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Blazars

Unification model: jets of blazars are
close to line of sight
Broad-band and non-thermal

sk \z continuum of electromagnetic
Bllae \ FRII(NLRG radiation (radio to y-rays)
\ * Flat spectrum radio emission with:
S(v) x v*

a<0.5

FR 1 (NLRG)

Significant optical polarization
P >3%
Significant flux variability

BL Lacertae (BL Lac)
- no/weak emission lines

Flat Spectrum Radio Quasar (FSRQ)
— narrow and broad emission lines

Credit: The unification model of AGNs; Urry & Padovani 1995



OGLE

The Optical Gravitational Lensing Experiment

OGLE project: since 1992;
Andrzej Udalski

Main scientific goals:

« MCs and Galactic Bulge
monitoring,

 dark matter study with
microlensing phenomena,

 extrasolar planets' searching,
 galactic structure study,

 analysis of different time scale
variability of hundred millions
regularly observed objects.

Location: Las Campanas, Chile.

Credit: Prof. I. Soszynski



Magellanic Quasars Survey

Sky coverage of the MQS: 100% of the LMC
and 70% of the SMC
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Targets from OGLE-IIl and OGLE-IV

Selection based on mid-IR and optical colours,
optical variability, X-ray properties, and optical
spectroscopy

Confirmation of 758 quasars (565 in the LMC
and 193 in the SMC)

94% quasars from the MQS catalogue (527 in
the LMC and 186 in the SMC) are newly
identified objects

Credit: Koztowski et al. 2013



Declination (J2000)

Declination (J2000)
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Optical image: Bothun & Thompson (1988)

44 sources selected:

27 FSRQs

17 BL Lacs

faint sources with 16 — 21 mag,

distant sources with z = 0.3 — 3.3
radio-loudness:

FSRQs: 12 — 4 450

BL Lacs: 171 — 7 020

radio spectral index:

from -0.57 up to 1.37

IR spectral index:

from -0.44 up to 3.07

average polarization of PD_,, ~ 6.8%

at 4.8 GHz
possible association with flarying
source detected by Fermi-LAT



Optical variability study of all blazar candidates

* Motivation

— to look for blazar-like characteristics

— to analyse the long-term behaviour

— to search for the quasi-periodic oscillations.

* Data

Optical variability study in filters I and V of both blazar candidates based on OGLE-II (1996-
2000), OGLE-IIT (2001-2009), and -IV (2010-now) data

— temporal coverage of > 20 years.

Object name: FSRQ_18

FSRQ 18 021 1
FSRQ_18_03_I 1
FSRQ 18 03 V 1
FSRQ 18_04 | 1
FSRQ 18 04 V_1
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Optical variability study of all blazar candidates
methodology

Lomb-Scargle periodograms
power spectral density (PSD) for unevenly sampled time series:

PL + Poisson noise: P(f) = Poorm +

— J‘\“" 2 r
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kzlms lw(te = 7)] smoothly broken PL (SBPL) plus Poisson noise:
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« zero-mean Continuous-time Auto-Regressive Moving Average (CARMA) modelling

dPx(t) dP (1) N
differential equation of stochastic processes: qge T @~ g1 o T aor(t) =
Cd%(t) A e(t)
.‘-JJQF + ILJ)q_lw + ...+ E(f)
| 2
_ : I ; Ornstein-Uhlenbeck process for CARMA(1,0)
PSD: Z{ B (27if) Lorentzian with a break frequency at o /(2m)
. |7=0
Pearma(f) = 0 . 5 ,
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Optical variability study of all blazar candidates
methodology

e Hurst exponent _ i
measures the statistical self similarity of a time series x(t); z (1) = A~ ::r:()\t)

autocorrelation function: p(k) = % [(k’ 4+ 1)2H —9k2H (k — 1)21-;]

Properties of Hurst exponent:

O<H<1,

H = 1/2 for an uncorrelated process (e.g. white noise or Brownian motion),
H > 1/2 for a persistent (long-term memory, correlated) process,

H < 1/2 for an anti-persistent (short-term memory, anti-correlated) process.
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* A-T Plane 1 2 (Tiv1 — )
Abbe value, which quantifies the smoothness of a time serie A = =1

N |
& > (i —1)?
=1

frequency relative to number of observations: T =T/N
where T is number of turning points in a time series

— to provide a fast and simple estimate of the Hurst exponent
- to differentiate between different types of colored noise, P(f) « 1/f# , characterized by different values of 3



Optical variability study of all blazar candidates
fitted models

« 23 sources with PL model, i.e. 10 FSRQs and 13 BL Lacs
* 15 sources with SBPL model, i.e. 13 FSRQs and 2 BL Lacs

* 6 sources with PL and SBPL models, i.e. 4 FSRQs and 2 BL Lacs

log Power

L=41.6913; RMSE=0.137339
AlCc=-13.2872; BIC=-11.60M
£ = 1.92301 + 0.116582

log frequency [1/ d]

FSROQ 20

log Power

£ =51.5057; RMSE =0.0860649
AICc=-25.416; BIC =—25.1489
By = 1.44B05 + 0.159322
B> = 5.87 + 1.7635
Theax [d] = 177.107 + 33.5083

log frequency [1/ d]

- FSRQs’' PL
exponent 3 mostly lies in
the range (1, 2)

— one object has a flat
PSD,B=0

- BL Lacs are

slightly flatter, spanning
mostly the range (1, 1.8)
- one BL Lac has a flat
PSD

— three BL Lacs have
steeper PSDs, with
B~3-4



Optical variability study of all blazar candidates
A-T plane and Hurst exponents

filter 1; 1/f*+C noise; Be[0,3]
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PL plus Poisson noise PSD of the form P(f) « 1/f* + C with 3 € {0, 0.1, . . ., 3}

— most objects have H < 0.5 — short-term memory
- 4 BL Lacs and 2 FSRQs have H > 0.5 - long-term memory



Optical variability study of all blazar candidates

Carma modelling
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— most of the examined objects, i.e. 18/27 FSRQs and 13/17 BL Lacs, are well described
by a CARMA(2, 1) process

— This simplest model, with a single-Lorentzian PSD, is in turn the best fit for only 3/27
FSRQs and 2/17 BL Lacs



Conclusions

* jet domination should be visible in the PSD as a PL, without a flattening at low frequencies at
all, or with a break at time scales >1000 d;

* The secure blazar candidates (5 FSRQs and 2 BL Lacs) have an LSP best described by the
SBPL, with break time scales at 200-300 days; 1 FSRQ and 1 BL Lac are consistent with the PL
PSD,;

 For FSRQs such a break is not really surprising, i.e. they can be interpreted as disk dominated.
But the two BL Lacs with a broken PSD are interesting, as BL Lacs are believed to be jet
dominated,;

 the steepness of the high frequency component of the SBPL is intriguing: it can indicate a new
class of AGNSs, or it can be a sign of a double BH system, where the shorter time scale variability
from the disk is wiped out - the accretion disk surrounds both BHs, outside their orbit.



Further directions
Possible Fermi-LAT coincidences
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