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Soft theorems: Connecting soft limits of scattering amplitudes and sigma models 


History: Gell-Mann — Levy (1960)      Adler (1965)


👉 The simplest case: spontaneous symmetry breaking G      H, sigma model for Goldstones has coset target space G/H 

Currents generating spontaneously broken symmetries are coupled to Goldstones, but are conserved 


        ≫             SU(2)×SU(2)/SU(2);    Three axial currents are coupled to pionsExample : (GML), SU(2) chiral symmetry in QCD≪

and conserved as operators ∂μ𝒜i
μ = 0

Adler consistency condition // Adler zero

|A> = B|>

𝒜i
μ

Pion pole                               multipions 

For pole 


⟨πB |A⟩ × (2π)4δ4(pB + q − PA) ×
qμ

q2

Non-singular in q

qμ
Multiply by qμ and tend q  0→

We then get =0 at q  0⟨πB |A⟩ →
Adler zero, hurrah !!!

• M(q)

Absence of cubic vertices CRUCIAL!



Drastic changes the last decade or so


👉 2. Can one incorporate symmetries of sigma models directly into  S-matrix? 


👉 1. How to establish soft theorems if your target space is NOT a coset? (I.e. 
massless scalar particles are not necessarily Goldstones!)


👉 3. Some sigma models can be understood as consequence of a  
“generalized Adler zero” emerging in “exceptional” sigma 

models (whose leading interactions are uniquely fixed by a single coupling 
constant), namely, nonlinear sigma models, of the type CP(1), the Dirac-
Born-Infeld (DBI) theory, and the so-called special Galileon.


 
 • Cheung, K. Kampf, J. Novotny and J. Trnka (2015)                                  
Generalized Adler zero: M(q) =O(q  ),             

σ ℒ = (∂ϕ)2 ∑
m

λmn∂mϕn

Indices:     σ, m, ρ = m/n
Dirac–Born–Infeld action:                  Galileon is a scalar field whose action is invariant


                                                                                            under Galilean transformations, e.g.   

                                                                                             

                                                                                             


ℒ = − b2 −det(η +
F
b ) + b2

Gal13 → ∂μπ∂μπ(∂2)π − ∂μπ∂μ∂νπ∂νπ

η is the Minkowski metric, F is the Faraday tensor 

https://en.wikipedia.org/wiki/Minkowski_metric
https://en.wikipedia.org/wiki/Faraday_tensor


•  Variety of Soft Recursion Relations: What particular sigma models will be considered?  

Model 1: U(1) fibration of CP(1) O(3):                            3D target space∼

Model 2: U(1) Lie-algebraic generalization of  CP(1) O(3):   2D target space∼

Si Si = 1 unit (iso)vector

ℋ → ℒEuclid =
1

2g2
∂μS∂μS → G ∂μϕ†∂μϕ =

1
2g2

1
(1 + ϕ†ϕ)2

∂μϕ†∂μϕ

Nearest-neighbors isotropic interaction   

2D

3D

2D



Adler Zeroes: if T= coset G/H, e.g. CP(1) or PCM. ( )

 Spontaneously broken currents are crucial!

Modulo some nuances

If not ALL massless particles are Goldstone (T  coset), then 

Adler zeros  Recursions

≠
→

Typically, 
p2

p1p

p = p1 + p2 → pole singularity

To avoid Adler zero and arrive at recursions, generically, both even- and odd-
particle amplitudes  0. , e.g.

linear terms in nonlinearly realized sim transformations

≠ Some other necessary conditions apply

Cheung review + Cheung, K. Kampf, J. Novotny and J. Trnka (2015)  



Noncollinear magnetic phenomena in correlated electron systems in cont. 
limit are described by a sigma model on target space with a geometry 
that interpolates between 2D sphere S2  and 3D sphere S3 


ℋ =
1

2g2 ∫ dx ∑
a=1,2,3

Ja
μJa

μ − κJ3
μJ3

μ ,

Jμ = − iU†∂μU ≡ ∑
a

2 Ja
μTa , Ja

μ = Tr (JμTa) , U†U = 1

0 ≤ κ ≤ 1

U(x) ∈ SU(2)
Gell-Mann—Levy 
representation

for three pions

If κ = 1, then CP1 model

If 0 < κ < 1, then U(1) fibtration over CP1
Target = 2D sphere

Target = 3D sphere

Coset SU(2)/U(1) and sl(2)

Coset SU(2) SU(2)/SU(2)×

If κ = 0, then U(1) Principal Chiral Model GML



Adler Zeroes → Soft Recursion Relations
[SU(N)/(SU(N-1) × U(1))] × U(1)  SU(N)/SU(N-1)           dim= 2N-1

  

∼

For generic k cubic vertices are present

 In the soft limit  n-leg amplitude through a sum of (n-1) amplitudes ✌p → 0



SU(2) Example (Soft Recursion Relations)
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where the lower point amplitudes are defined as follows:
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+
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�
J1

. . .
\
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�
Jj

(qj). . .�
�
Jn

, �(qj), {�}).

In the first case, A
(i)
M�1, we start with AM defined in (26)

and remove particle �(ki), then we replace the particle
�

+
I1

(p1) by �
+
I1

(ki), i.e. just replace momenta keeping
the quantum numbers the same, and finally sum over all

particles �(ki) which are removed. In the case of A
(j)
M�1

we remove particle �
+
I1

completely as well as �
�
Jj

, and add

a new single scalar particle �(qj) with the momentum of
removed �

� particle. Graphically we have (left picture
corresponds to A

(i) while the right for A
(j))
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where the red color stands for removed legs and blue for
the legs added. For q1 ! 0 the soft theorem is the same
except the overall sign on the right hand side of (27). As
discussed earlier any amplitude vanishes for kj ! 0.

In the following, we focus now on the N = 2 case which
describes only three fields: �

±, �. To check the soft the-
orem we first calculate all non-vanishing 4pt amplitudes,

A4(�
+
1 , �

+
2 , �

�
3 , �

�
4 ) =

1

4F 4
(3F

2
0 � 8F

2)s12 ,

A4(�
+
1 , �

�
2 , �3, �4) =

F
2
0

4F 4
s12 , (28)

where sij = (pi + pj)2 and we used the notation �
+
1 ⌘

�
+(p1) etc., for simplicity. There is only one non-trivial

5pt amplitude,

A5(�
+
1 , �

+
2 , �

�
3 , �

�
4 , �5) =

iF0

F 6

⇣
F

2 F
2
0

2

⌘
(s12 s34). (29)

The soft theorem (27) for p1 ! 0 predicts,

lim
p1!0

A5 =
iF0

2F 2
A4(�

+
5 , �

+
2 , �

�
3 , �

�
4 )

�
iF0

2F 2

⇥
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⌘
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in agreement with the direct calculation (29).

AMPLITUDE RECONSTRUCTION

The knowledge of the soft theorem (27) can be used
as an input in the modified version of the soft recursion

relations introduced in [8]. We start with the momentum
shift where all but two particles are shifted in the way
that allows to access the soft limit,

p̂i = pi(1 � aiz)pi, i = 1, . . . n 2, (31)

p̂j = pj + zqj , j = n 1, n, (32)

where the parameters ai and vectors qj must preserve on-
shell conditions and momentum conservation. For this
shift any scattering amplitude scales like An(z) = O(z2),
just based on the momentum counting. Then we consider
a residue theorem for the meromorphic function Fn(z),

Fn(z) ⌘
An(z)

z
Q

i(1 � aiz)
. (33)

We need at least three factors of (1� aiz) in the denom-
inator to have vanishing residue at z ! 1, i.e.

lim
R!1

I

|z|=R
dz Fn(z) = 0 . (34)

We can then express the residue at z = 0, the original
amplitude An, as the sum of all other residues

An = �

X

k

Resz=zk Fn(z) �
X

i

Resz= 1
ai

Fn(z) . (35)

The first sum on the right hand side refers to factorization
poles from An(z), each term is equal to the product of
corresponding lower point amplitudes. The second sum
is over the soft limit poles when one of the p̂j ! 0. In
[8] we considered only theories with vanishing soft lim-
its, i.e. the second sum never contributed, but now the
contribution is non-zero and it is given by (18).

As an example, we will reconstruct the 5pt amplitude
from N = 2 model, A5(�

+
1 , �

+
2 , �

�
3 , �

�
4 , �). We shift legs

1,2,5 as (31) and 3,4 as (32). The amplitude does not
have any factorization poles, and the only poles of F5(z)
are soft poles. As the shifted amplitude vanishes for p̂5 !

0 the only contributions come from p̂1 or p̂2 ! 0 soft
limits. The residue at z = 1/a1 then reads

Resz= 1
a1

F5(z) = �

cA5|z=1/a1

(1 � a2/a1)(1 � a5/a1)
. (36)

The value of the shifted amplitude cA5|z=1/a1
can be ob-

tained from the soft theorem (30) by considering the
shifted kinematics,

p̂1 = 0, p̂2 =
⇣

a1 � a2

a1

⌘
p2, p̂5 =

⇣
a1 � a5

a1

⌘
p5.

Plugging the result into (36) we get

Resz= 1
a1

F5(z) =
iF0

F 6

⇣
F

2 F
2
0

2

⌘
s25. (37)

Similarly, the residue at the pole z = 1
a2

for p̂2 = 0 gives

Resz= 1
a2

F5(z) =
iF0

F 6

⇣
F

2 F
2
0

2

⌘
s15, (38)

and after using the momentum conservation the sum of
(37), (38) reproduces the formula (29).
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(37), (38) reproduces the formula (29).

[SU(2)/U(1)]×U(1)

3 massless ϕ+, ϕ−, χ

Verify 5 leg ampl vs . sum of 4 leg ampl--

GENERAL [SU(N)/(SU(N-1)×U(1))] × U(1)

[SU(2)/U(1)]×U(1)
ϕ+

ϕ+ ϕ−

ϕ−

ϕ+ ϕ−

χχ

χ
ϕ+ ϕ−

ϕ+ ϕ−

F0 =
1
g

1 − κ , F =
1

2g
, sij = (pi + pj)2



Praszalowicz-Fest 

A few remarks after Larry McLerran: today’s advances in Skyrmions and related theories

Michal was instrumental in many developments in the Skyrmion theory which were mentioned in 

Larry McLerran presentation

ℋ =
1

2g2 ∫ dx ∑
a=1,2,3

Ja
μJa

μ − κJ3
μJ3

μ ,From page 6:

U(1) fibration over CPN-1

κ = 1 → CP1; κ = 0 → PCM → Skyrme model

Faddeev-Niemi Hopfions



Carlos Naya, Daniel Schubring, Mikhail Shifman, Zhentao Wang, 2022

Limit  reduces to a frustrated magnetic system earlier considered by 
Sutcliffe as a host to Hopfions;

Limit  is similar to the 3D Skyrme model.

κ ∼ 1

κ ∼ 0

κ κ κ

(a) Position curve of a Q=7 Skyrmion at ; (b) For positive relatively small β this settles to a three loop 
configuration; The three-loop solution may be tracked for increasing β, but it develops an instability at β = 
0.77 and settles to a distinct buckled loop configuration

κ = 0 κ
κ κ

Skyrmion Hopfion
Q=7



Dynamics of Goldstone massless particles for target spaces of SU(N)/SU(N-1) i.e. U(1) 
fibrations of CP :


 Special Recursions. Lagrangian can be uniquely fixed if we start from these recursions.


N−1

Conclusions

Skymion and Hopfion topological numbers are related; There is a continuous path in  leading 

from one to another


κ


