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Inverse Phase Transition At Meltdown

Late Universe  Early Universe 
 spontaneously Broken Phase
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Direct Phase Transition

Early universe spontaneously Broken Phase
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Domain Walls!
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15 year of observations of 68 millisecond pulsars

For example, J0437−4715 has a period of 0.005757451936712637 s with an error of   s1.7 × 10−17
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“The inferred gravitational-wave background amplitude and 
spectrum are consistent with astrophysical expectations for 
a signal from a population of supermassive black hole 
binaries, although more exotic cosmological and astrophysical 
sources cannot be excluded. The observation of Hellings–Downs 
correlations points to the gravitational-wave origin of this signal.”
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In the scaling regime (Kibble 1976): one domain wall per Hubble volume: 
  

 Mwall ∼ σwall /H2

ρwall ∼ MwallH3 ∼ σwall H ∝ T5
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Gravitational Waves
Einstein’s formula 

     

works well for domain wall network!!!

P ∼ ···Q2
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Pl

Mwall ∼ σwall /H2
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Quadrupole Moment
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If scaling regime attained almost instantaneously, the peak frequency is !Hi

f = Hi
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ϵgw = 0.7 ± 0.4 A = 0.8 ± 0.1
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Ωgw (IR) ∼ f 2 Ωgw (UV ) ∼ f −1 Cutoff  ℓ = (λ /2)−1/2 η−1
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 More on    in IRf2
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fyr )
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NANOGgrav

The 100-meter Green Bank Telescope, the world's largest fully steerable telescope and a core instrument 
for  pulsar timing array experiment. 
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Superradiance: From NANOGrav to LIGO or LISA

Mχ ≃ 10−12 eV ⋅ B9/20 ⋅ (
g*(Tsym)

100 )
1/5

⋅ ( g*(Ti)
100 )

1/20

⋅ ( mϕ

10 MeV )
1/2

× (
fpeak

30 nHz )
6/5

⋅ ( 10−8

Ωgw,peakh2
0 )

3/20

DM from the inverse phase transition

Mχ ≃ 6.5 ⋅ 10−17 eV ⋅ (
fpeak

30 nHz ) ⋅ ( g*(Ti)
100 )

1/6

⋅
10−8

Ωgw,peak ⋅ h2
0

DM from the direct phase transition

MBH ≃ 102M⊙Superradiance for LIGO

MBH ≃ 107M⊙Superradiance for LISA



Thanks a lot for attention! 


