Introduction to asymptotically safe gravity

64th Kraków school of Theoretical Physics, Zakopane, July 2024

Astrid Eichhorn, University of Southern Denmark

64. Cracow School of Theoretical Physics

From the UltraViolet to the InfraRed: a panorama of modern gravitational physics

June 15-23, 2024 Zakopane, Tatra Mountains, Poland

64. Cracow School of Theoretical Physics

Lecture 1: Introduction to asymptotically safe gravity

- Problem of perturbative quantum gravity
- Asymptotically safe quantum gravity
 - Main idea
 - Tools/Techniques
 - Evidence

From the UltraViolet to the InfraRed: a panorama of modern gravitational physics

June 15-23, 2024 Zakopane, Tatra Mountains, Poland

64. Cracow School of Theoretical Physics

Lecture 1: Introduction to asymptotically safe gravity

- Problem of perturbative quantum gravity
- Asymptotically safe quantum gravity
 - Main idea
 - Tools/Techniques
 - Evidence

Lecture 2: Probing (asymptotically safe) gravity at all scales

- Asymptotically safe gravity and matter:
 - Effect of matter on gravity
 - Effect of gravity on Standard Model matter
 - Asymptotic safety in the dark sector

Quantum gravity

Classical gravity:

$$S = \frac{1}{16\pi G} \int d^4 x \sqrt{-g} R \quad \rightarrow \quad R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 0 \quad \rightarrow \quad g_{\mu\nu}$$

Quantum gravity

Classical gravity:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g}$$

Quantum gravity:

$$e^{i\Gamma[\langle g_{\mu\nu}]\rangle} = \int \mathscr{D}g_{\mu\nu} e^{\frac{i}{\hbar}S[g_{\mu\nu}]}$$

• • •

Quantum gravity

Classical gravity:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g} R \quad \to \quad R_{\mu\nu} - \frac{1}{16\pi G} \int d^4x \sqrt{-g}$$

Quantum gravity:

$$e^{i\Gamma[\langle g_{\mu\nu}]\rangle} = \int \mathscr{D}g_{\mu\nu} e^{\frac{i}{\hbar}S[g_{\mu\nu}]}$$

 $\langle g_{\mu\nu} \rangle$

What is the effect of quantum fluctuations?

New interactions!

The problem of perturbative quantum gravity

$$e^{i\Gamma[\langle g_{\mu\nu}]\rangle} = \int \mathscr{D}g_{\mu\nu} e^{\frac{i}{\hbar}S[g_{\mu\nu}]}$$
 with

1-loop divergences

$$\sim \sqrt{-g}, \sim \sqrt{-g}R, \sim \sqrt{-g}R^2, \sim \sqrt{-g}R_{\mu\nu}R^{\mu\nu}$$

2-loop divergences

$$\ldots \sim \sqrt{-g} R_{\mu\nu\kappa\lambda} R^{\kappa\lambda}{}_{\rho\sigma} R^{\rho\sigma\mu\nu}, \ldots$$

superficial degree of divergence:

$$D = 2L + 2$$

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g}R$$

The problem of perturbative quantum gravity

$$e^{i\Gamma[\langle g_{\mu\nu}]\rangle} = \int \mathscr{D}g_{\mu\nu} e^{\frac{i}{\hbar}S[g_{\mu\nu}]}$$
 with

1-loop divergences

$$\sim \sqrt{-g}, \sim \sqrt{-g}R, \sim \sqrt{-g}R^2, \sim \sqrt{-g}R_{\mu\nu}R^{\mu\nu}$$

2-loop divergences

$$\ldots \sim \sqrt{-g} R_{\mu\nu\kappa\lambda} R^{\kappa\lambda}{}_{\rho\sigma} R^{\rho\sigma\mu\nu}, \ldots$$

superficial degree of divergence:

$$D = 2L + 2$$

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g}R$$

perturbative non-renormalizability

 \Rightarrow loss of predictivity

The problem of perturbative quantum gravity

$$e^{i\Gamma[\langle g_{\mu\nu}]\rangle} = \int \mathscr{D}g_{\mu\nu} e^{\frac{i}{\hbar}S[g_{\mu\nu}]}$$
 with

1-loop divergences

$$\sim \sqrt{-g}, \sim \sqrt{-g}R, \sim \sqrt{-g}R^2, \sim \sqrt{-g}R_{\mu\nu}R^{\mu\nu}$$

2-loop divergences

$$\ldots \sim \sqrt{-g} R_{\mu\nu\kappa\lambda} R^{\kappa\lambda}{}_{\rho\sigma} R^{\rho\sigma\mu\nu}, \ldots$$

superficial degree of divergence:

$$D = 2L + 2$$

eff	ec
\Rightarrow	h

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g}R$$

perturbative non-renormalizability

 \Rightarrow loss of predictivity

 C_i ctive field theory: assume naturalness (all couplings - $\frac{d}{d}$ with $c_i \sim \mathcal{O}(1)$ nigher-order interactions subleading for processes at energies $E \ll M_{
m Pl}$

Imposing a symmetry on an action relates couplings and/or sets them to zero

Example:

real scalar field theory without internal symmetry: allowed interactions $\lambda_i \phi^i, \ldots$

real scalar field theory with internal \mathbb{Z}_2 symmetry ($\phi o - \phi$): allowed interactions $\lambda_{2i} \phi^{2i}, \dots$

Imposing a symmetry on an action relates couplings and/or sets them to zero

Example:

real scalar field theory without internal symmetry: allowed interactions $\lambda_i \phi^i, \ldots$

real scalar field theory with internal \mathbb{Z}_2 symmetry ($\phi
ightarrow - \phi$): allowed interactions $\lambda_{2i} \phi^{2i}, \ldots$

Gravitational example: supergravity

\mathbf{T}^{1}	neorv	
-	. iooi j	

Theory	Counterterm	Loop Order	divergence
D = 4, Q = 32, N = 8	$\mathcal{D}^{8}R^{4}$	7	unknown
D = 4, Q = 16, N = 4	R^4	3	no
D = 4, Q = 20, N = 5	$\mathcal{D}^2 R^4$	4	no
D = 24/5, Q = 32	$\mathcal{D}^{8}R^{4}$	5	yes
D = 5, Q = 16	R^4	2	no

from Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, '23

Imposing a symmetry on an action relates couplings and/or sets them to zero

Example:

real scalar field theory without internal symmetry: allowed interactions $\lambda_i \phi^i, \ldots$

real scalar field theory with internal \mathbb{Z}_2 symmetry ($\phi \to -\phi$): allowed interactions $\lambda_{2i} \phi^{2i}, \ldots$

Gravitational example: supergravity

|--|

Theory	Counterterm	Loop Order	divergence
D = 4, Q = 32, N = 8	$\mathcal{D}^{8}R^{4}$	7	unknown
D = 4, Q = 16, N = 4	R^4	3	no
D=4, Q=20, N=5	$\mathcal{D}^2 R^4$	4	no
D = 24/5, Q = 32	$\mathcal{D}^{8}R^{4}$	5	yes
D = 5, Q = 16	R^4	2	no

Usually: symmetry imposed at the classical level; checking for anomalies when quantizing \rightarrow what about symmetries that *emerge* at the quantum level?

from Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, '23

What symmetry? Scale symmetry!

Hypothesis: The quantum structure of spacetime is described by an asymptotically safe quantum field theory of the metric - gravity exhibits quantum scale symmetry [Weinberg '74]

What symmetry? Scale symmetry!

Hypothesis: The quantum structure of spacetime is described by an asymptotically safe quantum field theory of the metric - gravity exhibits quantum scale symmetry [Weinberg '74]

 \rightarrow not available for Einstein gravity

energy/momentum scale k

Predictivity in asymptotic safety

energy/momentum scale k

asymptotic safety (nontrivial Renormalization Group fixed point) \Rightarrow values of all couplings fixed in the UV

Asymptotic safety (quantum scale symmetry): $\beta_{g_i} = k \partial_k g_i(k) = 0 \ \forall i$

 \rightarrow system of coupled algebraic equations

Example:
$$\Gamma_k = \int d^4x \sqrt{g} \sum_{n=0}^8 g_n R^n$$

n	$ ilde{\Lambda}_*$	\tilde{G}_*	$\tilde{\Lambda}_* \tilde{G}_*$				-	$10^3 \times$				
				\tilde{g}_{0*}	\tilde{g}_{1*}	\tilde{g}_{2*}	\widetilde{g}_{3*}	\tilde{g}_{4*}	$ ilde{g}_{5*}$	\tilde{g}_{6*}	\tilde{g}_{7*}	
1	0.1297	0.9878	0.1282	5.226	-20.140							
2	0.1294	1.5633	0.2022	3.292	-12.726	1.514						
3	0.1323	1.0152	0.1343	5.184	-19.596	0.702	-9.682					
4	0.1229	0.9664	0.1188	5.059	-20.585	0.270	-10.967	-8.646				
5	0.1235	0.9686	0.1196	5.071	-20.538	0.269	-9.687	-8.034	-3.349			
6	0.1216	0.9583	0.1166	5.051	-20.760	0.141	-10.198	-9.567	-3.590	2.460		
7	0.1202	0.9488	0.1141	5.042	-20.969	-0.034	-9.784	-10.521	-6.048	3.421	5.905	
8	0.1221	0.9589	0.1171	5.066	-20.748	0.088	-8.581	-8.926	-6.808	1.165	6.196	4

[Codello, Percacci, Rahmede '08]

 \rightarrow generically, besides $g_i = 0 \forall i$ (free fixed point, which is guaranteed to exist), at best a finite number of real zeros

Sources and sinks of the Renormalization Group flow

Sources and sinks of the Renormalization Group flow

Quantum fluctuations screen or antiscreen interactions

Standard Model examples:

QED:
$$\beta_e = k \,\partial_k e(k) = \frac{1}{12\pi^2} e^3 + \dots$$

 $\rightarrow e(k)$ decreases as k is lowered

QCD:
$$\beta_g = k \partial_k g(k) = -\frac{7}{16\pi^2}g^3 + \dots$$

 $\rightarrow g(k)$ increases as k is lowered

 $\rightarrow g(k)$ increases as k is lowered

relevant couplings

$$\beta_{\alpha} = \alpha \left(\alpha_* - \alpha \right)$$

from scale symmetry

 \rightarrow a range of coupling values achievable at the Planck scale

 $\rightarrow g(k)$ increases as k is lowered

relevant couplings

$$\beta_{\alpha} = \alpha \left(\alpha_* - \alpha \right)$$

from scale symmetry

 \rightarrow a range of coupling values achievable at the Planck scale

irrelevant couplings

 $\beta_{\alpha} = \alpha \left(-\alpha_* + \alpha \right)$

quantum fluctuations drive coupling towards scale symmetry

 \rightarrow a unique coupling value achievable at the Planck scale

 \rightarrow partially interacting fixed points: one relevant direction, α_2 and α_N become functions of one another

 \rightarrow fully interacting fixed point: no relevant directions, no free parameters

$$\beta_{\alpha} = \alpha \left(\alpha_* - \alpha \right)$$

achievable at the Planck scale

irrelevant couplings

 $\beta_{\alpha} = \alpha \left(-\alpha_* + \alpha \right)$

quantum fluctuations drive coupling towards scale symmetry

 \rightarrow a unique coupling value achievable at the Planck scale

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j*} \right) + \mathcal{O}\left(g_j - g_{j*} \right)^2$$

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j^*} \right) + \mathcal{O}\left(g_j - g_{j^*} \right)^2$$

solution:
$$g_i(k) = g_{i*} + \sum_I C_I V_i^I \left(\frac{k}{k_0}\right)^{-\theta_I}$$
 with $\theta_I = -\operatorname{eig}\left(\frac{\partial \beta_g}{\partial g_I}\right)^{-\theta_I}$

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j*} \right) + \mathcal{O}\left(g_j - g_{j*} \right)^2$$

solution:
$$g_i(k) = g_{i*} + \sum_I C_I V_i^I \left(\frac{k}{k_0}\right)^{-\theta_I}$$
 with $\theta_I = -\operatorname{eig}\left(\frac{\partial \beta_g}{\partial g_I}\right)^{-\theta_I}$

For $\theta_I > 0$, C_I enters $g_i(k)$ at $k \ll k_0 \Rightarrow$ free parameter

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j*} \right) + \mathcal{O}\left(g_j - g_{j*} \right)^2$$

solution:
$$g_i(k) = g_{i*} + \sum_I C_I V_i^I \left(\frac{k}{k_0}\right)^{-\theta_I}$$
 with $\theta_I = -\operatorname{eig}\left(\frac{\partial \beta_g}{\partial g_I}\right)^{-\theta_I}$

For $\theta_I > 0$, C_I enters $g_i(k)$ at $k \ll k_0 \Rightarrow$ free parameter

For $\theta_I < 0$, C_I doesn't enter $g_i(k)$ at $k \ll k_0 \Rightarrow$ no free parameter

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j*} \right) + \mathcal{O}\left(g_j - g_{j*} \right)^2$$

solution:
$$g_i(k) = g_{i*} + \sum_I C_I V_i^I \left(\frac{k}{k_0}\right)^{-\theta_I}$$
 with $\theta_I = -\operatorname{eig}\left(\frac{\partial \beta_g}{\partial g_I}\right)^{-\theta_I}$

For $\theta_I > 0$, C_I enters $g_i(k)$ at $k \ll k_0 \Rightarrow$ free parameter

For $\theta_I < 0$, C_I doesn't enter $g_i(k)$ at $k \ll k_0 \Rightarrow$ no free parameter

(Note: beta functions not universal, but critical exponents are)

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j*} \right) + \mathcal{O}\left(g_j - g_{j*} \right)^2$$

solution:
$$g_i(k) = g_{i*} + \sum_I C_I V_i^I \left(\frac{k}{k_0}\right)^{-\theta_I}$$
 with $\theta_I = -\operatorname{eig}\left(\frac{\partial \beta_{g_i}}{\partial g_j}\right)^{-\theta_I}$

- $\frac{2}{2}$

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j^*} \right) + \mathcal{O}\left(g_j - g_{j^*} \right)^2$$

solution:
$$g_i(k) = g_{i*} + \sum_I C_I V_i^I \left(\frac{k}{k_0}\right)^{-\theta_I}$$
 with $\theta_I = -\operatorname{eig}\left(\frac{\partial \beta_{g_i}}{\partial g_j}\right)^{-\theta_I}$

Free fixed point:

$$\theta_i = -\frac{\partial \beta_i}{\partial g_i}\Big|_{g=0} = -\frac{\partial}{\partial g_i} \left(k\partial_k \left(\bar{g}_i k^{-d_{\bar{g}_i}} \right) \right) \Big|_{g=0} = d_{\bar{g}_i},$$

couplings with positive mass dimension are relevant

couplings with vanishing mass dimension are marginally (ir)relevant

couplings with negative mass dimension are irrelevant

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j^*} \right) + \mathcal{O}\left(g_j - g_{j^*} \right)^2$$

solution:
$$g_i(k) = g_{i*} + \sum_I C_I V_i^I \left(\frac{k}{k_0}\right)^{-\theta_I}$$
 with $\theta_I = -\operatorname{eig}\left(\frac{\partial \beta_{g_i}}{\partial g_j}\right)^{-\theta_I}$

Free fixed point:

$$\theta_{i} = -\frac{\partial \beta_{i}}{\partial g_{i}}\Big|_{g=0} = -\frac{\partial}{\partial g_{i}}\left(k\partial_{k}\left(\bar{g}_{i}k^{-d_{\bar{g}_{i}}}\right)\right)\Big|_{g=0} = d_{\bar{g}_{i}},$$

couplings with positive mass dimension are relevant

couplings with vanishing mass dimension are marginally (ir)relevant

couplings with negative mass dimension are irrelevant

Interacting fixed point:

$$\theta_{i} = -\frac{\partial \beta_{i}}{\partial g_{i}}\Big|_{g=g_{*}} = -\frac{\partial}{\partial g_{i}}\left(k\partial_{k}\left(\bar{g}_{i}k^{-d_{\bar{g}_{i}}}\right)\right)\Big|_{g=g_{*}} = d_{\bar{g}_{i}} + \mathcal{O}(g_{i}k^{-d_{\bar{g}_{i}}})$$

- can be more or less predictive than the free fixed point
- no way to know free parameters a priori

Linearize beta functions

$$\beta_{g_i} = \beta_{g_i}(\overrightarrow{g} = \overrightarrow{g_*}) + \sum_j \frac{\partial \beta_{g_i}}{\partial g_j} \Big|_{\overrightarrow{g} = \overrightarrow{g_*}} \left(g_j - g_{j^*} \right) + \mathcal{O}\left(g_j - g_{j^*} \right)^2$$

Free fixed point:

$$\theta_{i} = -\frac{\partial \beta_{i}}{\partial g_{i}}\Big|_{g=0} = -\frac{\partial}{\partial g_{i}}\left(k\partial_{k}\left(\bar{g}_{i}k^{-d_{\bar{g}_{i}}}\right)\right)\Big|_{g=0} = d_{\bar{g}_{i}},$$

couplings with positive mass dimension are relevant

couplings with vanishing mass dimension are marginally (ir)relevant

couplings with negative mass dimension are irrelevant

Interacting fixed point:

$$\theta_{i} = -\frac{\partial \beta_{i}}{\partial g_{i}}\Big|_{g=g_{*}} = -\frac{\partial}{\partial g_{i}}\left(k\partial_{k}\left(\bar{g}_{i}k^{-d_{\bar{g}_{i}}}\right)\right)\Big|_{g=g_{*}} = d_{\bar{g}_{i}} + \mathcal{O}(g_{i}k^{-d_{\bar{g}_{i}}})$$

- can be more or less predictive than the free fixed point
- no way to know free parameters a priori

Asymptotic safety in gravity - key concepts

$$Z = \int \mathscr{D}g_{\mu\nu} e^{iS[g_{\mu\nu}]}$$

$$S[g_{\mu\nu}] = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left(R - 2\bar{\Lambda}\right) + \dots$$

 G_N : interactions of gravity with matter & nonlinear gravitational self-interactions

quantum effects: $G_N \rightarrow G_N(k)$, similarly for higher-order interactions

• • •

Asymptotic safety in gravity - key concepts

$$Z = \int \mathscr{D}g_{\mu\nu} e^{iS[g_{\mu\nu}]}$$

$$S[g_{\mu\nu}] = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left(R - 2\bar{\Lambda}\right) + \dots$$

 G_N : interactions of gravity with matter & nonlinear gravitational self-interactions

quantum effects: $G_N \rightarrow G_N(k)$, similarly for higher-order interactions

Most conservative approach to quantum gravity:

- metric carries gravitational degrees of freedom \rightarrow works at low energies, so only give up if shown to fail
- Standard quantum field theory framework for quantization
 → works for the other fundamental forces, so only choose
 different framework for gravity if the standard framework fails

Tools to search for asymptotic safety: Lattice

Example: Causal Dynamical Triangulations

Discrete building blocks

Asymptotic safety: can take continuum limit, because at fixed-point values of the couplings, there is (quantum) scale symmetry

Scale symmetry in lattice theories: second order phase transition

 \rightarrow interacting RG fixed points: ubiquitous in statistical physics

[Example: Ising model]

[Ambjørn, Coumbe, Gizbert-Studnicki, Görlich, Jurkiewicz '17]

$$\int d^d x \, \mathcal{O}^i$$

Wetterich equation: $\partial_k I$

$$\int d^{d}x \,\mathcal{O}^{i} \rightarrow k \partial_{k} \Gamma_{k} = \sum_{i} \beta_{g_{i}} \int d^{d}x \,\mathcal{O}^{i}$$
$$\Gamma_{k} = \frac{1}{2} \mathrm{STr} \left(\Gamma_{k}^{(2)} + R_{k} \right)^{-1} \partial_{k} R_{k} = \underbrace{\left\{ \begin{array}{c} \mathbf{O}^{(2)} \\ \mathbf{O}^{(2)} \end{array} \right\}}_{\text{(Wetterich '93, Reuter '96)}}$$

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left(\Gamma_k^{(2)} + R_k \right)$$

exact one-loop equation

$$\Gamma_k = \sum_i g_i(k) \int d^d x \, \mathcal{O}_i \longrightarrow \text{(interpret})$$

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left(\Gamma_k^{(2)} + R_k \right)$$

exact one-loop equation

$$\Gamma_k = \sum_i g_i(k) \int d^d x \, \mathcal{O}_i \longrightarrow \text{(interpret})$$

strategy

- \bullet
- \bullet
- enlarge truncation \bullet

truncate to (finite) set of equations search for fixed point solutions convergent results?

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left(\Gamma_k^{(2)} + R_k \right)$$

exact one-loop equation

$$\Gamma_k = \sum_i g_i(k) \int d^d x \, \mathcal{O}_i \longrightarrow \text{(interpret})$$

strategy

 \bullet

- \bullet
- enlarge truncation \bullet

successfully used in particle physics, statistical physics/condensed matter, e.g., Quantum Chromodynamics, BEC-BCS-crossover, strongly-correlated fermion systems, Wilson-Fisher universality classes & beyond, [see Dupuis, Canet, AE, et al. '20]

truncate to (finite) set of equations search for fixed point solutions convergent results?

successfully used in particle physics, statistical physics/condensed matter, e.g., Quantum Chromodynamics, BEC-BCS-crossover, strongly-correlated fermion systems, Wilson-Fisher universality classes & beyond, [see Dupuis, Canet, AE, et al. '20]

example: Ising universality class

scaling exponent of the correlation length:

- $\nu = 0.62999(5)$ cont
- u = 0.63002(10) Mon
- $\nu = 0.6304$ ϵ -ex
- $\nu = 0.643$ FRG
- $\nu = 0.6307$ FRG
- $\nu = 0.63007(10)$ FRG

Functional Renormalization Group in gravity

$$\rightarrow e^{-\Gamma_k[\langle g_{\mu\nu}\rangle]} = \int \mathcal{D}h_{\mu\nu}e^{-S[g_{\mu\nu}]-\frac{1}{2}\int h_{\mu\nu}R_k(-\bar{L})}$$

How to distinguish long and short "wavelength"?

 \rightarrow metric

But metrics are summed over in the path integral?

 \rightarrow auxiliary background metric $\bar{g}_{\mu\nu}$

 $ar{D})^{\mu
u\kappa\lambda}h_{\kappa\lambda}$

 $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$

Asymptotic safety in gravity: Results

Asymptotic safety in quantum gravity: Newton coupling

$$\beta_G = 2G - \# G^2 +$$

> 0 depends on regulator function

$$G_* = \frac{2}{\#}$$
 non-universal

[Reuter '96; Souma '99]

• • •

 $\theta = -\frac{\partial \beta_G}{\partial G}\Big|_{G=G_*} = 2$ universal

asymptotically safe fixed point

two relevant directions

asymptotically safe fixed point

two relevant directions

 \rightarrow connection to classical gravity?

classical regime:

asymptotically safe fixed point

two relevant directions

 \rightarrow connection to classical gravity?

classical regime:

 $G_N = \text{const} \Rightarrow \mathbf{G} = \mathbf{G}_N \cdot \mathbf{k}^2 \sim \mathbf{k}^2$

asymptotically safe fixed point

two relevant directions

 \rightarrow connection to classical gravity?

classical regime:

 $G_N = \text{const} \Rightarrow \mathbf{G} = \mathbf{G}_N \cdot \mathbf{k}^2 \sim \mathbf{k}^2$ $\bar{\Lambda} = \text{const} \Rightarrow \Lambda = \bar{\Lambda}/k^2 \sim 1/k^2$

asymptotically safe fixed point two relevant directions \rightarrow connection to classical gravity? classical regime: $G_N = \text{const} \Rightarrow \mathbf{G} = \mathbf{G}_N \cdot \mathbf{k}^2 \sim \mathbf{k}^2$ $\bar{\Lambda} = \text{const} \Rightarrow \Lambda = \bar{\Lambda}/k^2 \sim 1/k^2$ $\Rightarrow G \cdot \Lambda = \text{const}$

asymptotically safe fixed point two relevant directions \rightarrow connection to classical gravity? classical regime: $G_N = \text{const} \Rightarrow \mathbf{G} = \mathbf{G}_N \cdot \mathbf{k}^2 \sim \mathbf{k}^2$ $\bar{\Lambda} = \text{const} \Rightarrow \Lambda = \bar{\Lambda}/k^2 \sim 1/k^2$ $\Rightarrow G \cdot \Lambda = \text{const}$

 \rightarrow first phenomenological test: fixed point in the UV connected to classical gravity in IR \rightarrow cosmological-constant "problem": correct values of G_N , $\overline{\Lambda}$ realized on one particular trajectory

Asymptotic safety in quantum gravity: Curvature-squared results

curvature-squared terms:

$$bR^2, a R_{\mu\nu}R^{\mu\nu}, \frac{1}{\rho}E$$

Einstein-Hilbert + curvature squared:

4 couplings of local terms and one topological term

 \rightarrow fixed point with three relevant directions, one irrelevant and one marginal

[Benedetti, Machado, Saueressig '09; Falls, Ohta, Percacci '20]

Asymptotic safety in quantum gravity: Curvature-squared results

curvature-squared terms:

$$bR^2, a R_{\mu\nu}R^{\mu\nu}, \frac{1}{\rho}E$$

Einstein-Hilbert + curvature squared:

4 couplings of local terms and one topological term

 \rightarrow fixed point with three relevant directions, one irrelevant and one marginal

Falls, Ohta, Percacci '20]

Classical gravity + Starobinsky inflation, driven by bR^2 ?

 \rightarrow fixed point is connected to a low-energy regime with classical gravity and Starobinsky inflation (but the latter is not a must)

[Gubitosi, Oijer, Ripken, Saueressig '18]

Asymptotic safety in quantum gravity: Higher order in curvature

scaling exponents of
$$R^n$$
, $n = 0,...,70$

[Falls, Litim, Schröder '19], see also [Falls, Litim et al '13, '14...]

$$\vartheta_n = -\theta_n \approx -2n+4$$

full f(R)?

scaling exponents of $F(R_{\mu\nu}R^{\mu\nu})^{n} + (R_{\mu\nu}R^{\mu\nu})^{n}, n = 0,...,10$

[Falls, King, Litim, Rahmede '18]

 R)? [Benedetti, Caravelli '12; Dietz, Morris '12, Demmel, Saueressig, Zanusso '14, '15; Gonzalez-Martin, Morris, Slade '17; Christiansen, Falls, Pawlowski, Reichert '17]

Three free parameters & near-perturbative nature

References	Gauge	Cutoff	Operators included beyond Einstein-Hilbert		# irrel. dir.	Reθ ₁	Reθ ₂	Re θ 3	
Reuter and Saueressig, 2002	$\alpha = 1, \beta = 0$	exp.	-	2	-	1.94	1.94	-	
Litim, 2004	$\alpha = 0$	Litim (Litim, 2000, 2001)	-	2	-	1.67	1.67	-	
Lauscher and Reuter, 2002	$\alpha = 0, \beta = 0$	exp.	$\sqrt{g}R^2$	3	0	28.8	2.15	2.15	
Machado and Saueressig, 2008	$\beta = 1, \alpha = 0$	Litim	$\sqrt{g}R^2$, $\sqrt{g}R^3$	3	1	2.67	2.67	2.07	
Codello et al., 2009	$\alpha = 1, \beta = 1$	Litim	$\sqrt{g}R^2$, $\sqrt{g}R^3$	3	1	2.71	2.71	2.07	
Machado and Saueressig, 2008	$\beta = 1, \alpha = 0$	Litim	$\sqrt{g}R^2$, $\sqrt{g}R^6$	3	1	2.39	2.39	1.51	
Codello et al., 2009	$\alpha = 1, \beta = 1$	Litim	$\sqrt{g}R^2,, \sqrt{g}R^8$	3	6	2.41	2.41	1.40	
Falls et al., 2013, 2016	$\alpha = 0, \beta = 0$	Litim	$\sqrt{g}R^2,, \sqrt{g}R^{34}$	3	32	2.50	2.50	1.59	
Benedetti et al., 2009	$\alpha = 0$, h/o	Litim	$\sqrt{g}R^2$, $\sqrt{g}R_{\mu\nu}R^{\mu\nu}$	3	1	8.40	2.51	1.69	
Gies et al., 2016	$\beta = \alpha = 1$	Litim	$\sqrt{g}C^{\mu\nu\kappa\lambda}C_{\kappa\lambda\rho\sigma}C^{\rho\sigma}_{\ \mu\nu}$	2	1	1.48	1.48	-	
n <mark>e en se se se se la seconda de la</mark>	eo entre setter setter setter setter setter 19. og i en og i en og i fen og i fen og i fen og				[from	ו AE '1	8]		

[Falls, Litim, Schröder '19], see also [Falls, Litim et al '13, '14...]

- -

Choose truncations according to canonical power-counting
Calculate critical exponents

• Check whether they are close to canonical power-counting