search for strongly lensed events in LIGO-Virgo data:

Abbott et al., ApJ (2021)

What about microlensing?

Frequency-dependent magnification:

0

 $\log_{10} \mathcal{B}_U^{Micro}$

1

2

0.0

-2

Why are (strongly) lensed gravitational waves interesting?

Seeing 2 images with 3 detectors = seeing 1 signal with 6 virtual detectors

Why are (strongly) lensed gravitational waves interesting?

Lensing allows for improved sky localization
With four images:

Hannuksela et al., MNRAS (2020) Janquart et al., MNRAS (2021)

Why are (strongly) lensed gravitational waves interesting?

- Lensing allows for improved sky localization
- Sky error box must contain host galaxy, which will also be lensed
 - Electromagnetic telescopes
 - + requiring consistency of lensed galaxy with lensed gravitational wave
 - \implies Identification of the host galaxy

A way to find the host galaxy of a binary black hole merger

• Lens modeling: pin down location *inside* the galaxy with sub-arcsec precision

Pinning down the sky location of the source

Sky location of the images and the source: • η displacement of the source from line of sight Source • $\boldsymbol{\xi}_i$ positions of the images in the lens plane • $\eta = D_S \beta$ and $\xi_i = D_L \theta_i$ D_{LS} where D_S , D_L , D_{LS} are angular diameter distances Fermat potential: $\phi(\theta, \beta) = \frac{1}{2}(\theta - \beta)^2 - \psi(\theta)$ Lens where deflection potential $\psi(\boldsymbol{x}) = \frac{1}{\pi} \int d^2 \boldsymbol{x'} \kappa(\boldsymbol{x'}) \ln |\boldsymbol{x} - \boldsymbol{x'}|$ D_L with $\kappa(\mathbf{x})$ normalized surface mass density of the lens Observe

 D_S

Image locations are extrema of the Fermat potential:

$$\nabla_{\boldsymbol{\theta}} \left[\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\beta})^2 - \psi(\boldsymbol{\theta}) \right] = 0$$

Image time delays and magnifications:

$$t_{d,j} = \frac{D_L D_S}{D_{LS}} \frac{1 + z_L}{c} \left[\frac{1}{2} (\boldsymbol{\theta}_i - \boldsymbol{\beta})^2 - \psi(\boldsymbol{\theta}_i) \right]$$
$$\mu_j = \left[\frac{1}{\det} \left(\frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\theta}} \right) \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_j}$$

Pinning down the sky location of the source

Image locations are extrema of the Fermat potential:

$$\nabla_{\boldsymbol{\theta}} \left[\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\beta})^2 - \psi(\boldsymbol{\theta}) \right] = 0$$
 "lens equation"

Image time delays and magnifications:

$$t_{d,j} = \frac{D_L D_S}{D_{LS}} \frac{1 + z_L}{c} \left[\frac{1}{2} (\boldsymbol{\theta}_i - \boldsymbol{\beta})^2 - \psi(\boldsymbol{\theta}_i) \right]$$
$$\mu_j = \left[\frac{1}{\det} \left(\frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\theta}} \right) \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_j}$$

From gravitational wave observations:

- $\Delta t_{ij} = t_{d,i} t_{d,j}$ differences in image arrival times (highly accurate)
- $\mu_{ij} = \mu_i / \mu_j$ relative magnifications (less accurate)

 \blacktriangleright In the case of **four images:** β , θ_i , $i = 1, \ldots, 4$ together **10 unknowns**

- $\Delta t_{12}/\Delta t_{13}$, $\Delta t_{12}/\Delta t_{14}$: 2 observables that only depend on $m{eta}$, $m{ heta}_i$
- Lens equation: 4x2 = 8 constraints
- Assume lens sufficiently well modeled, i.e. function $\psi(\mathbf{x})$ is known \implies Solve for β , θ_i

Two ways of measuring the Hubble constant

> Once β , θ_i are known, calculate magnifications:

$$\mu_j = \left[1/\det\left(\frac{\partial \boldsymbol{\beta}}{\partial \boldsymbol{\theta}}\right) \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_j}$$

- In the image amplitudes: $d_L/\sqrt{\mu_i} \implies d_L$ luminosity distance to the source
- Redshift of the host galaxy known from EM measurements
- Fix cosmological parameters except for H_0
- \implies Measurement of H_0

Differences in arrival time:

$$\Delta t_{ij} = \frac{D_L(H_0; z_L) D_S(H_0; z_S)}{D_{LS}(H_0; z_L, z_S)} \frac{1 + z_L}{c} \left[\phi(\boldsymbol{\theta}_i, \boldsymbol{\beta}) - \phi(\boldsymbol{\theta}_j, \boldsymbol{\beta}) \right]$$

• z_L , z_S known from electromagnetic measurements \implies Measurement of H_0

Two ways of measuring the Hubble constant

Hannuksela et al., MNRAS (2020)

Science with lensed gravitational waves

- Localization of binary black hole events
 - Link between black hole binaries and their host galaxies
- High-redshift Hubble constant measurements
- Fundamental physics: How many polarizations?

Goyal et al., PRD (2021)

Science with lensed gravitational waves

- Localization of binary black hole events
 - Link between black hole binaries and their host galaxies
- High-redshift Hubble constant measurements
- Fundamental physics: How many polarizations?

Probing higher-order modes in gravitational wave signals

- Better constraints on higher-order mode content means better localization
- Better understanding of the binary: Enhanced tests of the dynamics of GR

Science with lensed gravitational waves

- Localization of binary black hole events
 - Link between black hole binaries and their host galaxies
- High-redshift Hubble constant measurements
- Fundamental physics: How many polarizations?
- Probing higher-order modes in gravitational wave signals
 - Better constraints on higher-order mode content means better localization
 - Better understanding of the binary: Enhanced tests of the dynamics of GR

Alternative theories of gravity:

- Large extra dimensions
- Theories with friction
- Variable Planck mass

Compare luminosity distance measured

from GW versus EM

Finke et al., PRD (2021)

Narola et al., PRD (2024)

Redshift

Thank you for your attention!

