Monte Carlo methods for stationary solutions of general-relativistic Vlasov systems: Planar accretion onto a moving Schwarzschild black hole

Adam Cieślik with Patryk Mach and Andrzej Odrzywołek

Jagiellonian University

Kinetic Theory

- Aim: to provide an alternative description to hydrodynamic models when collisions between particles are rare and remain generally unimportant in comparison to characteristics of the system
- Assumptions: test particles move along timelike geodesics, there are no collisions between particles, and the description is done in phase space
- Properties: models are solutions of the general-relativistic Vlasov equation (collisionless case)
- Applications:
 - observations of black holes in the centres of galaxies
 - description of a distribution of stars around a supermassive black hole
 - modelling dark matter accretion
- Difficulties: computing observable quantities requires a good understanding of the regions in phase space available for motion

Schwarzschild black hole moving through a cloud of gas (P. Mach and A. Odrzywołek: 2021,2022)

Relativistic phase space

Let (\mathcal{M}, g) be a spacetime manifold. The cotangent bundle of \mathcal{M} is defined as

$$T^*\mathcal{M} = \{(x,p) \colon x \in \mathcal{M}, \, p \in T^*_x\mathcal{M}\}.$$

We consider the so-called "simple gas," i.e., the case in which the masses of all particles are the same. This limits the discussion to the mass shell Γ_m^+ , defined as follows:

$$\Gamma_m^+ = \{ (x, p) \in T^* \mathcal{M} \colon g^{\mu\nu} p_\mu p_\nu = -m^2, \ p \text{ is future-directed} \}.$$

The mass shell condition can also be imposed by defining the distribution function \mathcal{F} on $T^*\mathcal{M}$ and assuming that

$$\mathcal{F} \sim \delta(\sqrt{-p_{\mu}p^{\mu}} - m).$$

Physical observables

Let S denote a spacelike hypersurface in \mathcal{M} , the average number of particle trajectories whose projections on \mathcal{M} intersect S can be expressed as

$$\mathcal{N}[S] = -\int_{S} \left[\int_{P_x^+} \mathcal{F}(x, p) p_{\mu} s^{\mu} \mathrm{dvol}_x(p) \right] \eta_S, \tag{1}$$

where

$$P_x^+ = \{ p \in T_x^* \mathcal{M} : g^{\mu\nu} p_\mu p_\nu < 0, p \text{ is future-directed} \},\$$

and s is a future-directed unit vector normal to S, η_S denotes the induced volume element on S, and $\operatorname{dvol}_x(p)$ is the volume element on P_x^+ . In local adapted coordinates $\operatorname{dvol}_x(p)$ is given as

$$\operatorname{dvol}_x(p) = \sqrt{-\det g^{\mu\nu}(x)} dp_0 dp_1 dp_2 dp_3.$$

By defining the particle current density as

$$\mathcal{J}_{\mu}(x) = \int_{P_x^+} \mathcal{F}(x, p) p_{\mu} \mathrm{dvol}_x(p),$$

Eq. (1) can be expressed in the form

$$\mathcal{N}[S] = -\int_{S} \mathcal{J}_{\mu} s^{\mu} \eta_{S}.$$
 (2)

It can be demonstrated that the particle current density obeys the conservation law $\nabla_{\mu} \mathcal{J}^{\mu} = 0$, which further supports the expression (2). The particle number density can be covariantly defined as

$$n = \sqrt{-\mathcal{J}_{\mu}\mathcal{J}^{\mu}}.$$

Our case

- Stationary solution geodesic trajectories do not depend on time
- Bondi-type accretion a compact object travelling through the interstellar medium
- Planar accretion
- Asymptotically, the gas is assumed to be homogeneous and described by the two-dimensional Maxwell-Jüttner distribution, boosted with a constant velocity v along the x axis. In the Cartesian coordinates, the asymptotic distribution function is given by

$$\mathcal{F}(x,p) = \alpha \delta \left(\sqrt{-p_{\mu} p^{\mu}} - m_0 \right) \exp \left[\frac{\beta}{m_0} \gamma(p_t + v p_x) \right],$$

and in spherical coordinates

$$\mathcal{F}(x,p) = \alpha \delta \left(\sqrt{-p_{\mu} p^{\mu}} - m_0 \right) \exp \left[\frac{\beta}{m_0} \gamma \left(p_t + v \cos \varphi \, p_r \right) \right].$$

Particle current density

With the help of Hamilton's formalism and action-angle variables, it can be shown that in the vicinity of the Schwarzschild black hole, the distribution function is given by

$$f(x,p) = \alpha \delta \left(\sqrt{-p_{\mu}p^{\mu}} - m_0 \right) \exp \left\{ -\beta \gamma \left[\varepsilon - \epsilon_r v \sqrt{\varepsilon^2 - 1} \cos \left[\varphi + \epsilon_{\varphi} \epsilon_r X(\xi, \varepsilon, \lambda) \right] \right] \right\},$$

where

$$X(\xi,\varepsilon,\lambda) = \lambda \int_{\xi}^{\infty} \frac{d\xi'}{\xi'^2 \sqrt{\varepsilon^2 - \left(1 - \frac{2}{\xi'}\right) \left(1 + \frac{\lambda^2}{\xi'^2}\right)}}.$$

Additionally, components of surface particle current density read

$$J_{\mu}(\xi,\varphi) = \sum_{\epsilon_{\varphi}=\pm 1} \frac{1}{\xi} \int f(\xi,\varphi,m,\varepsilon,\epsilon_{\varphi},\lambda) p_{\mu} \frac{m^2 dm d\varepsilon d\lambda}{\sqrt{\varepsilon^2 - U_{\lambda}}}.$$

Monte Carlo approach

Consider a discrete distribution function

$$\mathcal{F}^{(N)}(x^{\mu}, p_{\nu}) = \sum_{i=1}^{N} \int \delta^{(4)} \left(x^{\mu} - x^{\mu}_{(i)}(\tau) \right) \delta^{(4)} \left(p_{\nu} - p^{(i)}_{\nu}(\tau) \right) d\tau$$

representing a sample of N particles moving along given trajectories $\tau \mapsto \left(x_{(i)}^{\mu}(\tau), p_{\nu}^{(i)}(\tau)\right), i = 1, \dots, N$. The particle current density associated with $\mathcal{F}^{(N)}$ is given as

$$\mathcal{J}^{(N)}_{\mu}(x) = \int_{P^+_x} \mathcal{F}^{(N)}(x,p) p_{\mu} \sqrt{-\det g^{\alpha\beta}(x)} dp_0 dp_1 dp_2 dp_3.$$

Let $\Sigma \in \mathcal{M}$ be a hypersurface, not necessarily space-like. We choose a small region $\sigma \in \Sigma$ (a numerical cell) such that $x \in \sigma$. The components of \mathcal{J}_{μ} are approximated by the averages

$$\langle \mathcal{J}_{\mu}(x) \rangle = \frac{\int_{\sigma} \mathcal{J}_{\mu}^{(N)} \eta_{\Sigma}}{\int_{\sigma} \eta_{\Sigma}},$$

where η_{Σ} denotes the volume element on Σ .

Intersections of trajectories with arcs of constant radius

For a planar stationary accretion flow in the Schwarzschild spacetime, we select surfaces of constant $r = \bar{r}$ defined by

$$\tilde{\Sigma} = \{(t, r, \theta, \varphi) \colon t \in \mathbb{R}, \, r = \bar{r}, \, \theta = \pi/2, \, \varphi \in [0, 2\pi)\}$$

and cells

$$\tilde{\sigma} = \{(t, r, \theta, \varphi) \colon t_1 \le t \le t_2, \ r = \bar{r}, \ \theta = \pi/2, \ \varphi_1 \le \varphi \le \varphi_2\}.$$

More precisely let $\Phi_{\tau}(x_0^i)$ denote the orbit of timelike Killing vector field $\xi^{\mu} = (1, 0, 0, 0)$, passing through x_0^i at $\tau = 0$, i.e., $\Phi_0(x_0^i) = x_0^i$. Then $\tilde{\sigma}$ can be expressed as the image

$$\tilde{\sigma} = \Phi_{[t_1, t_2]}(S).$$

10 / 17

The particle current surface density can now be approximated as

$$\langle J_{\mu} \rangle = \frac{\int_{\tilde{\sigma}} J_{\mu} \eta_{\tilde{\Sigma}}}{\int_{\tilde{\sigma}} \eta_{\tilde{\Sigma}}} = \frac{1}{Mm\bar{\xi}(t_2 - t_1)(\varphi_2 - \varphi_1)} \sum_{j=1}^{N_{\rm int}} \frac{p_{\mu}^{(j)}}{\sqrt{\varepsilon_{(j)}^2 - (1 - 2/\bar{\xi}) \left(1 + \lambda_{(j)}^2/\bar{\xi}^2\right)}}$$

For stationary problems, the result should be independent of the choice of t_1 and t_2 in a sense that the number of trajectories that intersects $\tilde{\Sigma}$ should be proportional to the length $t_2 - t_1$, if the latter is sufficiently large. In practice, we omit the factor $t_2 - t_1$ and normalise the results by the number of trajectories taken into account. Moreover, instead of considering complete orbits in the four-dimensional spacetime, it is sufficient to work with projections of trajectories onto surfaces of constant t.

Selection of geodesic parameters

- We select the parameters $\{\xi_0, \varphi_i^{\text{(init)}}, \varepsilon_i, \lambda_i\}$, representing the radial and the azimuthal coordinates of the initial position, the energy, and the total angular momentum of *i*-th particle, respectively
- The first coordinate is the same for all trajectories—all particles start at a fixed radius $r_0 = M\xi_0$. It is important to ensure that this value is sufficiently large
- The coordinate values $\varphi_i^{(\text{init})}$ and ε_i are sampled from the planar asymptotic $(\xi \to \infty)$ distribution function:

$$f(x,p) = \alpha \delta \left(\sqrt{-p_{\mu} p^{\mu}} - m \right) \exp \left[-\beta \gamma \left(\varepsilon - \epsilon_r v \sqrt{\varepsilon^2 - 1} \cos \varphi \right) \right] \quad (3)$$

- To randomise the parameters $\varphi_i^{(\text{init})}, \varepsilon_i$ according to the distribution function (3), we use the Markov Chain Monte Carlo (MCMC) method, implemented in the *Wolfram Mathematica*.
- Values of λ_i are distributed uniformly.
- From the selected parameters, we choose those corresponding to the unbound trajectories and then divide them into absorbed and scattered

Results

 $13 \, / \, 17$

16 / 17

Conclusions

- We confirmed the analytical results in the case of planar accretion
- We demonstrated that the developed Monte Carlo simulation method can be used for cases that do not have spherical symmetry
- Outlook:
 - Preparation of a three-dimensional simulation (P. Mach and A. Odrzywołek: 2021, 2022)
 - Preparing a simulation of Vlasov gas accretion in Kerr spacetime (A. Cieślik, P. Mach, A. Odrzywołek: 2022; P. Rioseco, O. Sarbach: 2018, 2023)
 - Generalisation to general-relativistic Vlasov systems coupled with the electromagnetic field (M. Thaller: 2023)