## Gravitational Waves and Stellar-Mass Black-Hole Mergers

## Zoheyr Doctor CIERA Board of Visitors Research Assistant Professor Cracow School of Theoretical Physics June 2024



CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS





 Gain a working knowledge of gravitational wave detections, sources, and implications\*

\* Primarily relating to stellar-mass compact objects

## Overview

#### **01.** Theory of Gravitational waves

#### **02.** Detecting Gravitational Waves

**03.** Characterizing GW Sources

#### **04.** Catalog of GW Sources

#### 05.

Astrophysical Black-Hole Mergers **06.** Population Inference Agentle introduction to **GWs and binary** sources

$$g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta},$$

Small perturbations *h* to background metric

$$\left(-\frac{\partial^2}{\partial t^2} + \nabla^2\right)\bar{h}^{\alpha\beta} = -16\pi T^{\alpha\beta}.$$

Wave equation w/ strain tensor T (Lorentz gauge)

$$\bar{h}_{lphaeta} = \mathcal{A}\mathbf{e}_{lphaeta} \exp(ik_{\gamma}x^{\gamma}),$$

Wave solutions in vacuum

Schutz and Ricci arxiv:1005.4735

## **Transverse-Traceless Gauge**



## **Quadrupole formula**

$$\bar{h}^{\mathrm{TT}ij} = \frac{2}{r} \stackrel{\cdots}{M}{}^{\mathrm{TT}ij}.$$

At leading order, strain is sourced by time-varying quadrupole moment *M* 

$$L_{gw}^{mass} = \frac{1}{5} \left\langle \tilde{M}^{jk} \tilde{M}_{jk} \right\rangle$$

GW luminosity from mass quadrupole

## GWs from a quasi-Circular Binary System

$$M_{xx} = \frac{1}{2}\mu R^2 \cos(2\Omega t)$$
$$M^{\text{TT}xx} = M^{xx}/2.$$

1

Components of the quadrupole moment



$$\bar{h}^{\text{TT}xx} = -2^{1/3} \frac{\mathcal{M}^{5/3} \Omega_{gw}^{2/3}}{r} \cos \left[\Omega_{gw}(t-r)\right],$$
$$L_{gw} = \frac{4}{5 \cdot 2^{1/3}} \left(\mathcal{M} \Omega_{gw}\right)^{\frac{10}{3}},$$

$$\mathcal{M} := \mu^{3/5} (m_1 + m_2)^{2/5}$$

Solve for strain and luminosity

"Chirp mass"

## **Energy Balance of GW-Emitting Binary**

#### GW luminosity = orbital energy loss rate

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left( \left(\frac{5}{96}\right)^3 \pi^{-8} f_{GW}^{-11} \dot{f}_{GW}^3 \right)^{1/5}$$

#### Straightforward relation between observables and binary parameters!!!!!!!

## **Chirping binaries** are the ultimate astrophysical source

Unimpeded by foregrounds

No calibration to other astro sources

Straightforward astrophysical inference



## **Effect of spins (lowest order)**

$$\chi_{\text{eff}} = \frac{(m_1 \vec{\chi}_1 + m_2 \vec{\chi}_2) \cdot \hat{L}_{\text{N}}}{M}$$



# How can we detect these GWs?

## Interferometry



#### Credit: T. Pyle

## Interferometer response

$$rac{\delta L(t)}{L} = F_+( heta,\,\phi,\,\psi)h_+(t) + F_ imes( heta,\,\phi,\,\psi)h_ imes(t),$$

$$F_{+} = \frac{1}{2} \left( 1 + \cos^{2} \theta \right) \cos 2\phi \cos 2\psi - \cos \theta \sin 2\phi \sin 2\psi,$$
  
$$F_{\times} = \frac{1}{2} \left( 1 + \cos^{2} \theta \right) \cos 2\phi \sin 2\psi + \cos \theta \sin 2\phi \cos 2\psi.$$





#### Amplitude response of interferometer

(averaged over polarizations)



#### LIGO Hanford

LIGO Livingston

Operational Planned

### **Gravitational Wave Observatories**

GE0600

KAGRA

Construction for LIGO India

## **Detectors are noisy!**



## The amplitude spectral density of noise in detectors

#### Sources of noise include:

- Shot noise
- Thermal noise
- Ground motion
- Newtonian noise

LVK Phys. Rev. X; 13(4):041039

## Statistical distribution of detector noise

$$p(\{n(t_i)\}_i) = \frac{1}{\sqrt{2\pi|C|}} \exp\left\{-\frac{1}{2}n^{\top}C^{-1}n\right\}$$

Assume Gaussian noise\*

$$p(\tilde{n}(f)) \sim \frac{1}{\int 2\pi S_n(f) df} e^{-\frac{1}{2} \langle n|n \rangle}$$

Covariance is diagonal (PSD  $S_n$ ) in frequency domain

$$\langle a|b\rangle = 2\int_0^\infty \frac{\tilde{a}(f)\tilde{b}^*(f) + \tilde{a}^*(f)\tilde{b}(f)}{S_n(f)}df$$

"Noise-weighted inner product"

\* noise is not truly Gaussian current detectors

## **Matched Filtering**

$$\hat{d}(t) = \int_{-\infty}^{\infty} d(t') K(t-t') dt'$$

Filter the data with a template *K* that maximizes the signal-to-noise ratio

$$\tilde{K}(f) = c \frac{\tilde{h}(f)}{S_n(f)}$$

Optimal filter is the signal weighted by the PSD

$$ho^2(t) = rac{\langle d | h 
angle^2}{\langle h | h 
angle}$$

"Matched-filter signal-to-noise ratio"

## **Matched Filtering in Action**



23





## The first gravitational-wave detection:

#### GW150914

#### LIGO Scientific and Virgo Collaborations (2016), Phys. Rev. Lett. 116, 061102

Noise can produce high SNR...

...but loud GW will produce even higher SNR!



#### LIGO Scientific and Virgo Collaborations (2016), Phys. Rev. Lett. 116, 061102

# ~ 30 M<sub>o</sub> BHs <sup>\*</sup>/<sub>×</sub> ~ 0.5 Gpc away (z~0.1) <sup>\*</sup>/<sub>×</sub>

How do we measure source properties, including uncertainties?



**Source Parameters 9**: Masses  $(m_1, m_2)$  and 3-D dimensionless spin vectors  $(\chi_1, \chi_2)$  of the two coalescing objects, luminosity distance, sky position,...

Data d: Strain in all operating detectors

Likelihood: Gaussian in residuals between strain data and model

**Priors**: Up to analyst, but we will revisit...

## **Parameter Estimation in Practice**

- GW source posterior is 15+ dimensions!
- Draw samples from the posterior distribution
- Use samples to perform monte carlo integrals over the posterior

 $\int f(\theta) p(\theta|d) d\theta \approx \langle f(\theta) \rangle_{\text{samples}}$ 



Use **"approximants"** to GR to quickly evaluate h(t) for any source parameters  $(m_1, m_2, ...)$ 

- Effective one-body (EOB) family: include strong-field effects in test particle limit + calibration to NR
- IMRPhenom family: stitch PN and EOB results to NR
- Surrogate: interpolate NR simulations

## Catalog of Gravitational Wave Detections



https://git.ligo.org/zoheyr-doctor/plot-gracedb-events

#### **GW170817:** Neutron-Star Merger w/ EM counterpart!





Credit: University of Warwick/Mark Garlick



Soares-Santos,..., ZD,... ApJL 848 L16 (2017)

GW170817 Multi-messenger ApJL 848 L12 (2017)

## Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars Solar Masses 20 10

\*\*\*\*\*

2

GW200129\_065458 GW200202\_154313

## Parameters for all GW detections...with uncertainties!

GW200216\_220804 GW200219\_094415 GW200220\_061928 GW200220\_124850 GW200224\_222234 GW200225\_060421 GW200302\_015811 GW200306\_093714 GW200308\_173609 GW200311\_115853 GW200316\_215756 GW200322\_091133



LVK, Phys. Rev. X; 13(4):041039
#### Joint posterior samples for all events and parameters



LVK, Phys. Rev. X; 13(4):041039

#### GW190521 - Heavy BH Merger!





LVK, ApJL, 900, 1, id.L13, 27 pp.

BINARY BLACK HOLE MERGERS AS OF MAY 2021: 48

# FIRST OBSERVATIONS OF BLACK HOLE

# NEUTRON STAR MERGERS

BINARY NEUTRON STAR MERGERS AS OF MAY 2021: 2

Credit: Carl Knox, OzGrav/Swinburne University



39



@astronerdika Credit: Shanika Galaudage

| Updated<br>2023-10-11 | <b>—</b> 01      | <b>—</b> 02        | <b>—</b> O3            | <b>—</b> O4                           | <b>—</b> O5             |
|-----------------------|------------------|--------------------|------------------------|---------------------------------------|-------------------------|
| LIGO                  | 80<br>Mpc        | 100<br>Мрс         | 100-140<br>Мрс         | 150 160+<br>Mpc                       | 240-325<br>Мрс          |
| Virgo                 |                  | 30<br>Мрс          | 40-50<br>Мрс           | 40-80<br>Мрс                          | 150-260<br>Mpc          |
| KAGRA                 |                  |                    | 0.7<br>Mpc             | 1-3 ≃10 ≳10<br>Мрс Мрс Мрс            | 25-128<br>Мрс           |
| G2002127-v21 2        | I I<br>2015 2016 | I I<br>2017 2018 2 | 1 I I<br>019 2020 2021 | I I I I I<br>2022 2023 2024 2025 2026 | I I I<br>2027 2028 2029 |



FRANCISCO LLAMAS



AARON JONES

ASHINI MODI



DRIPTA BHATTACHARJEE

Post a Comment





JOCELYN READ



DEBNANDINI MUKHERJEE
Post a Comment



MAYA FISHBACH Post a Comment



#### humansofligo.blogspot.com

# What have we learned from individual events?



- BBH, BNS, NSBH can merge in a Hubble time!
- Some merging black holes spin
- The merging objects can have unequal masses
- BH and NS from GWs have different properties than those observed through EM

# How are compact-object mergers produced?

First we need to form compact objects...

### **Stellar Progenitors of Compact Objects**

- Feature at transition from neutron stars to black holes?
- Feature at pair-instability supernova mass?
- Dips/peaks from non-linear mass compactness relation of progenitor stars?



Pair instability supernova (credit NASA)

#### More Exotic Compact-Object Formation Scenarios

#### **Hierarchical formation**

#### **Primordial Formation**



Credit: ESA

...then we need compact objects to merge in a Hubble time.

#### What DOESN'T Work...



# The Big Mystery...

Peters (1964):

$$a = \left(\frac{64G^3}{5c^5}M^3 t_{\rm merge}\right)^{\frac{1}{4}} \sim 50 \,\mathrm{R}_{\odot} \,\left(\frac{M}{60 \,\mathrm{M}_{\odot}}\right)^{\frac{3}{4}} \left(\frac{t_{\rm merge}}{14 \,\mathrm{Gyr}}\right)^{\frac{1}{4}}$$

To merge stellar-mass COs in a Hubble time, they must be closer than the radii of their progenitor stars!

#### **Two Families of Compact-Object Merger Channels**

#### **Dynamical Channel**

#### **Isolated Binary Channel**









Belczynski, Holz, Bulik & O'Shaughnessy. Nature (2016)

# Many models, many knobs!

- Initial mass function of stars / COs
- Stability of mass transfer
- Cluster potential
- Metallicity evolution
- Accretion efficiency
- ...

## Double Compact Object Formation Depends Strongly on Metallicity

More metals...  $\rightarrow$  more lines  $\rightarrow$  more stellar winds  $\rightarrow$  smaller compact objects





# **High-Dimensional Source Parameter Space!**

**Noisy Data!** 

# **Systematic Uncertainties!**

Should explain full catalog of GWs!



#### **Detailed Astrophysical Processes**





#### **Detailed Astrophysical Processes**





#### Simple Models

- Targeted questions (e.g. mass gaps)
- Easy to write down (e.g. power laws)
- Somewhat agnostic to astrophysical details
- Could miss important features



#### Detailed Astrophysical Models

- Can include our best understanding of BHs + interactions
- Can be tuned via other data sets
- Hard to write down
- Many parameters
- Possible systematic errors

#### Detailed Astrophysical Models

- Can include our best understanding of BHs + interactions
- Can be tuned via other data sets
- Hard to write down
- Many parameters
- Possible systematic errors

#### Data-Driven Models

- Find unexpected features in the population
- Corroborate results of simple models
- Compare with features in detailed models
- Black-box predictions

# Simple Models Targeted questions Easy to write down Somewhat agnostic to astrophysical details Could miss important features

Strain data segments thatAstrophysical Models +trigger GW search pipelinesSelection Effects

$$\mathcal{L}(\{d\}, N_{\text{det}} | \Lambda, N_{\text{exp}}) \propto$$

$$N^{N_{\text{det}}} e^{-N_{\text{exp}}} \prod_{i=1}^{N_{\text{det}}} \int \frac{\mathcal{L}(d_i | \theta) \pi(\theta | \Lambda) d\theta}{\sum_{\substack{\text{single} \\ \text{event} \\ \text{likelihood}}} \sum_{\substack{\text{single} \\ \text{prior under } \Lambda}}$$

#### **Higher mass mergers are "louder" -> Selection effect**



# Mass Spectrum of Compact Object Mergers

#### Structure in the binary black hole mass distribution



LVK PHYS. REV

# Spin Spectrum of Compact Object Mergers

#### **Binary black hole spin distribution**



LVK PHYS. REV. X 13, 011048 (2023)

# Merger rate with redshift

#### Merger rate is increasing with redshift



LVK PHYS. REV. X 13, 011048 (2023)

# Population-level correlations

# "Data-Driven" Models

Models with lots of flexibility but "agnostic" to the astrophysics enable...

- Finding unexpected features in the population
- Corroborating results of simple models
- Comparison with features in detailed models
- Black-box predictions for other applications

# Let's use these different modeling approaches to study gravitational-wave populations!


### **Simple Models**

Fishbach & Holz (2017) Talbot & Thrane (2018) Wysocki, Lange, and O'Shaughnessy (2019) Doctor et al (2020) Kimball et al (2021) Landry & Read (2021) Farah, Fishbach, Essick et al (2021)

# Does the mass distribution of black holes change with redshift?



Fishbach, **ZD**, et al. ApJ 912 98 (2021) 74

### Does the mass distribution of black holes change with



#### Do BH sub-populations of spin have different masses?

#### **Dynamical Channel**

#### **Isolated Binary Channel**



#### Do BH sub-populations of spin have different masses?



77

Baibhav, ZD, Kalogera (2023)

#### Do BH sub-populations of spin have different masses?



Simple Models

#### The Stochastic GW Background from NS Mergers



Bellie, Banagiri, **ZD**, Kalogera. arXiv: 2310.02517 (2023) <sup>79</sup>

## **Data-Driven Models**

Mandel et al (2016) Farr et al (2018) Powell et al (2019) Tiwari (2021) Rinaldi et al (2021) Sadiq et al (2021) Godfrey et al (2023)

#### Is there structure in the BBH mass distribution?



81

#### Is there structure in the BBH mass distribution?





Bruce Edelman Research Software Engineer (UOregon)

Data-Driven Models

Edelman, ZD, Godfrey, Farr (2022) <sup>82</sup>

#### Is there structure in the BBH spin distribution?



## **Detailed Models**

| BPASS     |  |  |  |
|-----------|--|--|--|
| BSE       |  |  |  |
| CMC       |  |  |  |
| ComBinE   |  |  |  |
| COMPAS    |  |  |  |
| COSMIC    |  |  |  |
| MOBSE     |  |  |  |
| POSYDON   |  |  |  |
| SEVN      |  |  |  |
| StarTrack |  |  |  |
|           |  |  |  |

#### **The Isolated Binary Channel**



## How do merging BH masses compare to those in HMXBs? 175



# How do merging BH masses compare to those in HMXBs?

- $\lesssim$  3% of detectable HMXBs have a BH with > 35 M $_{\odot}$
- Probability detected HMXB will merge as a BBH in a Hubble time is  $\lesssim 1\%$
- Discrepant BH masses from GWs and HMXBs are expected!



### Minimize how many simulations are needed





Kyle Rocha CIERA grad

locha, ..., ZD, ... (2022)

89



A different problem with a similar solution

**ZD**, Farr, Holz, Puerrer (2017)

#### Do High-Spin HMXBs become High-Spin Merging BBHs?



91

#### Do High-Spin HMXBs become High-Spin Merging BBHs?



Gallegos-Garcia, Fishbach, Kalogera, Berry, ZD (2022)

#### Remarks

- Multiple population modeling approaches enable us to understand CO mergers from different angles
- Detailed models: Incorporate our full astrophysical picture, but expensive and many systematics
- Simple parametric models: Empirically test specific questions
- Data-driven models: Look for the unexpected
- Team effort! A rich set of problems for everyone to get involved in
  - Stars, dynamics, statistics, machine learning, detectors and instrumentation...





to confusion, we use merging BBHs for clarity. To identify high-spin HMXBs in simulations, we assume the spin of the first-born BH is imparted by the scenario of Case-A mass transfer (MT) while both stars are on the main sequence (MS; Valsecchi et al. 2010; Qin et al. 2019). In this scenario, the donor star, which is also the progenitor of the first-born BH, could form a highspin BH following a combination of (i) MT that prevents significant radial expansion; (ii) strong tidal synchronization at low orbital periods, and (iii) inefficient AM transport within the massive star post MS. We do not C 11 4.1 1 . DIT

