59th Krakow School of Theoretical Physics Zakopane June 2019

Probing the Violent Universe with multi-messenger eyes: gravitational waves, high-energy neutrinos, gamma rays, and cosmic rays

Ultra High-Energy Cosmic Rays Lecture 2

Alan Watson

University of Leeds, UK

a.a.watson@leeds.ac.uk

Lecture 2:

Properties of High Energy Cosmic Rays

Energy Spectrum

Arrival Direction Distributions

Mass Composition

Possible interpretations

$$p + \gamma (2.7^{\circ}K) \rightarrow \Delta^{+} \rightarrow p \quad \pi^{0} \rightarrow photons$$

 $\rightarrow n \quad \pi^{+} \rightarrow neutrinos$

Trajectories of Cosmic Ray Protons in the Galaxy

- protons are trapped in our Galaxy up to ~10¹⁸eV
- protons can travel straight lines above ~10²⁰eV

• charged-particle astronomy?

A large event: 7 x 10¹⁹ eV

Hybrid Detection of Air Showers

Invisible Energy

This is the energy carried into the ground by muons and neutrinos. Not measured by the fluorescence detectors

Reason that this is relatively more of a correction at low energies is because at the higher energies pions tend to interact, not producing muons or neutrinos. Also explains difference between p and Fe (think energy per nucleon)

A Hybrid Event

Core location Easting 468693 ± 59 Northing 6087022 ± 80 Altitude = 1390 m a.s.l.

Shower Axis $\theta = (62.3 \pm 0.2)^{\circ}$ $\phi = (119.7 \pm 0.1)^{\circ}$

Energy Estimate

- from area under curve

 $(2.1 \pm 0.5) \times 10^{19} \text{ eV}$

must account for 'invisible energy'

Getting the Energy and X_{max}

0 25 25 20 15 10 95 90 azimuth [deg]

 $E = 7.1 \pm 0.2 \ 10^{19} \ eV - X_{max} = 752 \pm 7 \ g/cm^2$

10

Comparisons between Telescope Array and Pierre Auger Observatory

Figure 1. Energy spectra over the entire fields of view for TA [10] and Auger [5]: (left) calculated using the nominal energy scales of Ta and Auger, (right) calculated after applying the overall +5.2% (Auger) and -5.2% (TA) energy scale corrections. Significant difference between the Auger and TA energy spectra remains after rescaling the TA and Auger energies by constant (energy-independent) factors

What might the steepening mean?

Rigidity-limited

Photo-disintegration effects

Figure 2.10: Examples of fluxes of different mass groups for describing the Auger spectrum and composition data. Shown are the fluxes of different mass groups that are approximations of one maximum-rigidity scenario (left panel) and one photo-disintegration scenario (right panel). The col-

The steepening itself is **INSUFFICIENT** for us to claim that we have seen the Greisen-Zatsepin-Kuz'min effect

It might simply be that the sources cannot raise particles to energies as high as $10^{20} \text{eV} - \text{Nature could be teasing us!}$ probably is!

Energy densities of CMB, galactic magnetic field, cosmic rays and starlight are very similar – this may be another coincidence

- Are there anisotropies in the arrival direction distributions?
- Knowing the mass composition would be useful
 - but for this we need to extrapolate key features of hadronic interactions to high energies
 - cross-section, multiplicity, inelasticity, pion collisions...

Arrival Direction studies

- The cosmic-ray sky is remarkably isotropic, even at the very highest energies
- This may reflect the high charge of the particles and magnetic fields that lie between us and the sources or there could be a huge number of sources

We now have:

- Very strong evidence for a dipole anisotropy 8 EeV (5 sigma)
- The amplitude of this dipole increases with energy
- There may be hot-spots in the sky at the highest energies

bservation of Dipolar anisotropy above 8 EeV

Harmonic analysis in right ascension α

		•	phase [deg.]	$P(\geq r)$
4-8	81701	$0.005^{+0.006}_{-0.002}$	80 ± 60	0.60
> 8	32187	$0.047^{+0.008}_{-0.007}$	$\textbf{100} \pm \textbf{10}$	$2.6 imes 10^{-8}$

significant modulation at $5.2~\sigma$ (5.6 σ before penalization for energy bins explored)

Dipole in Galactic Coordinates

Mean amplitude of the total expected dipole when local sources within 100 Mpc are distributed like galaxies in the 2MRS catalog (blue dashed lines) considering a density $\rho = 10^{-5}$ Mpc⁻³ and a turbulent field with B = 1 nG.

The red line shows the expected amplitude for uniformly distributed sources for the same parameters

What are the accelerators?

Might help to guide the search for anisotropies at higher energies

Synchrotron Acceleration

$$\mathbf{E}_{\text{max}} = \mathbf{ZeBR}\boldsymbol{\beta}\mathbf{c}$$

Single Shot Acceleration

$$E_{max} = ZeBR\beta c$$

Diffusive Shock Acceleration

$$E_{max} = kZeBR\beta c$$
, with k<1

Hillas 1984 ARA&A B vs R

High-Z nuclei easier to accelerate

Diffusive Shock Acceleration (Krimsky, Blandford, Ostriker, Axford, Bell 1987/1988)

 $E_{max} = kZeBR\beta c$, with k<1

(e.g. Shocks near AGNs. near Black Holes, Supernova.....?)

Testing for correlations with candidate source-types at highest energies

image of M87 with Hubble Space Telescope

<u>Ilana Feain</u>, Tim Cornwell & Ron Ekers (<u>CSIRO/ATNF</u>);

Figure 1. Idealised model of shocks and flux tubes in the lobes of radio galaxies.

Both first and second order shock acceleration can take place in the flux tubes

Fig. 1. Scheme of the physical scenario considered in this work. Not to scale. Adapted from Strickland et al. (2002).

Search for Intermediate-scale Anisotropies

Analysis Strategy:

- arrival directions of data, D
- sky model from source candidates, M_i

 $M_i = (\text{flux model}) \times (\text{attenuation model}) \times (\text{angular smearing}) \times (\text{exposure})$

- null hypothesis: isotropy M₀
- single population signal model:

$$M = (1 - \alpha) M_0 + \alpha M_i$$

- test statistics:
 - ratio of likelihoods of model-data comparison

$$TS = 2\log(P(D|M)/P(D|M_0))$$

think $\Delta\chi^2$ of (isotropy + signal) vs. isotropy

- p-value from Wilk's theorem: $p(TS) = p_{\chi^2}(TS, \Delta ndf)$
- of large TS
 - ightharpoonup M describes D much better than M_0
 - M_0 excluded at p (**not**: M "proven" at p)

Test Statistics vs. Energy

starburst model fits data better than isotropy, significance of 4 σ^* .

 $^*P_{\chi^2}({
m TS,\ 2})$ penalized for energy scan

Auger/TA all sky survey at high energies

Figure 2: Sky map, in equatorial coordinates, of local overand under-densities in units of standard deviations of UHECRs above $47 \pm 7 \; \mathrm{EeV}$.

It would be enormously useful to know the mass composition

Uncovering the mass composition is extremely difficult

In absence of a strong point-like anisotropy (protons?), one must rely on extrapolations of hadronic physics from accelerators to help interpret the data

Eventually, we will find a hadronic model that fits all of the data

It will give a unique mass composition – but we are not there yet!

Will also benefit from using galactic magnetic field as a magnetic spectrometer

Inferring the Primary Mass with X_{max}

Geometric cross section: $\lambda_p = 4 \lambda_{Fe}$

One method to try to infer the variation of mass with energy

Given the necessity of using models, an important question is

"Are the cosmic-ray models adopted sensible?"

Here, the LHC results have proved an excellent test-bed

- to evaluate three different models -All within Gribov's Reggeon Field Theory framework
- EPOS: parton-based Gribov-Regge Theory
- QGS: quark-gluon string model multi-pomeron amplitudes calculated to all orders
- Sibyll: based on Dual-parton model mini-jet model
- Each model has a different but self-consistent assumptions to describe hadronic interactions.

This is ALL I really can tell you about the details of the models!

Hadronic Monte Carlos for LHC collisions

Proton-proton collisions in PYTHIA, HERWIG,...

Theoretical basis:

- Perturbative QCD (LO + K-factor):
 PDFs, matrix-elements.
- Leading-log parton shower.
- Multiparton interactions.
- Saturation-based infrared p_⊤ cut-off

Non-pQCD modeling:

- String fragmentation (Lund model).
- Beam-remnants.
- Diffraction.
 - Model parameters:
 - O(100) parameters
 - Multiples tunes to many collider measurements.
- No p-A, A-A available (yet). But PYTHIA comparable to EPOS/QGSJET via:
 - Constructing a CONEX hydrogen atmosphere with same density as air.
 - Running PYTHIA-6 proton-hydrogen with varying MC tunes to LHC data.

Reconstructed longitudinal profiles

rms uncertainty in X_{max} < 20 g cm⁻² from stereo measurements

Average X_{max} Fluorescence Detector

Results from Telescope Array also show a break

For technical reasons it is not helpful to plot both data sets on same graph

Results on mass from depth of maximum with fluorescence detectors

Figure 3: The mean (left) and the standard deviation (right) of the measured X_{max} distributions as a function of energy compared to air-shower simulations for proton and iron primaries.

Predictions from Sibyl model lie between those with QGSjet and EPOS-LHC

(p-He-N-Fe)-fit of X_{max} Distributions

Fraction of p, He, N and Fe as function of energy

Summary of experimental results

- Ankle at \sim 5 EeV and steepening at \sim 40 EeV clearly established
- Strong evidence for dipole anisotropy in Auger data above 8 EeV which increases with energy
- At highest energies some evidence that Starburst Galaxies and AGNs are sources
- Mass composition getting heavier above the ankle
- (No neutrinos seen, at level similar to IceCube, tomorrow)