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4d (lattice) QG

Main goal (at least in 80ties) for QG

Obtain the background geometry 〈gµν〉 we observe
Study the fluctuations around the background geometry
The possibility to relate to other QG approaches like FRG

What 4d CDT offers:
A non-perturbative QFT definition of QG∗

A background independent formulation
An emergent background geometry 〈gµν〉
The possibility to study the quantum fluctuations around
this emergent background geometry.

∗QG = Quantum Gravity or QG = Quantum Geometry
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Problems to confront for a (lattice) theory of QG
(1) How to define the quantum theory
(2) How to face the non-renormalizability of quantum gravity
(3) Provide evidence of a continuum limit (where the

continuum field theory has the desired properties)
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(1) How to define the quantum theory

The classical action in 3+1 dimensions:

S[g] =
1

16πG

∫
d4x

√
−g(x)

(
R(x)− 2Λ

)
One may define the quantum theory via the path integral

Z [G,Λ] =

∫
D[g] eiS[g]/~

But what precisely is meant by
∫
D[g]?
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Classical GR refers to a manifold and a metric gµν with
Lorentzian signature. Consider instead metrics with Euclidean
signature. Then “classical” GR refers to smooth Riemannian
manifolds.

The path integral in QM integrates not only over classical
smooth paths, but over continuous paths. Should we integrate
over continuous geometries and should we include an
integration over different manifolds (e.g. manifolds with different
topologies)?

CDT takes a minimalistic view on these problems: one fixes the
manifold. Here I will discuss only the situation where
M = R × S3. We use a subset of continuous geometries, in
fact a subset of so-called piecewise linear geometries, that can
be constructed by gluing together identical building blocks
(4-simplices). They are hopefully dense in the set of continuous
geometries.
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Inspired by canonical quantization we assume a Lorentzian
signature, a hyperbolic spacetime and a time foliation. We
triangulate it using the building blocks and use the Regge
action for piecewise linear manifolds in the path integral.

The somewhat remarkable aspect is that one can actually
rotate each such Lorentzian geometry to an Euclidean
geometry, where each building block is then a 4-simplex where
all links have the same length a. This length then plays the role
of a UV cut-off, precisely as in ordinary lattice field theories.
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Another remarkable feature is that the Regge action becomes
very simple when using identical building blocks. For a given 4d
triangulation T , denote by N4(T ), N2(T ) and N0(T ) the number
of 4-simplices, 2-simplices (triangles) and 0-simplices
(vertices). Then

S[T ] = −k2N2(T ) + k4N4(T ) = −k0N0(T ) + k̃4N4(T )

where

k2 = c1
a2

G
, k4 = c2

a2

G
+ c3

a4Λ

G
.

k0 = c′1
a2

G
, k̃4 = c′2

a2

G
+ c′3

a4Λ

G
.

S[T ] = −k0N0(T ) + k32N32(T ) + k41N41(T )

= −(k0 + 6∆)N0(T ) + k4N4(T ) + ∆N41(T )

J. Ambjørn CDT and QG



ZL(G,Λ) =

∫
D[gL] eiSL[gL] → Z L

CDT (k2, k4)→ Z E
CDT (k2, k4)

Z E
CDT (k2, k4) =

∑
T

1
CT

e−S[T ] =
∑

N4,N2

ek2N2−k4N4N (N2,N4),

N (N2,N4) =
∑

T (N2,N4)

1
CT

The partition function for QG is the generating function for the
number of abstract triangulations with N4 4–simplices and N2
2–simplices. QG is pure combinatoric!
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(2) Facing the non-renormalizability of QG

It is known how to make 4d QG renormalizable: add an R2 term
to the action (Stelle, 1977). It makes the theory asymptotically
free. Problem with unitarity.

Another route is via the asymptotic safety scenario (ASS)
(Weinberg 1979), implemented via the functional
renormalization group (FRG). Here one investigates if there
exists a non-perturbative UV fixed point in a Wilsonian
formulated theory of QG. So far FRG results have provided
support for this idea.

4d CDT has a reflection positive transfer matrix. Such lattice
theories result in unitary theories if a continuum limit exists.
Thus unitarity is probably not an issue in CDT.

Lattice field theories are well suited to investigate fixed points
and the corresponding continuum limits. Thus 4d CDT seems
ideally suited to study ASS.
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(3) How to define the continuum limit

Recall standard lattice field theory (LFT)

(1) Asymptotic free theories (Gaussian fixed points)
Prime example: YM theories in 4d. One (bare) coupling
constant g0. From perturbation theory we know that the fixed
point is UV (the β-function is negative).

β(g0) = −a
dg0

da
= −β1g3

0 − · · · , a(g0) =
1

ΛYM
e−1/2β1g2

0 ,

For a physical mass mph (from stringtension , glueball mass...)

m0(g0) = mph a(g0) =
mph

ΛYM
e−1/2β1g2

0

We can measure m0(g0) on the lattice and thus reconstruct the
β-function, even if we could not calculate it perturbatively.
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(2) Non-Gaussian UV fixed points
φ4 theory in 4d. Two dimensionless coupling constants m2

0, λ0

S =
∑

n

( 4∑
µ=1

(φ(n+µ)−φ(n))2 + m2
0φ

2(n) + λ0φ
4(n)

)
λR(m2

0, λ0) ∝ Γ
(4)
0 (pi = 0; m2

0, λ0)

−m20

λ0

0

0

UV fixed point?
IR

λR(m20 , λ0)

broken phase

unbroken phase

J. Ambjørn CDT and QG



β(λ0)

IR
UV

β(λ0) ≈ β′￼(λ*0 )(λ0 − λ*0 )

λ*0
λ0

If there had been a UV fixed point:

−a
dλ0

da
= β(λ0) ≈ β′(λ∗0)(λ0−λ∗0), a(λ0) ∝ |λ0−λ∗0|−1/β′(λ∗0 )

For β′(λ∗0) < 0 we can define a continuum limit for λ0 → λ∗0.

J. Ambjørn CDT and QG



This situation is precisely what one would expect from the UV
fixed point in QG. A suitable dimensionless coupling constant is
ΛG and its β-function has been calculated in RFG. The only
problem translating the scenario to a lattice theory is to the
relation between the lattice cut off a and the FRG scale
parameter k . We will return to this later.

β(η)

IR UV
β(η) ≈ β′￼(η*)(η − η*)

η*
η

η* = 0.386, β′￼(η*) = − 0.0132
k(η) ∝ |η − η* |1/β′￼(η*) = |η − η* |−75

H. Kawai and N. Ohta, PRD 107 (2023)

η = 8 πλg = 8 πΛG
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The CDT lattice theory

Three coupling constants, k0,∆, k4

S[T ] = −(k0 + 6∆)N0(T ) + k4N4(T ) + ∆N41(T )

Not only is the connectivity of the lattice not fixed but also the
spacetime volume N4 is not fixed. However, for computer
technical reasons we trade k4 for a fixed N4. We can recover
the partition function as a function of k4 by a (discrete) Laplace
transformation

Z (k4) =
∑
N4

e−k4N4Z (N4)
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For a fixed N4 we then have the following CDT phase diagram,
where the precise phase transition lines are functions of N4. Of
course we only have “real” phase transitions for N4 =∞. For
finite N4 we have “pseudo-critical” phase transition lines.
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The Cb-CdS transition line has the interpretation as breaking of
homogeneity and isotropy of space. A UV fixed point on this
line would imply that the short distance physics is related to this
symmetry breaking and could have implication for cosmology,
but until now we have not found a candidate for such a UV fixed
point at the Cb-CdS transition line. Our main interest in the
following will be centered at the A−CdS transition line

Let us look closer at how the structure of spacetime could
change at the phase transition and whether these changes can
be used to define a continuum limit of the lattice theory.
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For each time-slice t we have a spatial volume V3(t) ∝ N3(t)a3.
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The de Sitter phase
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〈N3(t)〉 ∝ N4
1

ω(k0,∆)N1/4
4

cos3

(
t

ω(k0,∆)N1/4
4

)
,

This is exactly the spatial volume profile of a (compressed)
four-sphere of volume N4 if we use a metric

dτ2 = dt2 + `2(t)dΩ3, V3(t) ∝ `3(t).
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The fluctuations behave like

∆N3(t) = C(k0,∆)
√

N4 F

(
t

ω(k0,∆)N1/4
4

)
, F (0) = 1

Thus we have seemingly obtained some of the goals declared
in the beginning: obtaining a 〈gµν〉 and being able to study the
fluctuations around this configuration (at least in the limiting
sense of studying the spatial volume).

In fact we can do more: we can obtain the effective
minisuperspace action for 〈N3(t)〉 from the study of correlation
functions 〈N3(t)N3(t ′)〉 and show that the fluctuations around
〈N3(t)〉 are well described expanding this minisuperspace
action to quadratic order in the fluctuations.
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Seff =
1
Γ

∑
i

((
N3(ti+1)− N3(ti)

)2

N3(ti)
) + δN1/3

3 (ti)

)
.

si =
ti

N1/4
4

, n3(si) =
N3(ti)

N3/4
4

, ∆s =
1

N1/4
4

,

Seff =

√
N4

Γ

∫ πω/2

−πω/2
ds

(
(ṅ2

3(s)

(n3(s)
+ δ n1/3

3 (s)

)
,

∫
ds n3(s) = 1.

we now have with high precision:

〈n3(s)〉 =
3

4ω
cos3

( s
ω

)
,

δ

δ0
=
(ω0

ω

)8/3
ω4

0 =
3

8π2 , δ0 =9(2π2)2/3

Γ = Γ(k0,∆,N4), δ = δ(k0,∆,N4),
∆N3(t)
〈N3(t)〉 ∝

√
Γ(k0,∆,N4)

N1/4
4
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Comparison with FRG

The simplest truncation used in FRG is

Sk [gµν ] =
1

16πGk

∫
d4x

√
g(x)

(
− R(x) + 2Λk

)
where Gk and Λk coupling constants running with the scale k .

The running coupling constants are believed to have an UV
fixed point for k →∞, where they behave as

Gk := gk/k2, gk → g∗, Λk := λkk2, λk → λ∗,

where gk and λk are dimensionless coupling constants. In
particular we have for the dimensionless combination Gk Λk :

Gk Λk → g∗λ∗ for k →∞.
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The extremum for Sk [gµν ] is a de Sitter universe with
cosmological constant Λk . We will assume the metric is
Euclidean and then the solution is a four-sphere, S4, with
radius Rk = 3/

√
Λk . One can now study fluctuations around

this solution. We will only do that here in the simplest possible
way where we use a minisuperspace version of Sk [gµν ] in order
to compare with the lattice results. Close to the UV fixed point
we then have

Rk =
3√
λk

1
k
→ 3√

λ∗

1
k
, V4(k) =

8π2

3
R4

k =
8π2

3
81
λ2

k

1
k4 →

8π2

3
81
λ2
∗

1
k4 .

i.e. the volume V4(k) of the de Sitter sphere goes to zero when
approaching the UV fixed point. Does it make sense to study
fluctuations “around” such small universe?
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Somewhat surprisingly the answer is affirmative because the
coupling constant appearing in the study of fluctuations is√

Gk Λk =
√

gkλk that is never large, even at the UV fixed point
where Rk formally is zero.

In order to compare with computer simulations let us consider
fluctuations around a de Sitter sphere with fixed volume V4
rather than fixed Λ. The minisuperspace action written using
the metric

dτ2 = dt2 + r2(t)dΩ2
3,

Sk = − 1
24πGk

∫
dt
( V̇ 2

3
V3

+ δ0V 1/3
3

)
,

∫
dtV3(t) = V4(k),

V3(t) = 2π2r3(t), δ0 = 9(2π2)2/3, ω0 =
3√
2

1

δ
3/8
0

,

Sk = − 1
24π

√
V4(k)

Gk

∫
ds
( v̇2

3
v3

+δ0v1/3
3

)
, v3 =

V3

V 3/4
4

, s =
t

V 1/4
4
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The fluctuations around

vcl
3 (s) =

3
4ω0

cos3
( s
ω0

)
will for a given k be governed by the effective coupling

constant

g2
eff(k) =

24πGk√
V4(k)

=
4√
6

ΛkGk = 1.63λkgk .

In the FRG analysis λkgk will be running from the present days
value for small k = kp ( λkpgkp ≈ 10−120) to the value λ∗g∗. This
UV fixed point value is not really universal, but with a number of
different regularizations one finds values like λ∗g∗ ≤ 0.12.
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The infrared limit

Ignore for a moment that δ 6= δ0. Then it is natural to identify
√

N4

Γ(k0,∆,N4)
=

√
V4(k)

24πGk
=

1
1.63λkgk

=
1

1.63 ΛkGk
.

For fixed (k0,∆) Γ(k0,∆,N4) will be independent of N4 for
sufficiently large N4. Thus, for N4 →∞ we see that λkgk → 0.
In the FRG context this implies that we either approach the
so-called Gaussian fixed point or an IR fixed point where
k → 0. These fixed points can now be identified with the
N4 →∞ limit of CDT for fixed k0,∆. Since we observe perfect
finite size scaling in CDT for the fluctuations it is natural to
identify the linear size of the lattice, i.e. N1/4

4 with the
correlation length of the system. Thus the N4 =∞ surface
becomes the critical surface of infinite correlation length and:

ξ = N1/4
4

J. Ambjørn CDT and QG



N−14

κ0

Δ

CdSCb

AB

The interior of phase CdS for N4 =∞ becomes an critical IR
surface (compare to critical line for φ4 diagram)
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g

Flow (λk ,gk ) from the UV fixed point towards the Gaussian
fixed point and (0,0) and towards an IR fixed point at (0.5,0),
with decreasing k from infinity at the UV fixed point. (Reuter and
Saueressing, 2002)
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Similar flow in a slightly modified FRG model (Saueressig and
Wang (2023)). In this model one has both a Gaussian fixed point
and an IF fixed point and for both

k
d(λkgk )

dk
= 4(λkgk ), k → 0, λkgk ≈ c k4.

Gaussian FP : λk ,gk ∝ k2, IR FP : gk ∝ k4, λk =
1
2
.
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For fixed k0,∆ in phase CdS we have for large N4

√
N4

Γ(k0,∆)
=

√
V4(k)

24πGk
, ξ = N1/4

4 , N4a4 ∝ V4(k).

Thus
a2 ∝ Gk

Γ(k0,∆)

For the Gaussian FP we have Gk = gk/k2 ≈ G0 = `2p for small
k , while for the IR FP Gk ∝ k2. Thus:

a ∝ `p√
Γ(k0,∆)

(G−FP), a ∝ k√
Γ(k0,∆)

√gk̃

k̃2
(IR−FP).

ξ ∝
√

Γ(k0,∆)

G0k2 (G−FP), ξ ∝
√

Γ(k0,∆)
√gk̃

k̃2

k2 (IR−FP).
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The Utraviolet limit

To identity a lattice UV fixed point on the critical surface we
should keep the renormalized, continuum coupling fixed while
changing the lattice couplings in such a way that the correlation
length goes to infinity. The renormalized coupling constant can
take any value between its UV fixed point value and the nearest
IR fixed point value. We apply this philosophy to the
dimensionless coupling constant GΛ = gλ. Thus we keep gkλk
fixed, and from

√
N4

Γ(k0,∆,N4)
=

√
V4(k)

24πGk
=

1
1.63λkgk

.

and from the fact that the critical surface is at N4 →∞, it is
seen that we can only approach a possible UV fixed point if we
follow a path (k0(N4),∆(N4)) in the lattice coupling constant
space such that Γ(k0(N4),∆(N4),N4)→∞.
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The only region in the CdS phase where Γ(k0,∆,N4) goes to
infinity is when we approach the A−CdS transition line (and
N4 →∞). However, at this line we also have that δ in our
effective action increases dramatically and we can no longer
ignore the fact that δ 6= δ0 when we compare our lattice results
with the FRG calculations.

On the lattice the “deformed” spheres arise because there are
“too many” N3 compared to the time extension. We can
compensate for that by decreasing the spatial lattice spacing,
while keeping the temporal lattice spacing unchanged

as (= a) → ãs =
( ω
ω0

)4/3
a, at (= a) → ãt = a.

V3(t)→ Ṽ3(t) =
( ω
ω0

)4
V3(t), V4 → Ṽ4 ≈

( ω
ω0

)4
V4.
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S =
1

24πG̃

∫
dt

( ˙̃V 2
3 (t)

Ṽ3(t)
+ δ̃ · Ṽ 1/3

3

)
,

∫
dt Ṽ3(t) = Ṽ4,

G̃ =
ω4

ω4
0

G, δ̃ =
ω8/3

ω
8/3
0

δ = δ0.

So given computer data N4, ω, Γ we can associate a
corresponding continuum, round S4 via:

(N4, ω, Γ)→ (V4, ω,G)→ (Ṽ4, ω0, G̃),

√
N4

Γ
=

√
V4

24πG
=
ω2

ω2
0

√
Ṽ4

24πG̃
=
ω2

ω2
0

1
1.63λkgk

ω2(k0,∆,N4) Γ
(
k0,∆,N4

)
= 1.63λkgk ω

2
0

√
N4
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How to observe this in the MC simulations?

Let N4 =∞ and assume

ω2(k0,∆)Γ(k0,∆) =
C(∆)

|k0(∆)c − k0|α
, k0 → k0(∆)c .

Weak ∆ dependence and we will ignore it in the following. For
finite N4 we do not have a critical kc

0 , but ω2(k0,N4) Γ(k0,N4)
will have a maximum for a so-called pseudo-critical point
kc

0 (N4) that will approach kc
0 for N4 →∞:

kc
0 (N4) = kc

0 −
c

Nβ
4

ω2(kc
0 (N4),N4) Γ(kc

0 (N4),N4) ∝ 1
|kc

0 − kc
0 (N4)|α ∝ Nαβ

4

Thus we want to find kc
0 (N4) and measure γ = αβ.
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Conclusion: our MC data can be made consistent with the FRG
picture.

However: this consistence was obtained by insisting on the
interpretation ξ = N1/4

4 . Such an identification is unproblematic
if we for N4 =∞ first can define a correlation length related to
an observable in a standard way and then study the phase
diagram where ξ →∞. Here one can ask: what is correlated
with a correlating length ξ?

In 2d quantum gravity, where one can solve the models
analytically, the answer is points in spacetime!.

Points are not correlated in an interesting way for a fixed
geometry. However, when one averages over all geometries
this changes completely.
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PN(n) = 1
N1/dh

F ( n
N1/dh ), ∫

∞

0
dx F(x) = 1

N
N

n2n1
n geodesic distance between the two points

Assume no fixed N, but a fixed lattice cosmological constant μ (μc = 0)

⟨N⟩ ∝ 1
μ

, P̃μ(n) = ∑
N

e−μNPN(n) ∝ exp [− n
⟨N⟩1/dh ], n > ⟨N⟩1/dh

In 2d one can calculate the correlator between two points
separated a geodesic distance n and they have a lattice
correlation length ξ ∝ N1/dh

2 , where dh is the Hausdorff
dimension of quantum spacetime.
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Then: if the correlation length is between spacetime points
(which is in some sense the most obvious manifistation of
“quantum geometry”), the nature of the phase transitions
(rearrangments of “geometries”, where some of these
geometries might not have a “continuum” interpretation) might
be different from the “usual” Landau-like phase transitions
characterized by local order parameters. In fact there has
always been some non-standard aspects of the CDT phase
transitions, even if we have until now tried to stick to the
standard classifications. The attempts to fit the data to FRG
calculations have highlighted that one should maybe think
differently about the concept of critical phenomena in theories
of quantum geometries.

At the moment we are trying to apply this new perspective to
the A−CdS transition, which we until now had viewed as a first
order transition.

J. Ambjørn CDT and QG


