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Kinetic Theory
• Aim: to provide an alternative description to hydrodynamic

models when collisions between particles are rare and remain
generally unimportant in comparison to characteristics of the
system

• Assumptions: test particles move along timelike geodesics, there
are no collisions between particles, and the description is done in
phase space

• Properties: models are solutions of the general-relativistic Vlasov
equation (collisionless case)

• Applications:

– observations of black holes in the centres of galaxies
– description of a distribution of stars around a supermassive

black hole
– modelling dark matter accretion

• Difficulties: computing observable quantities requires a good
understanding of the regions in phase space available for motion
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FIG. 4: Same as in Fig. 3, except for the density scale, which is now logarithmic. The graphs show the morphology of the
flow in the vicinity of the black hole. The region inside the horizon is marked in black, although the solution was computed up
to ⇠ = 1. Two additional circles with radii ⇠ = 3 and ⇠ = 6 mark the locations of the photon sphere and the innermost stable
circular orbit.
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FIG. 5: The ratio Ṁ(v)/Ṁ(0) of the accretion rate given
by Eq. (38) for the moving black hole to the accretion rate
corresponding to v = 0. For nonrelativistic particles with
su�ciently large � > 4.844 (this threshold value has been
determined numerically) the accretion becomes suppressed
for moderate black hole speeds v. For v ' 1, the ratio
Ṁ(v)/Ṁ(0) is proportional to the value of the Lorentz factor
� for all values of � (see also Fig. 6).
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FIG. 6: Same as in Fig. 5. Instead of the velocity, the
abscissa shows the Lorentz factor �, to clarify a nearly lin-
ear behavior for ultra-relativistic black hole velocities. For
su�ciently small � ⌧ 1 (red), the ratio Ṁ(v)/Ṁ(0) is indis-
tinguishable from � (dashed).

Appendix A: Derivation of the expression for Q3

In this appendix we derive expressions (17) and (18)
for Q3 in the Schwarzschild spacetime. Recall that Q3 is

Schwarzschild black hole moving through a cloud of gas
(P. Mach and A. Odrzywołek: 2021,2022)

3 / 17



Relativistic phase space

Let (M, g) be a spacetime manifold. The cotangent bundle of
M is defined as

T ∗M = {(x, p) : x ∈ M, p ∈ T ∗
xM}.

We consider the so-called “simple gas,” i.e., the case in which the
masses of all particles are the same. This limits the discussion
to the mass shell Γ+

m, defined as follows:

Γ+
m = {(x, p) ∈ T ∗M : gµνpµpν = −m2, p is future-directed}.

The mass shell condition can also be imposed by defining the
distribution function F on T ∗M and assuming that

F ∼ δ(
√

−pµpµ −m).
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Physical observables

Let S denote a spacelike hypersurface in M, the average
number of particle trajectories whose projections on M intersect
S can be expressed as

N [S] = −
∫
S

[∫
P+
x

F(x, p)pµs
µdvolx(p)

]
ηS , (1)

where

P+
x = {p ∈ T ∗

xM : gµνpµpν < 0, p is future-directed},

and s is a future-directed unit vector normal to S, ηS denotes
the induced volume element on S, and dvolx(p) is the volume
element on P+

x . In local adapted coordinates dvolx(p) is given as

dvolx(p) =
√
−det gµν(x)dp0dp1dp2dp3.
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By defining the particle current density as

Jµ(x) =

∫
P+
x

F(x, p)pµdvolx(p),

Eq. (1) can be expressed in the form

N [S] = −
∫
S
Jµs

µηS . (2)

It can be demonstrated that the particle current density obeys
the conservation law ∇µJ µ = 0, which further supports the
expression (2). The particle number density can be covariantly
defined as

n =
√

−JµJ µ.
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Our case
• Stationary solution – geodesic trajectories do not depend

on time
• Bondi-type accretion – a compact object travelling through

the interstellar medium
• Planar accretion
• Asymptotically, the gas is assumed to be homogeneous and

described by the two-dimensional Maxwell-Jüttner
distribution, boosted with a constant velocity v along the x
axis. In the Cartesian coordinates, the asymptotic
distribution function is given by

F(x, p) = αδ
(√

−pµpµ −m0

)
exp

[
β

m0
γ(pt + vpx)

]
,

and in spherical coordinates

F(x, p) = αδ
(√

−pµpµ −m0

)
exp

[
β

m0
γ (pt + v cosφ pr)

]
.
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Particle current density
With the help of Hamilton’s formalism and action-angle
variables, it can be shown that in the vicinity of the
Schwarzschild black hole, the distribution function is given by

f(x, p) = αδ
(√

−pµpµ −m0

)
exp

{
−βγ

[
ε− ϵrv

√
ε2 − 1 cos [φ+ ϵφϵrX(ξ, ε, λ)]

]}
,

where

X(ξ, ε, λ) = λ

∫ ∞

ξ

dξ′

ξ′2
√

ε2 −
(
1− 2

ξ′

)(
1 + λ2

ξ′2

) .
Additionally, components of surface particle current density

read

Jµ(ξ, φ) =
∑

ϵφ=±1

1

ξ

∫
f(ξ, φ,m, ε, ϵφ, λ)pµ

m2dmdεdλ√
ε2 − Uλ

.
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Monte Carlo approach
Consider a discrete distribution function

F (N)(xµ, pν) =
N∑
i=1

∫
δ(4)

(
xµ − xµ

(i)(τ)
)
δ(4)

(
pν − p(i)ν (τ)

)
dτ

representing a sample of N particles moving along given trajectories
τ 7→

(
xµ
(i)(τ), p

(i)
ν (τ)

)
, i = 1, . . . , N . The particle current density associated

with F (N) is given as

J (N)
µ (x) =

∫
P+
x

F (N)(x, p)pµ
√

−det gαβ(x)dp0dp1dp2dp3.

Let Σ ∈ M be a hypersurface, not necessarily space-like. We choose a small
region σ ∈ Σ (a numerical cell) such that x ∈ σ. The components of Jµ are
approximated by the averages

⟨Jµ(x)⟩ =
∫
σ
J (N)

µ ηΣ∫
σ
ηΣ

,

where ηΣ denotes the volume element on Σ.
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Intersections of trajectories with arcs of constant radius
For a planar stationary accretion flow in the Schwarzschild spacetime, we
select surfaces of constant r = r̄ defined by

Σ̃ = {(t, r, θ, φ) : t ∈ R, r = r̄, θ = π/2, φ ∈ [0, 2π)}
and cells

σ̃ = {(t, r, θ, φ) : t1 ≤ t ≤ t2, r = r̄, θ = π/2, φ1 ≤ φ ≤ φ2}.
More precisely let Φτ (x

i
0) denote the orbit of timelike Killing vector field

ξµ = (1, 0, 0, 0), passing through xi
0 at τ = 0, i.e., Φ0(x

i
0) = xi

0. Then σ̃ can
be expressed as the image

σ̃ = Φ[t1,t2](S).
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The particle current surface density can now be approximated as

⟨Jµ⟩ =
∫
σ̃
JµηΣ̃∫
σ̃
ηΣ̃

=
1

Mmξ̄(t2 − t1)(φ2 − φ1)

Nint∑
j=1

p
(j)
µ√

ε2(j) −
(
1− 2/ξ̄

) (
1 + λ2

(j)/ξ̄
2
) .

For stationary problems, the result should be independent of
the choice of t1 and t2 in a sense that the number of trajectories
that intersects Σ̃ should be proportional to the length t2 − t1, if
the latter is sufficiently large. In practice, we omit the factor
t2 − t1 and normalise the results by the number of trajectories
taken into account. Moreover, instead of considering complete
orbits in the four-dimensional spacetime, it is sufficient to work
with projections of trajectories onto surfaces of constant t.
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Selection of geodesic parameters
• We select the parameters {ξ0, φ(init)

i , εi, λi}, representing the radial
and the azimuthal coordinates of the initial position, the energy, and
the total angular momentum of i-th particle, respectively

• The first coordinate is the same for all trajectories—all particles start
at a fixed radius r0 = Mξ0. It is important to ensure that this value is
sufficiently large

• The coordinate values φ
(init)
i and εi are sampled from the planar

asymptotic (ξ → ∞) distribution function:

f(x, p) = αδ
(√

−pµpµ −m
)
exp

[
−βγ

(
ε− ϵrv

√
ε2 − 1 cosφ

)]
(3)

• To randomise the parameters φ
(init)
i , εi according to the distribution

function (3), we use the Markov Chain Monte Carlo (MCMC)
method, implemented in the Wolfram Mathematica.

• Values of λi are distributed uniformly.

• From the selected parameters, we choose those corresponding to the
unbound trajectories and then divide them into absorbed and
scattered
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Results
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Conclusions

• We confirmed the analytical results in the case of planar
accretion

• We demonstrated that the developed Monte Carlo
simulation method can be used for cases that do not have
spherical symmetry

• Outlook:
– Preparation of a three-dimensional simulation

(P. Mach and A. Odrzywołek: 2021, 2022)
– Preparing a simulation of Vlasov gas accretion in Kerr

spacetime (A. Cieślik, P. Mach, A. Odrzywołek: 2022;
P. Rioseco, O. Sarbach: 2018, 2023)

– Generalisation to general-relativistic Vlasov systems
coupled with the electromagnetic field
(M. Thaller: 2023)
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