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Motivation and background

The black holes of nature are the most perfect macroscopic objects there are in the Universe

—Subrahmanyan Chandrasekhar

Relativistic Jet : :
Accretion disc N BHs have been observed due to the development of observational technique

Event horizon

Singularity T | T |

At the very centre of a black hole, matter has collapsed . Inspiral Merger Ring-
into a region of infinite density called a singularitys. down
All the matter and energy that fall into the black hole'ends up he

The prediction of infinite density by general relativity is thoUgREIORGICE

the breakdown of the theory where quantum effects beco important.

Event horizon - Sin g ulari ty

This is the radius around a singularity where matter and energ;

cannot escape the black hole’s gravity: the point of no return. { i -

This is the “black” part of the black hole. \

Photon sphere 1.0 - ﬂ _
Although the black hole itself is dark, photons are emitted from nearby ID h t i

hot plasma in jets or an accretion disc (see below). In the absence of gravity, O Of? le |
these photons would travel in straight lines, but just outside the event horizon /,7 . o

of a black hole, gravity is strong enough to bend their paths so that we see S D e/ e —

a bright ring surrounding a roughly circular dark “shadow”. \

Relativistic jets )
When a black hole feeds on stars, gas or dust, the meal produces jets of particles

Strain

Separation (Rs)

and radiation blasting out from the black hole’s poles at near light speed. _ 1 O " - — _
They can extend for thousands of light-years into space. : — Numerical relativity
] Reconstructed (template)
Innermost stable orbit I I | |
The inner edge of an accretion disc is the last place that material can -
orbit safely without the risk of falling past the point of no return. . — | I I I
AL N Innermaost stable orbit L06F - 4
ccretion aisc > - |
A disc of superheated gas and dust whirls around a black hole at immense speeds, + O . 5 H Black hole separation 3
producing electromagnetic radiation (X-rays, optical, infrared and radio) that reveal the (U] === Black hole relative velocity -4 2
black hole’s location. Some of this material is doomed to cross the event horizon, while other parts 2 O . 4 —
may be forced out to create jets. (V)] - 1
> O . 3 [ i i i i O
Time (s)

Image of a BH at the core of M87
[https://eventhorizontelescope.org/] Estimated gravitational-wave strain

amplitude from GW150914 (prL 116,

061102 (2016)]

https://en.wikipedia.org/wiki/Black_hole



Motivation and background

* The existence of singularities in BHs motivate us to introduce
QG in BH physics;

* In loop quantum gravity, our answer on guantum BH haven't
formed a unique picture; There are, e.g., Ashtekar-Bojowald
paradigm [Ashtekar & Bojowald 05°], the SF gBH model [rovelii, Harggard,
Christodoulou, Speziale, Vilensky etc. 15’, 16’, Han, Qu, CZ 24’ and so on] and

different loop quantum symmetry-reduced models [Ashtekar, Bojowald,

Bodendorfer, Boehmer, Chiou, Giesel, Gambini, Han, Husian, Li, Liu, Lewandowski,
Modesto, Ma, Mehdi, ,Mena Marugan, Olmedo, Pullin, Singh, Vandersloot, Wang, Wilson-

Ewing, Yang, Zhang and so on ]

Penrose Diagram of a Schwarzschild BH
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quantum Schwarzschild BH: interior as an example

R X S?, homogeneity implies
the symmetry group of [ X SO(3)

> =




quantum Schwarzschild BH: interior as an example

Einstein equation
e M,=RXRXS*> (1,x,0, )

« The metric with the symmetry T X SO(3):
ds* = — N(2)’dr* + g (t)dx* + qgp(7)d?

0 Ly

¥ = R x S?, homogeneity implies
the symmetry group of [ X SO(3)




quantum Schwarzschild BH: interior as an example

Question 1: what are the canonical pairs?

° %4= RXRXSZB (T,X,9,¢)

« The metric with the symmetry T X SO(3):
ds* = — N(t)*dt* + q_(7)dx* + qyy(7)dQ*

¥ = R x S?, homogeneity implies
the symmetry group of [ X SO(3)



quantum Schwarzschild BH: interior as an example

Question 1: what are the canonical pairs?

The canonical pairs can be found via:

.S = J dTJ d’x,/gRIq]
R [0,L,]%S2
« The metric with the symmetry T X SO(3):

ds? = — N(0)%d7? + g, (2)dx> + qpg7)dQ2 Cpu O pw_ O
5Qxx 599@

° %4= RXRXSZB (T,X,9,¢)

¥ = R x S?, homogeneity implies
the symmetry group of [ X SO(3)



quantum Schwarzschild BH: interior as an example

Question 1: what are the canonical pairs?

However, in LQG, we prefer the Ashtekar variables (AC’;, E?), with
ECEPSY
ab L

» The metric with the symmetry T X SO(3): T \/ det(E)
ds* = — N(1)’dz? + q,(1)dx* + gp(7)dQY?

° %4= RXRXSZB (T,X,9,¢)

{ALX), EX(y)} = 82Gy5 (x, y)

¥ = R x S?, homogeneity implies
the symmetry group of [ X SO(3)



quantum Schwarzschild BH: interior as an example

Question 1: what are the canonical pairs?

I - l a -
o M,=RXR X S? 5 (1,x,0,d) However, in LQG, we prefer the Ashtekar variables (A , £), with

E¢ Ejbglj
ab : i b 3
— ] A . E — 8 G 5 0
* The metric with the symmetry 1 X SO(3): 1 \/det(E) tAa(x), £ (y)} = 82Gy07(x, y)
ds* = — N(2)’dr* + g (t)dx* + qgp(7)d? P2
We thus need rewrite: (¢, ., gg9) — (=2, p.), so that £ takes the
Pc
. a._i . Pp . Pp
simple form: £/'7'0, = p.7381n 00 . + 7 sin 00, + A 20
0 0

¥ = R x S?, homogeneity implies
the symmetry group of [ X SO(3)



quantum Schwarzschild BH: interior as an example

We do canonical

quantization for Question 1: what are the canonical pairs?
this system !
e W =R XRXS2S (7. x, 0. ) However, in LQG, we prefer the Ashtekar variables (Aé, E?), with
4 — 97V Yy EZCZE’Jbél]
b = (AL, EX()} = 87Gys (x
e The metric with the symmetry T X SO(3): 1 \/det(E) 1AL ), J W} nGyo™(x, y)
ds* = — N(2)’dr* + g (t)dx* + qgp(7)d? P2
We thus need rewrite: (¢, ., gg9) — (=2, p.), so that £ takes the
P
. a._i . Pp . Pp
simple form: E't'0, = p.7381n 00, + L—Tl sin 60, + A 204
0 0

Variables conjugate to p,, p.. are denoted by b, c. The Ashtekar
connection can be written in a, ¢ as:

Alzdx = Lif3dx2 + br,d0 + b, sin 0dgp + 7, cos d¢p
0

¥ = R x S homogeneity implies {b,p,} = Gy, {c,p.} =2Gy
’ ? IL°C

the symmetry group of [ X SO(3)




quantum Schwarzschild BH: interior as an example

Question 2: How about the dynamics?

what are the canonical pairs?
The dynamics is encoded in the Hamiltonian constraint H-:

1 1 .
S=1det| —ap_ 1 bp, — NH
J <Gy P26, ™ )

1
H = (P + pyb* + 2bcpyp.)

2Gy 2pb\/170

Variables conjugate to p,, p. are denoted by b, c. The Ashtekar
connection can be written in a, c as:

Alzdx® = Li@dxz + br,d0 + b, sin 0d¢p + 7, cos dgp
0

b, pp} = Gy, (¢, p.} =2Gy



quantum Schwarzschild BH: interior as an example

How about the dynamics?

what are the canonical pairs?
The dynamics is encoded in the Hamiltonian constraint H:

! 1 1 .
S=|dr (—c’zpa | bpb—NH>

Gy 2Gy
H = (1P + b+ 2bep,p,)
2Gy*ppy/Pe
Question 3: How to reconstruct the metric?
« Choosea N

e 0=1{0,NH}, Vo =0b,c,p,, ith initial dat _ _
_ { _ Vo (O)C ](9 f) pe Wit InTtiat aata Variables conjugate to p,, p.. are denoted by b, c. The Ashtekar
satisfying H(b,, c,, P, De )=0

5 connection can be written in a, ¢ as:

. C
. ds® = — N*dt* + p—bdx2 +pcan2 is independent Altdx® = L—T3dx2 + bt,d0 + b7, sSin Od¢) + 74 cos Odg
Pc 0
of the choice of N
. ds? remains the same for initial data related with {b, pb} — G}/, {C . pc} =2G 4

canonical transformation of



quantum Schwarzschild BH: interior as an example

« Phase space containing canonical pairs (b, pb), (c, Pc)
° {bapb} — G}/a {Capc} — ZG}/

 Hamiltonian constraint encoding the dynamics:

1
H=— ’n? + p?b? + 2bc
2Gr2p, \/]76 (7 P, T Dy pbpc)

Our task is to do quantization for such a Hamiltonian system !




quantum Schwarzschild BH: interior as an example

« Phase space containing canonical pairs (b, pb), (c, Pc)
° {bapb} — G]/, {Capc} — ZG}/

 Hamiltonian constraint encoding the dynamics:

|
H = (yzplf +p§b2 + 2bcpbpc)

B 2Gy 21?19\@

Our task is to do quantization for such a Hamiltonian system !

A

Canonical Quantization: (b, p,,c,p.) — (b, Dy, Cs P ), With [0/, 0,] = ih{o(, 0,}

Possible approach: Schrodinger quantization, % = L*(R?), b, ¢ are multiplication
operator, p, = — iyGha,, p. = — 2iyGho.



https://www.google.com/search?sca_esv=054ae6cb572344c8&sxsrf=ADLYWIKm1xRvetWzE-wd1DZuOztRfgz_Mg:1718878735235&q=Schrodinger&spell=1&sa=X&ved=2ahUKEwiOw7Oj-umGAxXvQ_EDHe5JD5UQkeECKAB6BAgIEAE

Loop quantum Schwarzschild BH: interior as an example

« Phase space containing canonical pairs (b, pb), (c, Pc)
° {bapb} — G}/a {Capc} — ZG}/

 Hamiltonian constraint encoding the dynamics:

|
H = (}/zplf +p§b2 + 2bcpbpc)

B 2Gy 21919\@

Our task is to do quantization for such a Hamiltonian system !

A

Canonical Quantization: (b, p,,c,p.) — (b, Dy, C, D), With [0, 0,] = ih{o0;,0,}

Loop Approach: Inspired by full loop quantum gravity
1 T T

. Inner product: (f, g) = Th—>nolo are) | 2(b, c)f(b, c)dbdc
» Z = {/IIfl < o0}

. ePfb,c) = efib,c), ¥ f(b,c) = e fib, )




Loop quantum Schwarzschild BH: interior as an example

1 PT T
Inner product: (f, g) = Tlim o7y J 2(b, c)f(b, c)dbdc
— 00 J_7J_71

B | A
(e”“’, et b) = lim 0Ty J J' e 4=V dphdc = 0y 4
T— o0 _Td_T ’

| A, 1) = eiAbtiuc 2 U e R? forms the orthonormal basis of the Hilbert space. Our
Hilbert space has uncountably many basis vectors. Non- separable Hilbert space.

A

et 3y = [ A+ A u+ ) Dol i) =vE A A p)  Pyldop) = 2yC 50| Ay )

e — e

plhob _ _ A oltb _ 1
lim (A, u | | A, u) = lim — = oo, implies b := lim is not well-defined. The same for ¢
A,—0 /10 A,—0 /10 A,—0 /10
i b —_— 1 2 2 2 2 0
Question: How can we promote H = (;/ Py T pbb + 2bcpbpc) to an operator

2Gy zpb\/ITC



Loop quantum Schwarzschild BH: interior as an example

/\ A

il b eiﬂb —1

: € o — . A : "
lim (A, u| | A, u) = lim — = oo, implies b := lim is not well-defined. The same for ¢
2,—0 A, 2,—0 A, )0 ;

M s —_— 1 2.2 21.2 n
Question: How can we promote H = 5 (;/ p, +p,b”+ 2bcpbpc) to an operator*
2Gy°ppy\/Pc

\ sin(Ab) sin(uc)

We need to do regularization for H. Inspired by the full LQG, the regularization will replace b, c P
H

sin(1b)
p

R 1
Consequently, b |1 ) — |4,) = 2—/1( A, +A) = |4, — 1))

Difference operator is a key point for singularity resolution.



Re(y)

ﬁl//=a)l//

Gw)(p) = i(w(p+1)—w(p-—1))

Re(y)

[CZ, Lewandowski, Ma 19’]

21
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Xy ldp




ﬂz//=a)l// ﬂ ﬁ'/f=0)l//

Re(y) T SR, Re(y)

0 100 200 300 400 500 | 10-4 | 0.01 | 1 | 100

Gw)(p) = i(w(p+1)—w(p-—1)) Xy — I—y

[CZ, Lewandowski, Ma 19’]
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Loop quantum Schwarzschild BH: interior as an example

Choosing N = — V = 2Gy2pb\/176, we have H[V] = 2p,bcp, + ppb* + v°p;

sin(Sbb) sin(gcc) | 2sinz(Sbb) |

Regularization leads to: H[V]®-%) = 2p,——=——D. Py | }/zp,f
0}, O, o7
: . (5,,5.) i T : ——— (6,0,
Classically, H[V] = lim H[V]»°¢ but in quantum theory, H[V] = Iim H[V]
5,,0.—0 5,,0.—5,,6,

Question: How to choose the parameters: 9,, 0.

Ambiguities arise due to various choices of 0,, 9, :
¢ ,uo—scheme, constant 519, 5C s [Boehmer Vanderslhoot 07’, Chiou 08’]
 —scheme, 0,, 0. being phase space function; [chiou 087

« New scheme, 0,, 0. being function of dynamical trajectories. [Corichi, Singh 16’, Ashtekar, Olmedo Singh 18]

23



() P.) sPace
The basic idea:

* 0,, 0. have the physical interpretation of coordinate length of edges,

 the fundamental discreteness prevents the parameter from reaching 0.
e various lengths prevented by the discreteness leads to various schemes.

 Uy—scheme, coordinate length is prevented = constant 0,, 0,;
[Boehmer and Vanderslhoot 07°, Chiou 08’ ]

» 11—scheme, physical length along the trajectory is presented =
5b(pb9 pc)a 56(17199 pc); [Chiou 08’]
* New scheme, the physical length at the bounce is not 0. [Ashtekar, Olmedo Singh 18’]

Labels of the dynamical trajectories

24



(Pp> D) Space
The basic idea:
* 0,, 0. have the physical interpretation of coordinate length of edges,

 the fundamental discreteness prevents the parameter from reaching 0.
e various lengths prevented by the discreteness leads to various schemes.

 Uy—scheme, coordinate length is prevented = constant 0,, 0,;
[Boehmer and Vanderslhoot 07°, Chiou 08’ ]

» u—scheme, physical length along the trajectory is presented =

5b(pb9 pc)a 5c(pb9 pc); [Chiou 08’]
* New scheme, the physical length at the bounce is not 0. [Ashtekar, Olmedo Singh 18’]

(Potential) limitation:

» Uo—scheme: the physical prediction depends on fiducial cell; bounce
happens when curvature is small;

» |1—scheme: large departures from the classical theory very near the

horizon; But the horizon is replace by singularity if matter is involved, then
the large quantum correction is appropriate.

* New scheme: one actually needs to extend the phase space to include
5,,0.,.

Labels of the dynamical trajectories

25



Loop quantum Schwarzschild BH: interior as an example

Some results:

 Effective dynamics: singularity resolution, BH-WH transition, etc.
[Boehmer Vanderslhoot 07°, Chiou 08’, Corichi, Singh 16’, Ashtekar, Olmedo Singh 18’]

 Quantum dynamics: discreteness of BH mass at the dynamical level; [cz, ma, song, Zhang 20" & 217]

[Ashtekar, OImedo Singh 18’]




Loop quantum Schwarzschild BH: interior as an example

Some results:

 Effective dynamics: singularity resolution, BH-WH transition, etc.
[Boehmer Vanderslhoot 07°, Chiou 08’, Corichi, Singh 16’, Ashtekar, Olmedo Singh 18’]

 Quantum dynamics: discreteness of BH mass at the dynamical level; [cz, ma, song, Zhang 20" & 217]

o(H(V))

I

/\

Constraint equation: H[V] = O:

/\

We find an operator 1 s.t [m, H[V] ] = O;

The Hilbert space is expanded by the common eigenstate |, h);
m is continuous but /: is discrete; the range of /1 depend on ni;
Only for countably many values ), one can obtain | My h =0);

The minimal value m ), is not vanishing.



Loop guantum Schwarzschild BH: interic

Some results: S

 Effective dynamics: singularity resolution, BH-WH transition, etc.
[Boehmer Vanderslhoot 07°, Chiou 08’, Corichi, Singh 16’, Ashtekar, Olmedo Singh 18’]

 Quantum dynamics: discreteness of BH mass at the dynamical leve|

o(H(V)) Constraint equation: H[V] =

« We find an operator 7 s.t |
 The Hilbert space is expan
« m is continuous but /i is dEEQ
« Only for countably many vz

>« The minimal value m is n

I

140
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100 -

40 |-
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10" 102



Summary

With the Schwarzschild interior as the example, we introduce:
 Canonical quantization of a BH model

 Loop quantization

« Some recent results from LQGBH



End of the First Lecture
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Review of the issue In the previous lecture

Choosing N = — V = 2Gy2pb\/176, we have H[V] = 2p,bcp, + ppb* + v°p;

sin(Sbb) sin(Scc) | 2sinz(Sbb) |

Regularization leads to: H[V]®-%) = 2p,——=——D. Py | }/zp,f
0}, O, o7
: . (5,,5.) i T : ——— (6,0,
Classically, H[V] = lim H[V]»°¢ but in quantum theory, H[V] = Iim H[V]
5,,6.—0 5,,0.—5,,6,

Question: How to choose the parameters: 9,, 0.

Ambiguities arise due to various choices of 0,, 9, :
¢ //to—scheme, constant 519, 5C s [Boehmer Vanderslhoot 07’, Chiou 08’]
 —scheme, 0,, 0. being phase space function; [chiou 087

« New scheme, 0,, 0. being function of dynamical trajectories. [Corichi, Singh 16’, Ashtekar, Olmedo Singh 18]
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Outline

A. Introduction of a Loop Quantum BH Model: Schw. interior as an example

B. Some recent results in LQGBH
—Spherical symmetry model

— Quantum Oppenheimer-Snyder model
— QG effects on BH image, et al



Loop guantum Schwarzschild BH: spherically symmetric model

Spherically symmetric Model

(E?)?
El
. Quantization: promote E'(x) and E*(x) to operators acting on a Hilbert space.

. R x S? with symmetry SO(3) : ds? = — Ndt* + (dx + N*dr)? + E'dQ?;

Loops quantization: choose the polymer Hilbert space as the
home of the operators.

34



Loop guantum Schwarzschild BH: spherically symmetric model

In the classical theory, we have the constraints algebra H [N*] + H[N] with:

Spherically symmetric Model |
H (x) = G (2E*(x)0,K,(x) — K (x)0,E' (x))

1 1
Hx) = — [E*(X)]? + [K,(X)E*(x)]? + 2K, (X)E () K, (x)E*(x)—
(x) 26 TE® |E2(x)|{ (x) »(X)E=(x) 1 OE (x0)Ky(x)E“(x)

L a2 _ a2 0,E'()
2 [0,.E" (x)]” — E"(x)E“(x)0, 200 }

(E2 2
—(dx + N*dr)? + E'dQ?

ds? = — N*dt* A
E

35



Loop guantum Schwarzschild BH: spherically symmetric model

In the classical theory, we have the constraints algebra H [N*] + H[N] with:

Spherically symmetric Model

1
H(x) = °C (2E*(x)0, K»(x) — K;(x)0,E'(x))

1

1
Hx) = — E2(0))? + [K,(X)E*(x)]? + 2K, (x)E () K, (x) E*(x)—
(x) 26 E 1 2w) {[ ()] + [Ky(x)E“(x)] 1 OE (x0)Ky(x)E“(x)

L a2 _ a2 0,E'()
2 [0,.E" (x)]” — E"(x)E“(x)0, 200 }

We can do loop regularization for:
1) H(x) itself [Han, Liu 20, €z 217]
2) H(x)+ N (x)H (x) [Gambini, Olmedo, Pullin 14’ & 20]

Or another approach:

3) Choose E!(x) = x? as the gauge solving the diff. constraint H. (x) = 0 to get

) H[N] = - — de AN [E*(x)]%0, | x[K,(x)]* + x — X
4s? = — N2 + 2 (x4 N2 + B2 261 ) A B
E1l Do loop regularization for this Gauge fixed Hamiltonian [Kelly, Santacruz, Wilson-Ewing 20’&22’]

36



Loop guantum Schwarzschild BH: spherically symmetric model

In the classical theory, we have the constraints algebra H [N*] + H[N] with:

Spherically symmetric Model

1
H(x) = °C (2E*(x)0,K,(x) — K (x)0,E'(x))

1

1
Hx) = — E2(0))? + [K,(X)E*(x)]? + 2K, (x)E () K, (x) E*(x)—
(x) 26 E 1 2w) {[ ()] + [Ky(x)E“(x)] 1 OE (x0)Ky(x)E“(x)

L a2 _ a2 0,E'()
2 [0,.E" (x)]” — E"(x)E“(x)0, 200 }

We can do loop regularization for:
1) H(x) itself [Han, Liu 20, €z 217]
2) H(x)+ N (x)H (x) [Gambini, Olmedo, Pullin 14’ & 20]

Or another approach:

3) Choose E!(x) = x? as the gauge solving the diff. constraint H. (x) = 0 to get
_ H[N] 1 Jd MO L P, ( sk + -
2)2 = ——=]dx x)]°0, | x[Ky(x X — ,
45? = — N2d2 + L (d 4 Nde? + E'dQ2 “GJ 1) E@)F
E1l Do loop regularization for this Gauge fixed Hamiltonian [Kelly, Santacruz, Wilson-Ewing 20’&22’]

Use the loop regularized Hamiltonian to solve the classical Hamilton equation. See [Giesel, Liu et. al. 23’] for mimetic gravity version of the approach 3).
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Oppenheimer-Snyder model

Singularity

Event Horizon

Collapsing dust ball

Initial hypersurface




Oppenheimer-Snyder model

Singularity

Some facts:
Event Horizon . The dust ball takes the metric ds> = — dr” + a(r)zdsé ;
_ , 3rnG )
. a(7) is governed by: H“ = 3 pand d_(pa’) = 0;
 The Schwarzschild outside is the unique spherically
symmetric and stationary metric that can be glued to the
/ dust ball metric by the junction condition. This is the result

/ \ g without necessary to consider the EOM.

Initial hypersurface




Oppenheimer-Snyder model

Singularity

Some facts:
Event Horizon . The dust ball takes the metric ds> = — dr” + a(r)zdsé ;
_ , 3rnG )
. a(7) is governed by: H~ = 3 pand d_(pa’) = 0;
 The Schwarzschild outside is the unique spherically
symmetric and stationary metric that can be glued to the
/ dust ball metric by the junction condition. This is the result

/ \ without necessary to consider the EOM.
What will happen if the dust ball is a LQC one?

Initial hypersurface




Quantum Oppenheimer-Snyder model

ds* = — dt* + a(z)*ds;

3G
H? = Lp(l — ﬁ) and df(pa3) =0

3 Pe

[\




Quantum Oppenheimer-Snyder model

ds* = — dt* + a(z)*ds;

3G
H? = Lp(l — ﬁ) and df(pa3) =0

3 Pe

ds® = — f(rdt* + g(r)~dr* + r’dQ?

[\

What is the expression for /() and g(7) so that the outside
can be glued with the inside by the junction condition?




Quantum Oppenheimer-Snyder model

ds* = — dt* + a(z)*ds;

3G
H? = Lp(l — ﬁ) and df(pa3) =0

3 Pe

ds® = — f(rdt* + g(r)~dr* + r’dQ?

/ \ 2GM  aG*M*
fr)=g(r) =1~

_I_
r ré

a = 16\/572;/3/5

[Lewandowski, Ma, Yang, CZ 23’]




Quantum Oppenheimer-Snyder model

The outside metric is uniquely determined by the modified Friedemann equation [sce Luca Cafaro, Jerzy

Lewandowski 24’ and Luca’s talk]

, 8nG B . . 3
for H- = 3 pX(p),weget f(r)=g(r)=1-2GMr " X(BM/(4rnr~))

The same metric is obtained by other people from various approaches [c.g., Marto, Tavakoli & Moniz 15,
Kelly, Santacruz & Wilson-Ewing 20’, Bobula & Powtowski 23’, and Giesel, Liu, Rullit, Singh & Weigl 23’]

The Penrose diagram of the maximally extended spacetime is studied as follows:



Quantum Oppenheimer-Snyder model

BHs exist

M>M_..

min

M< M.,



<

M< M.,

Quantum Oppenheimer-Snyder model

min

BH-WH transition,

but singularity is ﬂ

replaced by a
transition region

[in comparison with, e.g.,
AOS 18’]




Observational effects of quantum correction

[Yang, CZ, Ma 23’]
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FIG. 6. The observational appearances of the thin disk near the BHs with the three different profiles. In each row, the first two panels show the
emission intensity I.,/ly and observational intensity I, /Iy, normalized to the maximum value Iy, of a thin disk near the quantum-corrected
BH (blue) compared to those of the Schwarzschild BH (red), and the third panel depicts the density plot of I/, of a thin disk near the
quantum-corrected BH. The parameters are R, =2,y = 1and A = 0.1.



Observational effects of quantum correction

[CZ, Ma, Yang 23’]

A’ By measuring the position and width of the light rings, we
' could get the details of the quantum correction.

[see Cao, Li, Liu, Zhou 24’ for similar work in regular BH]



BH model with spinfoam

While the spacetime offers distinct advantages, it is not without debates:

The existence of Cauchy horizon implies that the spacetime could be
unstable under perturbation [cao, Li et.al. 23’ and 24’, Shao, CZ, et.al. (2023)].

x % The Cauchy horizon



BH model with spinfoam

Consider the QG effect at
the end of evaporation

—>

[Han, Rovelli & Soltani 23’]

 The metric is locally the same as ours except for the
B-Region in the new spacetime;
 No Cauchy horizon.



BH model with spinfoam




BH model with spinfoam

What is the dynamics in the B region?




BH model with spinfoam

The dynamics of B region is governed by the spinfoam model [cario’s lecture]

The SF amplitude can be numerical calculated with various algorithm [Hongguang’s lecture]:
S3 Small spin regime: e.g. Soltani, Rovelli & Martin-Dussaud 21’, Dona & Frisoni 23’.
Large spin regime: Han, Liu & Qu 23’.




BH model with spinfoam

« 0B is located in the semiclassical region, so that the boundary state can be
chosen as the coherent state “labelled” by (¢, K)) with spread ?.

[Han, Qu & CZ 24’] « We consider the amplitude as t — 0, equivalent as ] — o0;
 In LQG, *e¢/ are regarded as different states due to the SU(2) gauge;

. iecil give the same 3-D metric g ,;
 The boundary state is proposed as the superposition

(l/f(e_,K_) + Vf(—e_,K_)> X <l/f(e+,1<+) + '//(—e+,l<+)>

A=A (w(K+,e+> ® wa“) +A (v«K> ® ‘//<K>) +4 (‘/’<K> ® w<z<>) +4 (Vf<z<+,—e+> ® w(K))

We consider a non-degenerate 2-complex containing 56 vertices in our work;
The first two terms dominate the amplitude;

The first two terms imply the transition +e_ — * e with det(e,) = — det(e_);

Tunneling between opposite orientations accompanying the BH-WH transition;
The value of the effective action in the amplitude is computed with the results:

S = — 0.0458193513442056, S ) = — 0.0458193513442275,
where the parameter is chosen as ¢ = 1/246.34, and GM = 2 X 10°\/pxh, f=

[https://github.com/czhangUW/BH2WHTranstionIinSF]



We introduced our works related to the guantum OS model with the results:

ds? = — f(rdt* + g(r)~'dr* + r’dQ?

2GM  aG*M?
fn=gr)=1- +

r r4
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FIG. 6. The observational appearances of the thin disk near the BHs with the three different profiles. In each row, the first two panels show the
emission intensity Z.m/Jo and observational intensity s/, normalized to the maximum value o, of a thin disk near the quantum-corrected
BH (blue) compared to those of the Schwarzschild BH (red), and the third panel depicts the density plot of I,,s/Iy of a thin disk near the
quantum-corrected BH. The parameters are R; = 2,y = 1 and A = 0.1.

Thank you for your attention!

The SF dynamics with
the complex critical
point method



