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Caltech archives — letter to John Tate (editor of the Physical Review), written on Feb 18th, 1937:

You neglected to keep me informed on the paper submitted last summer by your most
distinguished contributor. But I shall nevertheless let you in on the subsequent
history. It was sent (without [...] correction [...] pointed out by your referee) to
another journal, and when it came back in galley proofs was completely revised
because I had been able to convince him in the meantime that it proved the opposite
of what he thought.



Einstein battle with the Physical Review

1916 & 1918 - Einstein published papers, where he calculated the gravitational-wave field and radiated
energy of a time-dependent source. He used linearized Einstein’s equations, slow-motion
approximation and obtained the famous quadrupole formula.

1933 - Einstein began working together with Rosen in Princeton, they were looking for exact solutions
with plane waves. Probably because they were not convinced by the linear approximation.

June 1st, 1936 - Einstein & Rosen submit a paper to the Physical Review

Do gravitational waves exist?
They thought they had found an exact solution of the field equations describing
plane GW, but because the solution had singularity 1t could not be physically

valid = GW don’t exist!

July 23rd; 1936 - John Tate (Physical Review Editor) returns the manuscript to
Einstein with a mild request:

...would be glad to have [Einstein s] reaction to the various comments and
criticisms the referee has made.




July 23rd, 1936 - Einstein wrote back, withdrawing the paper:
We (Mr. Rosen and 1) had sent you our manuscript for publication and had not authorized you to
show it to specialists before it is printed. I see no reason to address the—in any case erroneous—

comments of your anonymous expert. On the basis of this incident I prefer to publish the paper
elsewhere.

Decided to send and publish the article in ...
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Journal of the Franklin Institute in Philadelphia.



Early 1937 - paper with radically altered
conclusions appears 1n the Journal of
the Franklin Institute in Philadelphia.

ON GRAVITATIONAL WAVES.

BY

A. EINSTEIN and N. ROSEN.

ABSTRACT.

The rigorous solution for cylindrical gravitational waves is given. For the
convenience of the reader the theory ol gravitational waves and their production,
already known in principle, 18 given in the first part of this paper. After encoun-
tering relationships which cast doubt on the existence of rigerous solutions for
undulatory gravitational fields, we investigate rigorously the case of cylindrical
gravitational waves. [t turns ocut that rigorous solutions exist and that the
problem reduces to the usual cylindrical waves in euclidean space.

I. APPROXIMATE SOLUTION OF THE PROBLEM OF PLANE WAVES
AND THE PRODUCTION OF GRAVITATIONAL WAYVES.

It is well known that the approximate method of inte-
gration of the gravitational cquations of the general relativity
theory leads to the existence of gravitational waves. The
method used is as follows: We start with the equations

Iem o :‘!gwR el B (I)
We consider that the g,, are replaced by the expressions
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Physics Today. 2005;58(9):43-48. do1:10.1063/1.2117822



2005 - Daniel Kenefick (Einstein versus the Physical Review, 2005)
revealed that the referece was a well-known Princeton & Caltech
relativist Howard P. Robertson.
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Time changing matter source emitting gravitational radiation
in de Sitter spacetime
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Time changing matter source emitting gravitational radiation
in de Sitter spacetime
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Consider the perturbed metric tensor g, ; of the form: g5 = 8,5+ €75

| B 1
H2p? gaﬂdx“dxﬁ B H2;72( dn* + dx* + dy* + dz?)

gaﬂdx“dxﬂ =

Linearized field equation in the presence of the first order linearized source
Taﬁ ;
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Consider the perturbed metric tensor g, ; of the form: g5 = 8,5+ €75

— | o 1
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— = = _ = ) — 2 — - -
yaﬁ —2 V(a Vﬂyﬁ)ﬂ + gaﬁ V7 Vy}/,uy_ ?A(}/aﬁ o gaﬂy) — = 167[Ta,5

)
)
D
)
b
)
)
)
D
)
)
)
)
)
)
)
b
)
)
)
D
)
)
)
)
)
D
)
)
)
)
)




Time changing matter source emitting gravitational radiation
in de Sitter spacetime

Consider the perturbed metric tensor g, ; of the form: g5 = 8,5+ €75

1
H2p2

Zopdxdx’ = ——g dx®dx’ = H;ﬂz( dn? + dx* + dy* + dz?%)

Linearized field equation in the presence of the first order linearized source

— = Sy - - U= 2 A= - =\
}/aﬁ -2 V(a Vﬂyﬁ)ﬂ T gaﬁ VEV }/,uy_ ?A(}/aﬂ o gaﬂ}/) - 167[Ta,5

Trace-reversed metric perturbation:

_ 1 _
}/aﬂ .= yaﬂ_ggaﬂ 4
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future pointing unit normal to the cosmological slices
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Time changing matter source emitting gravitational radiation
in de Sitter spacetime

Consider the perturbed metric tensor g, ; of the form: g5 = 8,5+ €75

gaﬂdx“dxﬂ = gaﬂdx“dxﬁ = ;”2( dn® + dx* + dy’ + dz°)

2

Linearized field equation in the presence of the first order linearized source

— = = _ = ) — 2 — - -
yaﬁ —2 V(a Vﬂyﬁ)ﬂ + gaﬁ V7 Vy}/,uy_ ?A(}/aﬁ o gaﬂy) — = 167[Ta,5

Gauge condition: Vafaﬁ = 2Hn",;, where n“d, = — Hno,

In this gauge the linearized Einstein’s equations simplify even more
when rewritten in terms of the rescaled trace reverse metric
perturbation:
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Solution to the linearized Einstein’s equations with A

To solve the linearized Einstein equations in the presence of a linearized source it is convenient to perform
decomposition of ,;and 1,4
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. I—I_ -()
1.No incoming radiation from the past Poincaré
patch

2. Stationary system at distant past and future =
source is dynamically active only for a finite time
period

3. Physical size D, of the source is bounded:
No incoming DO << 1/H — \/3//\

radiation
Et(i7) 4.Cosmological constant A very small

=>cosmological horizon very distant from the

matter source
5. Slow motion approximation - velocity is small

compared to the speed of light: v < 1
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Retarded solution y , expressed in terms
of quadrupole moments

Notice that coordinates (1, x') are not compatible for taking the limit A — O:
_ 1 > 2 2 2
gaﬁdx“dxﬁ = H2;72( dn‘ + dx” + dy” + dz*)

therefore introduce 7 such that 7 = —%e_Ht, which yields:
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and express the solution in terms of quadrupole moments:
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where:

Q(p)(t) = J V() X, Q(p)(t) = J dV(py(0) + po(0) + p3(D)) %%,
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Retarded solution y , expressed in terms
of quadrupole moments

Notice that coordinates (1, x') are not compatible for taking the limit A — O:
_ 1 > 2 2 2
gaﬁdx“dxﬁ = H2;72( dn‘ + dx” + dy” + dz*)

therefore introduce 7 such that 7 = —%e_Ht, which yields:

Zopdx’dxl = — dt* + e*"(dx* + dy” + dz*)

and express the solution in terms of quadrupole moments:
Xap = =€ ~H0?QY — 2H0,0% + HO,QV\(t,,,) + 2H?[0,0V1(t,,.,) + OH?)

where:

Q1) := d3Vp(t))'c X 0P(1) := J dV(py(0) + po(0) + p3(D)) %%,
2

{n \ AT

p; = T%0 x.0,x,



Generalization of the quadrupole formula in de Sitter spacetime

— DDR & J. Lewandowski (2022)
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General formula for the energy flux
through a null surface

The energy flux formula derived by Chandrasekaran et al. (2018) using Wald-Zoupas formalism (2000) is of the form:

Er = éj d3V<GABGAB—%(92)
H

Notice that the perturbed horizon # generically is not null and the above formula may not be applied.
To sustain its null character with respect to the perturbed geometry a suitable gauge is applied:

T/"g’ﬂa = ()
where

8uw = 8t L e8u

It may be interpreted as a deformation procedure for #Z such that given the original perturbation of spacetime it remains null.



A generalization of the Einstein’s quadrupole formula for
positive cosmological constant



A generalization of the Einstein’s quadrupole formula for
positive cosmological constant

Using the obtained retarded solution y,, expressed in terms of the quadruple moments we calculate the

shear and expansion of the time translation 7, to find:

3 3.,(p) 2 3.,(p) 2 .(p) 2 .(p)
| dqi' dql dqz : dqz 2
ET:EIdz z' [( dt; ) +2H( dt; ( dt; -7 d’ ))]( )+ OH?)

where q(g . — QCEZ)__% 0

A

The limit for A — 0, or equivalently H — 0, recovers the famous Einstein quadrupole formula:

5 2 Wald, 1984
[‘”Z [( dt; ) ] (fre:)

1,j=1




Generalization of the quadrupole formula in de Sitter spacetime

— A. Ashtekar, B. Bonga, A. Kesavan (2015)



Energy flux of the time-varying quadrupole moment across .

The total energy flux across ¥ " is given by the Hamiltonian generating the time translation 7% on
the covariant phase space, the result can be expressed in terms of the electric part of the Wey!

tensor — %aﬁ and the Lie derivative of the metric perturbation w.r.t. 7% :

by

= d’x& (3 + 2H )Oacobd
16H J'j+ cd T Xab Xab 14 4

Expressing the above formula in terms of the quadrupole moments and extracting just the
transverse-traceless part of the term in the bracket (as %aﬂ is 171") yields:

E, = éJ dTdQ RIT RIT g’
j+

where R..:= O +3HQOY) + HO'”) + O(H?), and the dot indicated the Lie derivative.
I 1 1 U



Generalization of the quadrupole formula in de Sitter spacetime

— S.J. Hoque & A. Virmani (2018)



Generalization of the quadrupole formula in the 77-projection
on the cosmological horizon

Authors computed the flux integral of energy using the symplectic current density of the covariant
phase space on the cosmological horizon:

E;= é[ dr dQ R!! R/} 5™5"
Y 4

where again: R;; = Q";.p) + 3HQ§]P) + HQ;‘.D) + O(H?)



Generalized quadrupole formula - simplification for a source
dynamically active for a finite time or a periodic source

Our quadrupole formula simplifies for the sources of compact support or periodic nature:

d3q(p) 2 d3ql§p) d2ql:(ip) dzqi(jp)
= _J dtz [( ) +2H< dr’ ( dr? -/ dr? ))](tret)_l_@(Hz)

lo 1,j=1
2
d3q) d3qP 2P 2q P\ 2
. L q ql] ql] 7T d qz] 9)
- J dtz [( ) +2H< 3 dr? +2dt< dr> > )](t’”et)_l_@(H)
o 1,j=1
4 3 B3P 2 BaP 22gP
_ L 9 di dij )
B 45J at Z [( dr’ ) 2H a3 42 (tret) O(H~)
o i,j=1
where for a source of compact support: ;= —0o0 and 7 = o0

whereas for a periodic source: ty, and f =1, + 2nk



Generalized quadrupole formula - simplification for a source
dynamically active for a finite time or a periodic source

Our quadrupole formula simplifies for the sources of compact support or periodic nature:

2
g lgp) d3 qlgp) > ngp) d*q. lgp)
ET:_[ dtz [( ) +2H< dl‘3 ( dt2 :7 dtz ))]( et)_l_@(Hz)

lo 1,j=1

I 3 3P 2 Ba? P2aP d2aP N\ 2
- 45J dtz [( dr3 ) +2H< dr  dt? T 2 dt( dr? > ) (t”ef)_l_ OCH")
_h =1 ) . _ |
e E
HH i 1 d3qi(jp) PE ql§p) d2qi(jp) , I
BEIKD> [( i) PG vty |
| lo i,j=1 \
where for a source of Compact support to = — 0o and tl = 0 |
whereas for a periodic source: ty, and f =1, + 2nk

We checked that all of the generalizations of the quadrupole formula coincide at least up to the

linear terms in Hubble parameter H.



Example: power radiated by a binary system iIn a circular orbit
on de Sitter spacetime (B. Bonga, J.S. Hazboun, 2018)

Power radiated by a binary system on de Sitter spacetime in terms of the reduced mass and angular velocity reads:

32 5 A 1 A2
Pz?//tzR:}Q6(1 | | ),

1202 36 Q4

where R is the relative physical separation between the two bodies, the reduced mass y = m;m,/(m; + m,) and 2 is
the physical angular velocity.

In high-frequency limit (expansion of the Universe can be neglected during the orbital cycles) this expression reduces to:

3 +
p = ?ﬂ2R396<1 +o(VAQ) +0(——=2) + @(%))

R

Therefore, standard expression for power radiated in Minkowski spacetimes also applies to de Sitter spacetime in high-
frequency approximation. Note that high-frequency limit is critical for this equivalence.




Summary

There are various approaches (Ashtekar et. al., Hoque & Virmani, DDR & Lewandowski) to
obtaining a generalization of the quadrupole formula for radiated energy in de Sitter spacetime

(energy flux across cosmological horizon vs future infinity, fz-projection vs 1°1-gauge).

All of the formulae coincide up to the terms linear in the Hubble parameter H = \/A/B. The

zeroth order term recovers the famous Einstein’s quadrupole formula obtained for the perturbed
Minkowski spacetime.

Bonga & Hazboun: in order to probe the cosmological constant by measuring the power, one
needs to go beyond the high-frequency approximation and could calculate the corrections, due
to the background curvature, on the power. It would then allow one to observe the cosmological
constant through the power emitted by gravitational waves.

Hope: NANOGrav exploration of the low-frequency gravitational waves via radio pulsar timing.



