Neutron stars in the Skyrme model

Mateusz Wachla

17.06.2019

BPS baby Skyrme model coupled to gravity and gauge field

The action for the gravitating gauged BPS baby Skyrme model is given by

$$S = \int d^3x |g|^{\frac{1}{2}} \left(-\lambda^2 \pi^2 |g|^{-1} g_{\alpha\beta} \tilde{\mathcal{B}}^{\alpha} \tilde{\mathcal{B}}^{\beta} - \mu^2 \mathcal{U} - \frac{1}{4e^2} F_{\mu\nu}^2 \right) + S_{EH}, \tag{1}$$

where S_{EH} is the Einstein-Hilbert action in (2+1) dimenstional space-time and $\tilde{\mathcal{B}}^{\mu}$ is a gauge invariant version of the topological current

$$\tilde{\mathcal{B}}^{\mu} = \frac{1}{8\pi} \epsilon^{\mu\nu\rho} \vec{\phi} \cdot \left(D_{\nu} \vec{\phi} \times D_{\nu} \vec{\phi} \right). \tag{2}$$

The covariant derivatives read

$$D_{\mu}\vec{\phi} = \vec{\phi}_{\mu} + A_{\mu}\vec{n} \times \vec{\phi}, \ \vec{n} = (0, 0, 1).$$
 (3)

The corresponding Einstein equations are

$$G_{\alpha\beta} = \frac{\kappa^2}{2} T_{\alpha\beta},\tag{4}$$

where $\kappa^2 = 16\pi G$.

In the next step we assume the axial symmetry for the metric

$$ds^{2} = \mathbf{A}(r)dt^{2} - \mathbf{B}(r)dr^{2} - r^{2}d\phi^{2}$$
 (5)

and consider only the static case with no electric field, so the gauge field reads

$$A_{\mu} = (0, A_1(\vec{x}), A_2(\vec{x})). \tag{6}$$

Due to axially symmetric metric we can restrict ourselves to an axially symmetric matter and gauge field

$$A_t = A_r = 0, \ A_\phi = na(r). \tag{7}$$

The Skyrme field $\vec{\phi} \in \mathcal{S}^2$, so we can express it by the stereographic projection

$$\vec{\phi} = \frac{1}{1 + |u|^2} \left(u + \bar{u}, -i(u - \bar{u})1 - |u|^2 \right) \tag{8}$$

and applay for it the ansatz

$$u = f(r)e^{in\varphi}, \quad h = 1 - \frac{1}{1 + f^2}.$$
 (9)

Now we have everything to write down the Einstein equations together with the Maxwell equations.

Einstein equations:

$$\frac{\mathbf{B}_{r}}{\mathbf{B}} = \kappa^{2} r \mathbf{B} \tilde{\rho},
\frac{\mathbf{A}_{r}}{\mathbf{A}} = \kappa^{2} r \mathbf{B} \tilde{\rho},
(\tilde{\rho} \mathbf{B})_{r} = \kappa^{2} r \mu^{2} \mathbf{B}^{2} \mathcal{U} \tilde{\rho},$$
(10)

where

$$\tilde{\rho} = \frac{n^2}{2e^2r^2B}a_r^2 + \frac{\lambda^2n^2}{4r^2B}(1+a)^2h_r^2 + \mu^2\mathcal{U},\tag{11}$$

$$\tilde{p} = \frac{n^2}{2e^2r^2B}a_r^2 + \frac{\lambda^2n^2}{4r^2B}(1+a)^2h_r^2 - \mu^2\mathcal{U}.$$
 (12)

Maxwell equation:

$$\frac{n}{e^2}\partial_r\left(\sqrt{\frac{A}{B}}\frac{a_r}{r}\right) = \lambda^2\sqrt{\frac{A}{B}}\frac{n}{2}(1+a)\frac{h_r^2}{r}.$$
 (13)

Is the model truly BPS?

We can notice that there is a formal solution to the zero pressure condition

$$\mathbf{A} = 1$$
 and $\tilde{p} = 0$. (14)

Now if we perform a change of the radial variable and introduce

$$\frac{dz}{dr} = r\sqrt{B} \tag{15}$$

then we can show that our model will reduce from the gravitating model to a non-gravitating one. We already know that in the gauged BPS baby Skyrme model the Bogomolny equations have a form

$$na_z = -e^2 \lambda^2 W(h),$$

 $\frac{n}{2} (1+a)h_z = -W_h(h),$ (16)

where W(h) satisfies

$$\frac{e^2\lambda^4}{2}W^2 + \lambda^2 W_h^2 = \mu^2 \mathcal{U}(h). \tag{17}$$

If we introduce a new superpotential $\omega(h)$

$$\omega(h) = \frac{\lambda}{\mu} W(h) \tag{18}$$

we get

$$\omega_h^2 + \beta^2 \omega^2 = \mathcal{U},\tag{19}$$

where the new dimensionless parameter is

$$\beta^2 = \frac{e^2 \lambda^2}{2}. (20)$$

Observables

• The proper mass *M*- the energy of the soliton

$$M = \int d^2x |g|^{\frac{1}{2}} \tilde{\rho} = 2\pi |n| \lambda \mu |\omega(h=1)|. \tag{21}$$

• The total magnetic flux Φ (Magnetic field $H=\epsilon^{12}F_{12}=na_z$)

$$\Phi = \int d^2x |g|^{\frac{1}{2}} H = 2\pi n a(z_0) = 2\pi n a_{\infty}, \qquad (22)$$

where

$$a_{\infty} = -1 + \exp\left(-\frac{F(1)}{4}\beta^{2}\right),$$

$$F(h) = 4 \int_{0}^{h} \frac{\omega(h')}{\omega_{h'}(h')} dh'.$$
(23)

• The geometric volume of the soliton V

The geometric volume of the soliton
$$V$$

$$V = \int d^2x |g|^{\frac{1}{2}} = \pi \frac{\lambda}{\mu} |n| \exp\left(-\frac{F(1)}{4}\beta^2\right) \int_0^1 \frac{\exp\left(\frac{F(h)}{4}\beta^2\right)}{\omega_h} dh. \tag{24}$$

• The M_{ADM} mass

$$M_{ADM} = 2\pi \int_{0}^{R} r dr \tilde{\rho}(r) =$$

$$= 2\pi |n| \lambda \mu |\omega(h=1)| \left(1 - \frac{\kappa^{2} \lambda \mu}{4} |n| |\omega(h=1)| \right). \tag{25}$$

Due to regularity of the metric function there exist maximal value of the topological charge n_{max} , which implies existence of the maximal mass

$$n_{max} = \left\lfloor \frac{2}{\lambda \mu \kappa^2 |\omega(1)|} \right\rfloor, \ M_{ADM}^{max} = M_{ADM}(n^{max}) = \frac{M^{max}}{2} = \frac{2\pi}{\kappa^2}.$$
 (26)

• The radius R of the baby Skyrmion

$$\frac{R^2}{2} = \int_0^R r dr = \int_0^{z_0} dz \left(1 - \frac{\kappa^2}{2} \int_0^z \tilde{\rho}(z') dz' \right). \tag{27}$$

It can be shown that this is equal to

$$\frac{R^2}{2} = \frac{V}{2\pi} - \frac{n^2 \lambda^2 \kappa^2}{2} \mathcal{A}(\beta), \tag{28}$$

where

$$\mathcal{A}(\beta) = \int_0^1 \frac{\exp\left(\frac{F(h) - F(1)}{4}\beta^2\right)}{\omega_h} \left[\omega(1) - \exp\left(\frac{F(h) - F(1)}{4}\beta^2\right)\omega(h)\right] dh.$$
(29)

If we introduce a new variable $x = |n|/n_{max} \in [0,1]$ then we can study the mass-radius relation in a parametric fashion

$$\begin{cases}
\frac{\kappa^2 M_{ADM}}{2\pi} = x (2 - x) \\
\frac{\kappa^2 \mu^2 R^2}{2} = \frac{\mathcal{A}(\beta)}{|\omega(1)|^2} x \left(\frac{\mathcal{C}(\beta)|\omega(1)|}{\mathcal{A}(\beta)} - x \right)
\end{cases} (30)$$

where

$$C(\beta) = \exp\left(-\frac{F(1)}{4}\beta^2\right) \int_0^1 \frac{\exp\left(\frac{F(h)}{4}\beta^2\right)}{\omega_h} dh.$$
 (31)

Let's define a new parameter $\Omega(\beta)$

$$\Omega(\beta) = \frac{\mathcal{C}(\beta)|\omega(1)|}{\mathcal{A}(\beta)}.$$
 (32)

Now we have three cases

- For $\Omega = 2$, M_{ADM} is a linear function of R^2 .
- For Ω < 2 the $M_{ADM}-R$ curve turns left at some value of the topological charge (or x) which means that the maximal radius does not coincide with the maximal mass.
- For $\Omega > 2$, where the curve bends right.

Example- Old baby potential

As an example the old baby potential was considered

$$\mathcal{U} = \frac{h}{4}.\tag{33}$$

The super-potential equation is

$$\omega_h^2 + \beta^2 \omega^2 = \frac{h}{4}, \quad \omega(0) = 0.$$
 (34)

For this equation one can find the approximated solutions by applying the perturbative expansion

$$\omega_{small} = h^{3/2} \left(\frac{1}{3} - \frac{2}{63} (\beta h)^2 + \frac{10}{6237} (\beta h)^4 - \frac{92}{5893965} (\beta h)^6 \right).$$

$$\omega_{large} = h^{3/2} \left(\frac{1}{2} (\beta h)^{-1} - \frac{1}{16} (\beta h)^{-3} - \frac{13}{256} (\beta h)^{-5} - \frac{213}{2048} (\beta h)^{-7} \right).$$

$$(36)$$

The approximated solution then reads

$$\omega_{approx} = \begin{cases} \omega_{small} & h \in [0, h_0] \\ \omega_{large} & h \in [h_0, 1] \end{cases}$$
(37)

where the gluing point h_0 is defined as

$$\omega_{small}(h_0) = \omega_{large}(h_0) \tag{38}$$

which, for the order of the expansion assumed above, is

$$h_0 = 2.7821 \frac{1}{\beta}.\tag{39}$$

Summary

- Simultaneous inclusion of the gravity and magnetic field does not destroy BPS property of the BPS baby Skyrme model.
- All observables are given as some functions of the topological charge, with coefficients which are target space integrals depending on the coupling constant $\beta = e\lambda/\sqrt{2}$ and a particular model (particular potential).
- A non-zero value of the coupling constant β modifies entirely the constants in the parametric mass-radius formula leaving the functional form unchanged.

Thank you for your attention