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Outline of the talk

1) Review of the Hawking’s calculation

2) Modification of the Hawking’s argument

3) Thermodynamic interpretation and a simple model of backreaction
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Vaidya Metric

A simple model of the process of black hole formation:

• The far past is an empty flat space

• At advanced time 𝑣 = 0 a null shockwave with a total

energy 𝑀 is sent in. This infinitely thin collapsing shell of 

matter eventually forms a Schwarzschild black hole of 

mass 𝑀.

• Corresponding metric:

𝑔 = − 1 −
2𝑀

𝑟
𝜃 𝑣 d𝑣2 + 2d𝑣d𝑟 + 𝑟2dΩ2,

where 𝜃 𝑣 is the Heaviside step function.
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Scalar perturbations in the Vaidya spacetime

• Take real, massless scalar field Φ. Equations of motion: ∇𝜇∇
𝜇Φ = 0

• Mode decomposition: 

Φ 𝑥 =෍

𝑙,𝑚

න
0

∞

d𝜔 𝐴𝜔𝑙𝑚𝑝𝜔𝑙𝑚 𝑥 + h. c.

=෍

𝑙,𝑚

න
0

∞

d𝜔 𝐵𝜔𝑙𝑚ℎ𝜔𝑙𝑚 𝑥 + h. c. +
part supported
in the BH interior

• Positive-frequency modes on ℐ−:   

𝑝𝜔𝑙𝑚 𝑥
𝑥→ℐ− 1

4𝜋𝜔

𝑒−𝑖𝜔 𝑡+𝑟

𝑟
𝑌𝑙𝑚 𝜃, 𝜑

• Positive-frequency modes on ℐ+:   

ℎ𝜔𝑙𝑚 𝑥
𝑥→ℐ+ 1

4𝜋𝜔

𝑒−𝑖𝜔 𝑡−𝑟

𝑟
𝑌𝑙𝑚 𝜃, 𝜑

• Upon quantization, 𝐴𝜔𝑙𝑚, 𝐵𝜔𝑙𝑚 are annihilation operators, which allow us to 

formulate a definition of ”particles”.

ℎ𝜔𝑙𝑚

𝑝𝜔𝑙𝑚

4/13



Review of the Hawking’s argument

• state of the system = 0 , s. t. 𝐴𝜔𝑙𝑚 0 = 0 ∀ 𝜔, 𝑙,𝑚.

• Want to find find the Bogoliubov transformation between

positive-frequency modes on ℐ− and ℐ+:

ℎ𝜔 = න
0

∞

d𝜔′ 𝛼𝜔𝜔′𝑝𝜔′ + 𝛽𝜔𝜔′𝑝𝜔′
∗

• Expectation value of the particle number on ℐ+:  𝑁𝜔
+ =

0 𝐵𝜔
†𝐵𝜔 0 = 0׬

∞
d𝜔′ 𝛽𝜔𝜔′

2 .

• Focus on wavepackets localized near the horizon. By a general ray-tracing argument one can show 

that the Bogoliubov coefficients satisfy 𝛼𝜔𝜔′ = 𝑒4𝜋𝑀𝜔 𝛽𝜔𝜔′ .Then completeness relation

σ𝜔′ 𝛼𝜔𝜔′
2 − 𝛽𝜔𝜔′

2 = 1 implies:

𝑁𝜔
+ =෍

𝜔′

𝛽𝜔𝜔′
2 =

1

𝑒2𝜋𝜔/𝜅 − 1 5/13



Hawking quanta far away from the horizon

• For high frequencies 𝜔 ≫ 𝑀−1 (WKB approx.) we can solve the Klein-

Gordon equation without the near-horizon limit.

• For Vaidya spacetime we can infer the relations between ℎ𝜔𝑙𝑚 and 

𝑝𝜔𝑙𝑚 from a continuity condition across the shockwave 𝑣 = 0 .

ℎ𝜔 ቚ
𝑣=0

= න
0

∞

d𝜔′ 𝛼𝜔𝜔′ 𝑝𝜔′ + 𝛽𝜔𝜔′ 𝑝𝜔′
∗ ቚ

𝑣=0

= න
𝛿

∞

d𝜔′ 𝛼𝜔𝜔′ 𝑝
𝜔′
1
+ 𝛽𝜔𝜔′ 𝑝

𝜔′
1 ∗

ቚ
𝑣=0

+
zero frequency

part
,

where 𝑝𝜔 = 𝑝𝜔
1
+ 𝑝𝜔

2
+ 𝑝𝜔

3
, 𝑝𝜔

1
= 𝑝𝜔 ⋅ 𝜃 𝑣0 − 𝑣 and 𝛿 → 0.

ℎ𝜔
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Hawking quanta far away from the horizon

• We obtain:

𝛽𝜔𝜔′ =
1

𝜋

𝜔′

𝜔

1/2

න
2𝑀

∞

d𝑟
𝑟

2𝑀
− 1

4𝑖𝑀𝜔

𝑒2𝑖 𝜔+𝜔
′ 𝑟

and 𝛼𝜔𝜔′ = 𝛽𝜔,−𝜔′ .  The relation 𝛼𝜔𝜔′ = exp
𝜋𝜔

𝜅
𝛽𝜔𝜔′ is not satisfied! 

• Expectation value of the number operator is logarithmically divergent at UV, so we need to 

introduce a UV-cutoff Λ ≫ 𝜔.Then:

𝑁𝜔
+ = න

0

Λ

d𝜔′ 𝛽𝜔𝜔′
2 =

2𝑀

𝜋

1

𝑒𝛽𝐻𝜔 − 1
log Λ/𝜔 + 𝒪 Λ0 ,

where 𝛽𝐻 = 8𝜋𝑀 is the inverse Hawking temperature. 

• We have a non-thermal dependence ∝ log Λ/𝜔 .
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Kerr black hole radiation

𝑝𝜔
1

ℎ𝜔

One can do similar calculations for Kerr-Vaidya black hole:

𝛽𝜔𝜔′

=
1

2𝜋

𝜔′

𝜔

1
2

න
𝑟+

∞

d𝑟 1 +
𝑟2 − 𝐾𝜔𝑙𝑚/𝜔2

𝑟2 + 𝑎2
𝑟 − 𝑟+
𝑟 − 𝑟−

−
𝑖𝑚Ω+
𝜅+

𝑒
𝑖𝑚 arctan

𝑟
𝑎 exp 𝑖𝜔′ 𝑟 + න

𝑟+

𝑟

d𝑟′
𝑟′2 − 𝐾𝜔𝑙𝑚/𝜔2

𝑟′2 + 𝑎2
×

× exp 𝑖𝜔′ 𝑟 +
1

2𝜅+
log

𝑟

𝑟+
− 1 +

1

2𝜅−
log

𝑟

𝑟−
− 1 +න

𝑟+

𝑟

d𝑟′
𝑟′4 + 𝑎2𝑟′ 𝑟′ + 2𝑀 − Δ 𝑟′ 𝐾𝜔𝑙𝑚/𝜔2

𝑟′ − 𝑟+ 𝑟′ − 𝑟−
,

Divergent part:

𝛽𝜔𝜔′ ∼
𝜔′

𝜔

1
2

2𝑖𝑟+ 𝜔 + 𝜔′ 1+
𝑖𝜔
𝜅+

−
𝑖𝑚Ω+
2𝜅+ Γ 1 +

𝑖𝜔

𝜅+
−
𝑖𝑚Ω+
2𝜅+

𝑁𝜔
+ ∼ log

Λ

𝜔
exp

2𝜋

𝜅+
𝜔 −

𝑚Ω+
2

− 1

−1

Contribution from the angular momentum

does not agree with the standard results!?

8/13



Thermodynamic interpretation

Think of ℎ𝜔 as sum of 𝑁 modes localized in position space - 𝑁 boxes

with photon gas.  Assume that the box at position 𝑟𝑖 has temperature

𝑇𝑖 =
ℏ

2𝜋

𝑀

𝑟2
1 −

2𝑀

𝑟

1/2

=
ℏ𝛼𝑖
2𝜋

,

Take density of states:  𝛿𝜌𝑖 𝜔 d𝜔 = 𝐶 ⋅ 𝛿𝑟 ⋅ d𝜔.

Free energy:

𝐹 =෍

𝑖

𝐹𝑖 = −
ℏ𝐶

2𝜋
න
0

∞

d𝜔 log
Λ

𝜔
log 1 − 𝑒−𝛽𝐻ℏ𝜔

• Relation between position space and momentym space UV cutoffs:    𝑏 = 2𝑀
𝜔

Λ

2
+ 𝒪 Λ−3

• Entropy 𝑆 = σ𝑖 𝑆𝑖 ∝ log 2𝑀/𝑏 resembles the formula for entanglement entropy of a 2d CFT
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Simple model of backreaction – is formation of a non-extremal black hole possible?  

Σ
𝑣 = 0

Dynamical part of the spacetime.

A little bit of Hawking radiation is

created here, at early times

Energy of the shockwave is

decreased:

𝑀 → 𝑀 − 𝛿𝑈
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Simple model of backreaction – is formation of a non-extremal black hole possible?  

Σ
𝑣 = 0

Dynamical part of the spacetime.

A little bit of Hawking radiation is

created here, at early times

Energy of the shockwave is

decreased:

𝑀 → 𝑀 − 𝛿𝑈

𝑣 = 0

Σ′

Large number of Hawking quanta is created at later times:

𝑈𝐻𝑎𝑤𝑘𝑖𝑛𝑔 ∼ 𝑀

Semi-classical horizon is shifted to 𝑟𝐻
′ = 2 𝑀 − 𝑈𝐻𝑎𝑤𝑘𝑖𝑛𝑔 10/13



Simple model of backreaction – is formation of a non-extremal black hole possible?  

Region where large

number of Hawking 

quanta is created.

Classical event horizon,

𝑟 = 2𝑀
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Simple model of backreaction – is formation of a non-extremal black hole possible?  

Region where large

number of Hawking 

quanta is created.

Classical event horizon,

𝑟 = 2𝑀

Energy of the shockwave gradually decreases.  

When the shockwave reaches 𝑟 = 0, its

energy vanishes. No singularity is formed.
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Simple model of backreaction – is formation of a non-extremal black hole possible?  

Region where large

number of Hawking 

quanta is created.

Classical event horizon,

𝑟 = 2𝑀

Energy of the shockwave gradually decreases.  

When the shockwave reaches 𝑟 = 0, its

energy vanishes. No singularity is formed.

Because of backreaction, no event horizon is

formed and there is no sigularity.  We are left

with an ordinary scattering problem in an 

asymptotically flat spacetime!
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Simple model of backreaction – is formation of a non-extremal black hole possible?  

Divide a surface 𝑣 = const. > 0 into small compartments of fixed affine length 𝛿𝑟, and assume that the 

compartment at 𝑟 = 𝑟𝑖 is filled with an ideal gas at Unruh temperature 𝑇𝑖 .

Energy of the system at position 𝑟𝑖 :

𝛿𝑈𝑖 = 𝛿𝑟𝑖 ⋅ න
0

∞

d𝜔 𝜌 𝜔
𝜔

exp ℏ𝜔/𝑇𝑖 − 1
Primitive model of backreaction:

𝑀 𝑟 = 𝑀 ∞ +න
∞

𝑟

d𝑟′න
0

∞

d𝜔 𝜌 𝜔
𝜔

exp ℏ𝜔/𝑇𝑖 − 1
.

For 𝜌 𝜔 = 𝑐0 ⋅ 𝜔, with suitable 𝑐0 we can make the whole black hole evaporate

𝑀 𝑟 = 0 = 0,

and recover the Bekenstein-Hawking formula for the black hole entropy from the standard thermodynamic

formula:

𝑆 = −
𝜕𝐹

𝜕𝑇𝐻
= 4𝜋𝑀2.
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Thank you for your attention!
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