64. Cracow School of Theoretical Physics From the UltraViolet to the InfraRed: a panorama of modern gravitational physics

June 15–23, 2024 Zakopane, Tatra Mountains, Poland

Topics include:

- Quantum/semiclassical gravity
- **Amplitudes, soft theorems**
- **Black holes**
- Gravitational waves, observation and theory
- **Future detectors**
 - Dark Matter, Dark Energy Modified gravity •
 - Mathematical aspects of GR Cosmology

Domain Walls

and their **Gravitational Waves II**

Alexander Vikman

20.06.2024

PHYSICAL REVIEW D 105, 063530 (2022)

arXiv:2104.13722

Beyond freeze-in: Dark matter via inverse phase transition and gravitational wave signal

S. Ramazanov⁽⁰⁾,¹ E. Babichev,² D. Gorbunov,^{3,4} and A. Vikman⁽⁰⁾ ¹CEICO, FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic ²Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ³Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia ⁴Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia

(Received 4 May 2021; revised 7 July 2021; accepted 9 March 2022; published 28 March 2022)

ournal of Cosmology and Astroparticle Physics arXiv:2112.12608 Gravitational shine of dark domain walls CAP04 (202

E. Babichev,^{*a,b*} D. Gorbunov,^{*c,d*} S. Ramazanov^{*e*} and A. Vikman^{*e*}

^aUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ^bInstitute for Theoretical and Mathematical Physics, Lomonosov Moscow State University, Lomonosovsky prospekt 27/1, 119991 Moscow, Russia ^cInstitute for Nuclear Research of the Russian Academy of Sciences, Prospect of the 60th Anniversary of October 7a, Moscow 117312, Russia ^dMoscow Institute of Physics and Technology, Institutsky per. 9, Dolgoprudny 141700, Russia ^eCEICO, FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic

E-mail: eugeny.babichev@ijclab.in2p3.fr, gorby@inr.ac.r vikman@fzu.cz

Received January 14, 2022 Revised March 9, 2022 Accepted March 28, 2022 Published April 20, 2022

PHYSICAL REVIEW D 108, 123529 (2023)

N

 \mathbb{N}

00

arXiv:2307.04582

NANOGrav spectral index $\gamma = 3$ from melting domain walls

E. Babichev,¹ D. Gorbunov,^{2,3} S. Ramazanov[®],⁴ R. Samanta[®],⁴ and A. Vikman^{®⁴} ¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ²Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia ³Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia ⁴CEICO, FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 00 Prague 8, Czech Republic

(Received 19 July 2023; revised 26 November 2023; accepted 1 December 2023; published 18 December 2023)

Inverse Phase Transition At Meltdown

 Z_2 -symmetric DM scalar field χ coupled to ϕ - a multiplet of N *thermal* degrees of freedom

portal coupling

$$V = \frac{1}{2} \left(M^2 - g^2 \phi^{\dagger} \phi \right) \cdot \chi^2 + \frac{\lambda}{4} \chi^4$$

$$g^2 \langle \phi^{\dagger} \phi \rangle \simeq \frac{N g^2 T^2}{12}$$

potential bounded from below $\rightarrow \beta$ =

$$= \frac{\lambda}{g^4} \ge \frac{1}{\lambda_{\phi}} \ge 1$$

from below

Direct Phase Transition

Domain Walls!

Early universe spontaneously Broken Phase

Avoid too much friction to start rolling

Correction taking into account time to get to the minimum

Allowed Parameter Space

$$M \simeq 10^{-13} \text{ eV} \cdot \frac{\beta^{3/5}}{\sqrt{N}} \cdot \left(\frac{g_*(T_*)}{100}\right)^{2/5} \cdot \left(\frac{g}{10^{-18}}\right)^{7/5}$$

The New York Times

The Cosmos Is Thrumming With Gravitational Waves, Astronomers Find

Radio telescopes around the world picked up a telltale hum reverberating across the cosmos, most likely from supermassive black holes merging in the early universe.

June 28, 2023

The Very Large Array on the Plains of San Agustin, N.M., one of three radio telescopes that worked with a global consortium to detect the timing of pulsars. NRAO/AUI/NSF

The Washington Post

In a major discovery, scientists say spacetime churns like a choppy sea

The mind-bending finding suggests that everything around us is constantly being roiled by low-frequency gravitational waves

By Joel Achenbach and Victoria Jaggard June 28, 2023 at 8:00 p.m. EDT

The Green Bank Observatory in Green Bank, W.Va., was among the observatories used to track pulsars as a way of detecting low-frequency gravitational waves. (Michael S. Williamson/The Washington Post)

15 year of observations of 68 millisecond pulsars

For example, J0437–4715 has a period of 0.005757451936712637 s with an error of 1.7×10^{-17} s

Hellings–Downs curve

OPEN ACCESS

The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background

Gabriella Agazie¹, Akash Anumarlapudi¹, Anne M. Archibald², Zaven Arzoumanian³, Paul T. Baker⁴, Bence Bécsy⁵, Laura Blecha⁶, Adam Brazier^{7,8}, Paul R. Brook⁹, Sarah Burke-Spolaor^{10,11}, Rand Burnette⁵, Robin Case⁵, Maria Charisi¹², Shami Chatterjee⁷, Katerina Chatziioannou¹³, Belinda D. Cheeseboro^{10,11}, Siyuan Chen¹⁴, Tyler Cohen¹⁵, James M. Cordes⁷, Neil J. Cornish¹⁶, Fronefield Crawford¹⁷, H. Thankful Cromartie^{7,70}, Kathryn Crowter¹⁸, Curt J. Cutler^{13,19}, Megan E. DeCesar²⁰, Dallas DeGan⁵, Paul B. Demorest²¹, Heling Deng⁵, Timothy Dolch^{22,23}, Brendan Drachler^{24,25}, Justin A. Ellis²⁶, Elizabeth C. Ferrara^{27,28,29}, William Fiore^{10,11}, Emmanuel Fonseca^{10,11}, Gabriel E. Freedman¹, Nate Garver-Daniels^{10,11}, Peter A. Gentile^{10,11}, Kyle A. Gersbach¹², Joseph Glaser^{10,11}, Deborah C. Good^{30,31}, Kayhan Gültekin³², Jeffrey S. Hazboun⁵, Sophie Hourihane¹³, Kristina Islo¹, Ross J. Jennings^{10,11,73}, Aaron D. Johnson^{1,13}, Megan L. Jones¹, Andrew R. Kaiser^{10,11}, David L. Kaplan¹ Luke Zoltan Kelley³³, Matthew Kerr³⁴, Joey S. Key³⁵, Tonia C. Klein¹, Nima Laal⁵, Michael T. Lam^{24,25}, William G. Lamb¹², T. Joseph W. Lazio¹⁹, Natalia Lewandowska³⁶, Tyson B. Littenberg³⁷, Tingting Liu^{10,11}, Andrea Lommen³⁸^(b), Duncan R. Lorimer^{10,11}^(b), Jing Luo^{39,71}^(b), Ryan S. Lynch⁴⁰^(b), Chung-Pei Ma^{33,41}^(b), Dustin R. Madison⁴²^(b), Margaret A. Mattson^{10,11}, Alexander McEwen¹^(b), James W. McKee^{43,44}^(b), Maura A. McLaughlin^{10,11}^(b), Natasha McMann¹², Bradley W. Meyers^{18,45}, Patrick M. Meyers¹³, Chiara M. F. Mingarelli^{30,31,46}, Andrea Mitridate⁴⁷, Priyamvada Natarajan^{48,49}, Cherry Ng⁵⁰, David J. Nice⁵¹, Stella Koch Ocker⁷, Ken D. Olum⁵², Timothy T. Pennucci⁵³, Benetge B. P. Perera⁵⁴, Polina Petrov¹², Nihan S. Pol¹², Henri A. Radovan⁵⁵, Scott M. Ransom⁵⁶⁽¹⁾, Paul S. Ray³⁴⁽¹⁾, Joseph D. Romano⁵⁷⁽¹⁾, Shashwat C. Sardesai¹⁽¹⁾, Ann Schmiedekamp⁵⁸⁽¹⁾, Carl Schmiedekamp⁵⁸, Kai Schmitz⁵⁹, Levi Schult¹², Brent J. Shapiro-Albert^{10,11,60}, Xavier Siemens^{1,5} Joseph Simon^{61,72}, Magdalena S. Siwek⁶², Ingrid H. Stairs¹⁸, Daniel R. Stinebring⁶³, Kevin Stovall²¹, Jerry P. Sun⁵, Abhimanyu Susobhanan¹, Joseph K. Swiggum^{51,72}, Jacob Taylor⁵, Stephen R. Taylor¹², Jacob E. Turner^{10,11}, Caner Unal^{64,65}, Michele Vallisneri^{13,19}, Rutger van Haasteren⁶⁶, Sarah J. Vigeland¹, Haley M. Wahl^{10,11}, Qiaohong Wang¹², Caitlin A. Witt^{67,68}, and Olivia Young^{24,25} The NANOGrav Collaboration⁶⁹

"The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black hole binaries, <u>although more exotic cosmological and astrophysical</u> <u>sources cannot be excluded. The observation of Hellings–Downs</u> <u>correlations points to the gravitational-wave origin of this signal.</u>"

In the scaling regime (Kibble 1976): one domain wall per Hubble volume:

Gravitational Waves

Einstein's formula

 $P \sim \ddot{Q}_{ii}^2 / M_{Pl}^2$

works well for domain wall network!!!

On the estimation of gravitational wave spectrum from cosmic domain walls Takashi Hiramatsu (Kyoto U., Yukawa Inst., Kyoto), Masahiro Kawasaki (Tokyo U., ICRR and Tokyo U., IPMU), Ken'ichi Saikawa (Tokyo Inst. Tech.) (Sep 19, 2013) Published in: *JCAP* 02 (2014) 031 • e-Print: 1309.5001 [astro-ph.CO]

Quadrupole Moment

 $|Q_{ij}| \sim M_{wall}/H^2$

 $M_{wall} \sim \sigma_{wall}/H^2$

 $\rho_{gw} \sim P \cdot t \cdot H^3 \sim \frac{\sigma_{wall}^2}{M_{Pl}^2} \propto T^6$

If scaling regime attained almost instantaneously, the **peak frequency** is $H_i!$

 $f = H_i$

Gravitational Waves Frequency

$$f_0 \simeq H_i \cdot \frac{a_i}{a_0} \propto T_i$$

$$f_0 \simeq \left(\frac{g_*\left(T_i\right)}{100}\right)^{1/6} \frac{T_0 T_i}{M_{pl}}$$

$$f_0 \simeq 6 \text{ nHz } \sqrt{\frac{N}{B}} \cdot \frac{g}{10^{-18}} \cdot \left(\frac{100}{g_*(T_i)}\right)^{1/3}$$

On the estimation of gravitational wave spectrum from cosmic domain walls #7 Takashi Hiramatsu (Kyoto U., Yukawa Inst., Kyoto), Masahiro Kawasaki (Tokyo U., ICRR and Tokyo U., IPMU), Ken'ichi Saikawa (Tokyo Inst. Tech.) (Sep 19, 2013) Published in: *JCAP* 02 (2014) 031 • e-Print: 1309.5001 [astro-ph.CO]

Einstein formula estimation

 $\rho_{gw} \sim P \cdot t \cdot H^3 \sim \frac{\sigma_{wall}^2}{M_{Pl}^2}$

Simulations

$$\frac{d\rho_{gw}}{d\ln f} \simeq \frac{\epsilon_{gw} A^2 \sigma_{wall}^2}{8\pi M_{Pl}^2}$$

 $\propto T^6$

our case

$$\epsilon_{gw} = 0.7 \pm 0.4$$
 $A = 0.8 \pm 0.1$

$$\Omega_{gw}(f,t) = \frac{1}{\rho_{tot}(t)} \left(\frac{d\rho_{gw}}{d\ln f}\right) \propto T^2$$

our case

Usual Domain Walls $\Omega_{gw}(IR) \sim f^3$

More on f^2 in IR

Dimensional analysis supported by simulation for constant tension

$$\Omega_{gw} \left(t_{now} \right)_{peak} \simeq A \left(\frac{f_{peak}}{F_{max}} \right)$$

energy is additive Σ over $t_{em} = \Sigma$ over f_{peak}

$$\delta\Omega_{gw}(f) = 2A\left(\frac{f_{peak}}{F_{max}^2}\right)\delta f_{peak}\left(\frac{f}{f_{peak}}\right)^p \frac{2}{1 + \left(f/f_{peak}\right)^{p+q}}$$

for $f_{min} \ll f \ll F_{max}$

2

$$f^p$$
 f^{-q}

$$\Omega_{gw}(f) = \int_{f_{min}}^{F_{max}} \delta\Omega_{gw}(f) \propto \left(\frac{f}{F_{max}}\right)^2 \left[1 - \mathcal{O}\left(\frac{f}{F_{max}}\right)^n - \mathcal{O}\left(\frac{f_{min}}{f}\right)^m\right]$$

$$\Omega_{\rm GW}(f) = \Omega_{\rm yr} \left(\frac{f}{f_{\rm yr}}\right)^{5-\gamma}$$

,

$$f_{yr} = 32 \,\mathrm{nHz}$$

$$\Omega_{yr} = \frac{2\pi^2}{3H_0^2} A^2 f_{yr}^2$$

The 100-meter Green Bank Telescope, the world's largest fully steerable telescope and a core instrument for pulsar timing array experiment.

parameters
$$g = 10^{-18}$$
, $\beta = \lambda/g^4 = 1$, $N = 24$, $g_* = 75$

What is the source of the PTA GW signal?

John Ellis[©],^{1,2,3,*} Malcolm Fairbairn[©],^{2,†} Gabriele Franciolini[©],^{4,5,‡} Gert Hütsi[©],^{1,§} Antonio Iovino[©],^{4,5,1,∥} Marek Lewicki[©],^{6,¶} Martti Raidal[©],^{1,**} Juan Urrutia[©],^{1,7,††} Ville Vaskonen[©],^{1,8,9,‡‡} and Hardi Veermäe[©],^{1,§§} ¹Keemilise ja Bioloogilise Füüsika Instituut, Rävala Puiestee Street 10, 10143 Tallinn, Estonia ²Physics Department, King's College London, Strand, London, WC2R 2LS, United Kingdom ³Theoretical Physics Department, CERN, CH 1211 Geneva, Switzerland ⁴Dipartimento di Fisica, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy ⁵INFN sezione di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy ⁶Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland ⁷Departament of Cybernetics, Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia ⁸Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy ⁹INFN sezione di Padova, Via Marzolo 8, 35131 Padova, Italy

(Received 10 October 2023; accepted 7 December 2023; published 19 January 2024)

the sources of the PTA signals. Many cosmological models invoking generic aspects of BSM physics have also been proposed as prospective sources. We have presented in this paper a comprehensive multimodel analysis (MMA) that applies a common approach to assess the relative qualities of fits in these models, both with and without the inclusion of a SMBH binary background. We find that these models are capable of fitting the NANOGrav data at least as well as SMBH binaries alone (significantly better if environmental effects on the evolution of the binaries can be neglected). Future PTA

Where are NANOGrav's big black holes?

Gabriela Sato-Polito,^{1, *} Matias Zaldarriaga,¹ and Eliot Quataert²

¹School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, United States ²Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

Multiple pulsar timing array (PTA) collaborations have recently reported the first detection of gravitational waves (GWs) of nanohertz frequencies. The signal is expected to be primarily sourced by inspiralling supermassive black hole binaries (SMBHBs) and these first results are broadly consistent with the expected GW spectrum from such a population. Curiously, the measured amplitude of the GW background in all announced results is a bit larger than theoretical predictions. In this work, we show that the amplitude of the stochastic gravitational wave background (SGWB) predicted from the present-day abundance of SMBHs derived from local scaling relations is significantly smaller than that measured by the PTAs. We demonstrate that this difference cannot be accounted for through changes in the merger history of SMBHs and that there is an upper limit to the boost to the characteristic strain from multiple merger events, due to the fact that they involve black holes of decreasing masses. If we require the current estimate of the black hole mass density — equal to the integrated quasar luminosity function through the classic Soltan argument — to be preserved, then the currently measured PTA result would imply that the typical total mass of SMBHs contributing to the background should be at least ~ $3 \times 10^{10} M_{\odot}$, a factor of ~ 10 larger than previously predicted. The required space density of such massive black holes corresponds to order $10.3 \times 10^{10} M_{\odot}$ SMBHs within the volume accessible by stellar and gas dynamical SMBH measurements. By virtue of the GW signal being dominated by the massive end of the SMBH distribution, PTA measurements offer a unique window into such rare objects and complement existing electromagnetic observations.

Superradiance: From NANOGrav to LIGO or LISA

DM from the inverse phase transition

$$M_{\chi} \simeq 10^{-12} \text{ eV} \cdot B^{9/20} \cdot \left(\frac{g_{*}(T_{sym})}{100}\right)^{1/5} \cdot \left(\frac{g_{*}(T_{i})}{100}\right)^{1/20} \cdot \left(\frac{m_{\phi}}{10 \text{ MeV}}\right)^{1/2} \times \left(\frac{f_{peak}}{30 \text{ nHz}}\right)^{6/5} \cdot \left(\frac{10^{-8}}{\Omega_{gw,peak}h_{0}^{2}}\right)^{3/20}$$

Superradiance for $M_{BH} \simeq 10^{2} M_{\odot}$ LIGO

DM from the direct phase transition

$$M_{\chi} \simeq 6.5 \cdot 10^{-17} \text{ eV} \cdot \left(\frac{f_{peak}}{30 \text{ nHz}}\right) \cdot \left(\frac{g_*(T_i)}{100}\right)^{1/6} \cdot \sqrt{\frac{10^{-8}}{\Omega_{gw,peak} \cdot h_0^2}}$$

Superradiance for $M_{BH} \simeq 10^7 M_{\odot}$ LISA

Thanks a lot for attention!