16-17 June 2024 Cracow school of Theoretical Physics- Zakopane

Dark Matter candidates, searches

Marco Cirelli (LPTHE Jussieu CNRS Paris)

Reviews/books on Dark Matter:

Dark Matter: Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996 Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Peter, 1201.3942 Bertone, Hooper, *History of dark matter*, 1605.04909 S. Profumo, *An Introduction to Particle Dark Matter*, World Scientific (2017) 2021 Les Houches Summer School on Dark Matter: https://indico.cern.ch/event/949654/ Cirelli, Strumia, Zupan, *Dark Matter: comprehensive review*, arXiv: 2406.01705 16-17 June 2024 Cracow school of Theoretical Physics- Zakopane

Dark Matter candidates, searches

Marco Cirelli (LPTHE Jussieu CNRS Paris)

Reviews/books on Dark Matter:

Dark Matter: Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996 Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Peter, 1201.3942 Bertone, Hooper, *History of dark matter*, 1605.04909 S. Profumo, *An Introduction to Particle Dark Matter*, World Scientific (2017) 2021 Les Houches Summer School on Dark Matter: https://indico.cern.ch/event/949654/ Cirelli, Strumia, Zupan, *Dark Matter: comprehensive review*, arXiv: 2406.01705

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

it's a new, unknown corpuscle

no SM particle can fulfil dilutes as 1/a³ with universe expansion

DM exists
 it's a new, unknown corpuscle
 makes up 26% of total energy 84% of total matter

no SM particle can fulfil dilutes as 1/a³ with universe expansion

Planck 2015, 1502.01589

 $\Omega_{\rm DM}h^2 = 0.1188 \pm 0.0010$ (notice error!)

DM exists
 it's a new, unknown corpuscle no SM particle can fulfil
 makes up 26% of total energy 84% of total matter $\Omega_{DM}h^2 = 0$ neutral particle 'dark'...

dilutes as 1/a³ with universe expansion

 $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!)

DM exists
 it's a new, unknown corpuscle no SM particle can fulfil dilutes as 1/a³ with universe expansion
 makes up 26% of total energy 84% of total matter 26% of total matter
 makes up 26% of total matter 26% of total energy 84% of total matter
 neutral particle 'dark'...
 cold or not too warm p/m <1 at CMB formation

DM exists no SM particle dilutes as 1/a³ with it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless')

DM exists no SM particle dilutes as 1/a³ with it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) la neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived

 $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

DM exists dilutes as 1/a³ with no SM particle it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) la neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

possibly a relic from the EU

DM exists dilutes as 1/a³ with no SM particle it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) la neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived $\tau_{\rm DM} \gg 10^{17} {\rm sec}$ possibly a relic from the EU searched for by

SM

SM

≥SM

SM

DM exists dilutes as 1/a³ with no SM particle it's a new, unknown corpuscle can fulfil universe expansion makes up 26% of total energy 84% of total matter $\Omega_{\rm DM} h^2 = 0.1188 \pm 0.0010$ (notice error!) la neutral particle 'dark'... Cold or not too warm p/m <<1 at CMB formation very feebly interacting -with itself -with ordinary matter ('collisionless') stable or very long lived $\tau_{\rm DM} \gg 10^{17} {\rm sec}$

possibly a relic from the EU

The cosmic inventory

Most of the Universe is Dark

 $\Omega_{
m b}\simeq 0.040\pm 0.00$

 $\Omega_{\rm lum} \sim 0.01$

 $\leftarrow \Omega_{\rm DM} \sim 0.26$

 $\Omega_{\rm de} \sim 0.69$

$$\left(\Omega_x = \frac{\rho_x}{\rho_c}; \quad h = 0.67 \text{ or } 0.71\right)$$

what's the difference between DM and DE?

 $= \frac{\rho_x}{\rho_c}; \quad h = 0.67 \text{ or } 0.71)$ $\left(\Omega_{x}\right)$ =

The cosmic inventory

Most of the Universe is Dark

FAvgQ: what's the difference between DM and DE?

DM behaves like matter

- overall it dilutes as volume expands - clusters gravitationally on small scales - $w = P/\rho = 0$ (NR matter) (radiation has w = -1/3)

DE behaves like a constant

- it does not dilute
- does not cluster, it is prob homogeneous $w=P/\rho\simeq -1$

- pulls the acceleration, FRW eq. $\frac{\ddot{a}}{a} = -\frac{4\pi G_{
m N}}{3}(1-3w)
ho$

At the time of CMB formation (380 Ky)

mass??? ínteractions???

A matter of perspective: plausible mass ranges

A matter of perspective: plausible mass ranges


```
DM can be made
by a huge number of very light 'particles'
or
a tiny number of very heavy 'particles'
as long as it is:
neutral, cold, stable and feebly interacting
```

A matter of perspective: plausible mass ranges


```
DM can be made
by a huge number of very light 'particles'
or
a tiny number of very heavy 'particles'
as long as it is:
neutral, cold, stable and feebly int.
```

A matter of perspective: plausible mass ranges

A matter of perspective: plausible mass ranges

90 orders of magnitude!

as big as a dwarf galaxy

DM mass $M \lesssim 10^4 \ M_{\odot}$

A matter of perspective: plausible mass ranges

90 orders of magnitude!

as diffuse as a dwarf galaxy

DM de Broglie wavelength $\lambda = 2\pi/Mv \lesssim 1 \text{ kpc}$

as big as a dwarf galaxy

DM mass $M \lesssim 10^4 \ M_{\odot}$

A matter of perspective: plausible mass ranges

90 orders of n agnitude!

as diffuse as a dwarf galaxy

DM de Broglie wavelength $\lambda = 2\pi/Mv \lesssim 1 \text{ kpc}$

most likely most likely elementary composite as big as a dwarf galaxy

DM mass $M \lesssim 10^4 \ M_{\odot}$

A matter of perspective: plausible mass ranges

dwarf galaxy

DM de Broglie wayelength $\lambda = 2\pi/Mv \lesssim 1 \text{ kpc}$

most likely most likely elementary composite as big as a dwarf galaxy

DM mass $M \lesssim 10^4 \ M_{\odot}$

best described as best described as classical field particle

A matter of perspective: plausible mass ranges

90 orders of n agnitude!

as diffuse as a dwarf galaxy

DM de Broglie wayelength $\lambda = 2\pi/Mv \lesssim 1 \text{ kpc}$

most likely most likely elementary composite

as big as a dwarf galaxy

DM mass $M \lesssim 10^4 \; M_{\odot}$

best described as best described as classical field particle

 $\begin{array}{ll} M \lesssim 0.1 \, \mathrm{keV} & M \gtrsim 0.1 \, \mathrm{keV} \\ \text{necessarily} & bosonic \text{ or} \\ bosonic & fermionic \end{array}$

 $N \simeq \frac{\rho}{M/\lambda^3}$

occupation number

Overview of Particle Physics candidates for Dark Matter

A matter of perspective: plausible mass ranges

Thermal DM

DM as a thermal relic from the Early Universe

(0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3 / {\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}({\rm few})$$

DM as a thermal relic from the Early Universe

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$

DM as a thermal relic from the Early Universe

0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}({\rm few})$$

(WIMP)
DM as a thermal relic from the Early Universe

0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}({\rm few})$$

(WIMP)

A matter of perspective: plausible mass ranges

Thermal DM

A matter of perspective:

SuSy neutralino

other exotic candidates

t t h $\Delta m_{\rm h} \propto -10^{19} \, {
m GeV}$ h

 $\frac{h}{t} - \frac{h}{h} \Delta m_{\rm h} \propto 10^{19} \, {\rm GeV}$

R = -1 $h \quad (\tilde{t} \ h \ h$

A matter of perspective:

SuSy neutralino

other exotic candidates

On top of the SM, add one extra scalar singlet S and a symmetry $S \to -S$

On top of the SM, add one extra scalar singlet S and a symmetry $S \to -S$

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \frac{|\partial_{\mu}S|^2}{2} - \frac{m_S^2}{2}S^2 - \lambda_{HS}S^2|H|^2 - \frac{\lambda_S}{4}S^4$$

parameters are: $m_S, \lambda_{HS}, (\lambda_S)$

On top of the SM, add one extra scalar singlet S and a symmetry $S \to -S$

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \frac{|\partial_{\mu}S|^2}{2} - \frac{m_S^2}{2}S^2 - \lambda_{HS}S^2|H|^2 - \frac{\lambda_S}{4}S^4$$

parameters are: $m_S, \lambda_{HS}, (\lambda_S)$ After EWSB: $M^2 = m_S^2 + 2\lambda_{HS}v^2$

On top of the SM, add one extra scalar singlet S and a symmetry $S \to -S$

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \frac{|\partial_{\mu}S|^2}{2} - \frac{m_S^2}{2}S^2 - \lambda_{HS}S^2|H|^2 - \frac{\lambda_S}{4}S^4$$

parameters are: $m_S, \lambda_{HS}, (\lambda_S)$ After EWSB: $M^2 = m_S^2 + 2\lambda_{HS}v^2$

A matter of perspective: plausible mass ranges

DM as a thermal relic from the Early Universe

0.1)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.26$ for $\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26} {\rm cm}^3/{\rm sec}$

Weak cross section:

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \,{\rm TeV}^2} \ \Rightarrow \Omega_X \sim \mathcal{O}({\rm few})$$

(WIMP)

A matter of perspective: plausible mass ranges

A matter of perspective: plausible mass ranges

Sub-GeV DIM?

Sub-GeV DIM • 'MeV (scalar) DM'

Boehm & Fayet hep-ph/0305261

In conclusion, scalar Dark Matter particles can be significantly lighter than a few GeV's (thus evading the generalisation of the Lee-Weinberg limit for weakly-interacting neutral fermions) if they are coupled to a new (light) gauge boson or to new heavy fermions F (through non chiral couplings and poten-

Sub-GeV DM

WIMPless Dark Matter

Feng & Kumar 0803.4196

a.k.a. hidden sector DM \sim secluded DM

Sub-GeV DIM WIMPless Dark Matter Feng & Kumar 0803.4196

a.k.a. hidden sector DM \sim secluded DM

 $\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{{
m TeV^2}}$ $\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_x^2}{m^2}$

Sub-GeV DM WIMPless Dark Matter Feng & Kumar 0803.4196

a.k.a. hidden sector DM \sim secluded DM

if g_x is small, *m* 'naturally' small (but nothing points to a precise value)

Production mechanism: just thermal freeze-out of these annihilations

Sub-GeV DM

• 'SIMP miracle':

scalar DM with relic abundance set by 3 -> 2 processes

points to

$$m_{\rm DM} \sim \alpha_{\rm eff} \left(T_{\rm eq}^2 M_{\rm Pl} \right)^{1/3} \sim 100 \; {\rm MeV}$$

Hochberg et al 1402.5143

'naturally realized' in a dark-QCD-like setup $\alpha_{\rm eff} = \mathcal{O}(1)$ i.e. $g_x \sim 4\pi$

Sub-GeV DIM?

- WIMPless Dark Matter
- 'SIMP miracle'
- Asymmetric DM
- 'MeV (scalar) DM' (Integral 511 KeV excess)
- 'simplified (light) DM models'

Sub-GeV DIM?

- WIMPless Dark Matter
- 'SIMP miracle'
- Asymmetric DM
- 'MeV (scalar) DM' (Integral 511 KeV excess)
- 'simplified (light) DM models'

Why not!

A matter of perspective: plausible mass ranges

A matter of perspective: plausible mass ranges

Theoretically 'motivated':

one can complete the SM lepton sector

Theoretically 'motivated':

one can complete the SM lepton sector

 $m_{\nu} \gtrsim \text{few KeV}$ to be cold enough

Theoretically 'motivated':

one can complete the SM lepton sector

 $m_{\nu} \gtrsim \text{few KeV}$ to be cold enough

Sterile neutrino decay

 $m_{\nu} = 7.1 \text{ KeV}$ $\tau \simeq 10^{29} \text{ sec}$ $\sin^2 2\theta \sim \text{few } 10^{-11}$

Theoretically 'motivated':

one can complete the SM lepton sector

 $m_{\nu} \gtrsim \text{few KeV}$ to be cold enough

Sterile neutrino decay

 $m_{\nu} = 7.1 \text{ KeV}$ $\tau \simeq 10^{29} \text{ sec}$ $\sin^2 2\theta \sim \text{few } 10^{-11}$

A matter of perspective: plausible mass ranges

Candidates

A matter of perspective: plausible mass ranges

Ultralight DM

Theoretically motivated:

eoretically motivated. one can add to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} \qquad \left(\tilde{G}^a_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^a_{\alpha\beta}\right)$

Theoretically motivated:

eoretically motivated. must one car add to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} \qquad \left(\tilde{G}^a_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^a_{\alpha\beta}\right)$

Theoretically motivated: must one carriadd to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$ which induces $d_n \approx \theta \ e \ m_\pi^2/m_N^2 \approx 10^{-16} \ \theta \ e \ cm$ $\left(\tilde{G}^a_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^a_{\alpha\beta}\right)$

Theoretically motivated: one carriadd to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$ which induces $d_n \approx \theta \ e \ m_\pi^2/m_N^2 \approx 10^{-16} \ \theta \ e \ cm$ but experimentally $|d_n| \leq 3 \ 10^{-26} \ e \ cm$

Theoretically motivated: one carradd to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$ which induces $d_n \approx \theta \ e \ m_\pi^2/m_N^2 \approx 10^{-16} \ \theta \ e \ cm$ but experimentally $|d_n| \leq 3 \ 10^{-26} \ e \ cm$ so why is $|\theta| \leq 10^{-11}$?

Theoretically motivated: eoretically model about. must one carradd to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} \qquad \left(\tilde{G}^a_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^a_{\alpha\beta}\right)$ which induces $d_n \approx \theta \ e \ m_\pi^2 / m_N^2 \approx 10^{-16} \ \theta \ e \ \mathrm{cm}$ but experimentally $|d_n| \leq 3 \ 10^{-26} \ e \ \mathrm{cm}$ so why is $|\theta| \leq 10^{-11}$? Perhaps because θ is dynamical (a field)

and driven to (almost) zero by its potential (symmetrical under $U(1)_{PQ}$).

Theoretically motivated: one can add to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$ $(\tilde{G}^a_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^a_{\alpha\beta})$ which induces $d_n \approx \theta \ e \ m_\pi^2/m_N^2 \approx 10^{-16} \ \theta \ e \ cm$ but experimentally $|d_n| \leq 3 \ 10^{-26} \ e \ cm$ so why is $|\theta| \leq 10^{-11}$? Perhaps because θ is dynamical (a field -> 'axion')

Theoretically motivated: one can add to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$ which induces $d_n \approx \theta \ e \ m_\pi^2/m_N^2 \approx 10^{-16} \ \theta \ e \ cm$ $\left(\tilde{G}^a_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^a_{\alpha\beta}\right)$ but experimentally $|d_n| \leq 3 \ 10^{-26} \ e \ \mathrm{cm}$ so why is $|\theta| \leq 10^{-11}$? Perhaps because θ is dynamical (a field -> 'axion') In this case $m_a \approx 0.6 \,\mathrm{meV} \frac{10^{10} \,\mathrm{GeV}}{f}$

Theoretically motivated: one can add to the SM $\mathscr{L} = \mathscr{L}_{SM} - \theta \frac{g_3^2}{64\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} \qquad \left(\tilde{G}^a_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^a_{\alpha\beta}\right)$ which induces $d_n \approx \theta \ e \ m_\pi^2 / m_N^2 \approx 10^{-16} \ \theta \ e \ cm$ but experimentally $|d_n| \leq 3 \ 10^{-26} \ e \ \mathrm{cm}$ so why is $|\theta| \leq 10^{-11}$? Perhaps because θ is dynamical (a field -> 'axion') In this case $m_a \approx 0.6 \,\mathrm{meV} \frac{10^{10} \,\mathrm{GeV}}{f}$

Candidates

A matter of perspective: plausible mass ranges

Candidates

A matter of perspective: plausible mass ranges

PBH DM

Primordial Black Holes

an astro je ne sais pas quoi:

an astro je ne sais pas quoi:

- gas

- Black Holes
- brown dwarves

an astro je ne sais pas quoi:

- Black Holes - brown dwarves

an astro je ne sais pas quoi:

MACHOs or PBHs as DM

strong

lensing

an astro je ne sais pas quoi:

- Black Holes - brown dwarves

a baryon of the SM:

strong

lensing

an astro je ne sais pas quoi:

- Black Holes - brown dwarves

a baryon of the SM:

- BBN computes the abundance of He in terms of primordial baryons: too much baryons => Universe full of Helium
- CMB says baryons are 4% max

Primordial Black Holes

an astro je ne sais pas quoi:

a baryon of the SM:

- BBN computes the abundance of He in terms of primordial baryons: too much baryons => Universe full of Helium
- CMB says baryons are 4% max

A loophole: Primordial Black Holes!

- produced <u>before</u> BBN
- with masses too small/large to lens
- perhaps GW observatories are seeing them?

PBHs as DM

huge range of sizes: $M \simeq 10^{15} (t/10^{-23} \text{ sec}) \text{ g}$

(with many constraints)

M. Cirelli, A. Strumia, J. Zupan 2406.01705

PBHs as DM window still open?

Conclusions

A matter of perspective: plausible mass ranges

90 orders of magnitude!

Thermal DM Sub-GeV DM PBH DM KeV DM Ultralight DM

How do we search for Dark Matter?

Candidates

A matter of perspective: plausible mass ranges

Thermal DM

(WIMP) DM detection

direct detection

indirect

Xenon, LZ, DarkSide, CDMS (Dama/Libra?)

production at colliders

 γ from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, X-ray satellites, radio telescopes e^+ from annihil in galactic halo or center AMS, Fermi \bar{p} from annihil in galactic halo or center \bar{d} from annihil in galactic halo or center GAPS $\nu, \bar{\nu}$ from annihil in massive bodies Icecube, Km3Net

Direct Detection

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

 $\mu_{\chi} = \frac{m_{\chi} \, m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_{\chi} \\ m_N \text{ for large } m_{\chi} \end{cases}$

recoil energy spectrum

$$\frac{dR}{dE_R} = \frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^2} \int_{v_{\min}(E_R)}^{v_{esc}} \frac{1}{v} f(\vec{v}) \, \mathrm{d}\vec{v}$$

with $f(\vec{v}) \propto e^{-v^2/V_c^2}$ + motion of Earth in (static?)halo

 E_R

 $\sigma pprox \sigma_n^{
m SI} A^4 ~~ imes$ nuclear form factors

number of events

$$N = \mathcal{E} \mathcal{T} \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} dE_R$$

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

 $\mu_{\chi} = \frac{m_{\chi} m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_{\chi} \\ m_N \text{ for large } m_{\chi} \end{cases}$

recoil energy spectrum

$$\frac{dR}{dE_R} = \frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^2} \int_{v_{\min}(E_R)}^{v_{esc}} \frac{1}{v} f(\vec{v}) \, \mathrm{d}\vec{v}$$

with $f(\vec{v}) \propto e^{-v^2/V_c^2}$ + motion of Earth in (static?)halo

 E_R

 $\sigma pprox \sigma_n^{
m SI} A^4 ~~ imes$ nuclear form factors

number of events

$$N = \mathcal{E} \, \mathcal{T} \, \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} \, dE_R$$

Cirelli, Strumia, Zupan 2406.01705

recoil energy

$$=\frac{\mu_{\chi}^2 v^2}{m_N} (1 - \cos \theta)$$

 $\mu_{\chi} = \frac{m_{\chi} m_N}{m_{\chi} + m_N} \to \begin{cases} m_{\chi} \text{ for small } m_{\chi} \\ m_N \text{ for large } m_{\chi} \end{cases}$

recoil energy spectrum

with
$$f(\vec{v}) \propto e^{-v^2/V_c^2}$$
 + motion of Earth in (static?)halo

 E_R

 $\sigma \approx \sigma_n^{\rm SI} A^4 \quad \times \text{nuclear form factors}$

number of events

$$N = \mathcal{E} \, \mathcal{T} \int_{E_{\text{thres}}}^{E_{\text{max}}} \frac{dR}{dE_R} \, dE_R$$

Cirelli, Strumia, Zupan 2406.01705

WIMP Direct Detection

SI interactions

SI scattering cross section σ_{SI} in cm²

nucleus

DM

Indirect Detection

DM detection

direct detection Xenon, LZ, DarkSide, CDMS (Dama/Libra?)

production at colliders

/ from annihil in galactic center or halo and from synchrotron emission

Fermi HESS X-ray satellites radio telescopes

\indirect{ e

from annihil in galactic halo or center AMS, Fermi

from annihil in galactic halo or center

d from annihil in galactic halo or center GAPS

 $\nu, \overline{
u}$ from annihil in massive bodies

Icecube, Km3Net

Indirect Detection: basics

DM DM

 $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, p^{(-)}, D^{(-)} \dots$

primary channels

 $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

Indirect Detection: basics

DM

 $W^-, Z, b, \tau^-, t, h \dots \longrightarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

primary channels

decay $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \longrightarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

particle physics parameters?

So what are the particle physics parameters?

1. Dark Matter mass

So what are the particle physics parameters?

Dark Matter mass
 primary channel(s)

So what are the particle physics parameters?

Dark Matter mass
 primary channel(s)
 cross section

1.diffusion (on magnetic field granularities)
2.energy losses (ICS, bremsstrahlung, synchrotron)
3.convection
4.spallations
5.solar influence

Propagated fluxes

Antiprotons

Varying prop parameters

Varying halo profile

Propagated fluxes

Positrons Varying prop parameters

Varying halo profile

DM detection

direct detection Xenon, LZ, DarkSide, CDMS (Dama/Libra?)

production at colliders

indirect

from annihil in galactic center or halo and from synchrotron emission

Fermi, HESS, X-ray satellites, radio telescopes

from annihil in galactic halo or center AMS, Fermi

from annihil in galactic halo or center

from annihil in galactic halo or center

GAPS

 $\overline{\mathcal{V}}$ from annihil in massive bodies

Icecube, Km3Net

$\frac{Basic \ picture}{\gamma \ from \ DM \ annihilations \ in \ galactic \ center}$

$\frac{\text{Basic picture}}{\gamma \text{ from DM annihilations in galactic center}}$

γ from DM annihilations in galactic center

Basic picture: targets γ from DM annihilations in dwarf galaxies

Basic picture: targets γ from DM annihilations in galaxy clusters

WIMP Indirect Detection

All Indirect Detection constraints

WIMP Indirect Detection

All Indirect Detection constraints

Candidates

A matter of perspective: plausible mass ranges

Sub-GeV DIM

Light DM Direct Detection

electron recoil interactions

electron

DM

Problem:

sub-GeV charged CRs do not penetrate the heliosphere, experiments cannot collect

Problem:

sub-GeV charged CRs do not penetrate the heliosphere, experiments cannot collect... with one exception!

Indirect detection: photons

adapted from 1611.02232

Past/current experiments: Integral, Comptel, Fermi (2002→) (1991-2000) (2009→)

Planned/proposed experiments: e-Astrogam?, Compair?, Amego?

Amego Compair	satellite satellite	2020s? 2020s?	HEP detectors HEP detectors	γ -rays γ -rays	$0.2 - 10 { m ~GeV}$ $0.2 - 500 { m ~MeV}$
Ska	S.Africa+Australia	2020s?	radio telescope	radio	50 MHz - 30 GHz
INO-ICAL	India	2020s?	calorimeter	neutrinos	1 - 100 GeV
 e-Astrogam	satellite	2030s?	HEP detectors	γ -rays	$0.3 { m MeV} - 3 { m GeV}$

Cirelli, Strumia, Zupan to appear

Indirect detection: photons

adapted from 1611.02232

Past/current experiments: Integral, Comptel, Fermi (2002→) (1991-2000) (2009→)

Planned/proposed experiments: e-Astrogam?, Compair?, Amego?

Amego Compair	satellite satellite	2020s? 2020s?	HEP detectors HEP detectors	γ -rays γ -rays	0.2 - 10 GeV 0.2 - 500 MeV
Ska	S.Africa+Australia	2020s?	radio telescope	radio	50 MHz - 30 GHz
INO-ICAL	India	2020s?	calorimeter	neutrinos	1 - 100 GeV
e-Astrogam	satellite	2030s?	HEP detectors	γ -rays	$0.3 { m MeV} - 3 { m GeV}$

Cirelli, Strumia, Zupan to appear

Indirect detection: photons

How to do better? ICS & X-rays!

Cirelli, Fornengo, Kavanagh, Pinetti 2007.11493 Cirelli, Fornengo, Koechler, Pinetti, Roach 2303.08854

Comparing all bounds

Constraints on sub-GeV annihilating Dark Matter

DM mass in MeV

Candidates

A matter of perspective: plausible mass ranges

X-ray line

Boyarsky, Ruchayskiy, 1402.4119 3.5 KeV Andromeda galaxy + Perseus cluster (XMM-Newton)

z = 0 and 0.0179

4.0

X-ray line

Sterile neutrino decay

 $m_{\nu} = 7.1 \text{ KeV}$ $\tau \simeq 10^{29} \text{ sec}$ $\sin^2 2\theta \sim \text{few } 10^{-11}$

M. Cirelli, A. Strumia, J. Zupan 2406.01705

Candidates

A matter of perspective: plausible mass ranges

Ultralight DM

Axions

Searches:

M. Cirelli, A. Strumia, J. Zupan 2406.01705

Candidates

A matter of perspective: plausible mass ranges

PBH DM?

PBHs as DM

Constraints on Primordial Black Holes

DM could consist of PBHs

huge range of sizes: $M \simeq 10^{15} (t/10^{-23} \text{ sec}) \text{ g}$

constraints

$$T = \frac{1}{8\pi G_N M}$$

rate $\frac{dM}{dt} \simeq -5 \times 10^{25} f(M) \left(\frac{g}{M}\right)^2 g/s$

spectrum

 $\frac{dN}{dt \, dE} = \frac{27}{2\pi} \frac{G^2 M^2 E^2}{e^{E/T} + 1}$

M. Cirelli, A. Strumia, J. Zupan 2406.01705

Conclusions

A matter of perspective: plausible mass ranges

90 orders of magnitude!

Thermal DM? Sub-GeV DM? PBH DM? KeV DM? Ultralight DM? still motivated, frontier is heavy DM why not? Challenging detection old idea with new vibes phenomenological old idea with new vibes