

Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
$\Lambda_{ m QCD}$	Nucleons	Baryon number	$\tau > 10^{33}$ yr	'freeze-out' from thermal equilibrium	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$

We have a *good* theoretical explanation for why baryons are *massive* and *stable*

However, in the standard cosmology *none* should be left-over from the Big Bang!

WE GET THE PREDICTED RELIC THERMAL ABUNDANCE OF BARYONS BADLY WRONG!

$$\dot{n} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{\rm T}^2)$$

Chemical equilibrium is maintained as long as annihilation rate exceeds the Hubble expansion rate

'Freeze-out' occurs when annihilation rate:

$$\Gamma = n\sigma v \sim m_N^{3/2} T^{3/2} e^{-m_N/T} \frac{1}{m_\pi^2}$$

becomes comparable to the expansion rate

$$H \sim \frac{\sqrt{g}T^2}{M_{
m P}}$$
 where $g \sim \#$ relativistic species

i.e. 'freeze-out' occurs at $T \sim m_N/45$, with: $\frac{n_N}{n_\gamma} = \frac{n_{\bar{N}}}{n_\gamma} \sim 10^{-19}$

However the observed ratio is 10^9 times bigger for baryons, and there seem to be no antibaryons, so we must invoke an initial asymmetry: $n_B - n_{\bar{B}}$

Why do we not call this the 'baryon disaster'? cf. 'WIMP miracle'!

$$\frac{n_B - n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-9}$$

ALTHOUGH VASTLY OVERABUNDANT COMPARED TO THE NATURAL EXPECTATION, BARYONS CANNOT CLOSE THE UNIVERSE (BBN & CMB CONCORDANCE)

... the dark matter must therefore be mainly non-baryonic

To make the baryon asymmetry requires new physics ('Sakharov conditions')

- ➤ B-number violation
 - > CP violation
- > Departure for thermal equilibrium

The SM *allows B*-number violation (through non-perturbative – 'sphaleron-mediated' – processes) ... but *CP*-violation is too *weak* and $SU(2)_L \times U(1)_Y$ breaking is *not* a 1st order phase transition

Hence the generation of the observed matter-antimatter asymmetry requires *new* BSM physics ... can be related to the observed neutrino masses if these arise from *lepton number* violation → **leptogenesis**

'See-saw':
$$\mathcal{L} = \mathcal{L}_{SM} + \lambda_{\alpha J}^* \overline{\ell}_{\alpha} \cdot H N_J - \frac{1}{2} \overline{N_J} M_J N_J^c \qquad \lambda M^{-1} \lambda^{\mathrm{T}} \langle H^0 \rangle^2 = [m_{\nu}]$$
 $v_{\mathrm{e}} \qquad v_{\mu} \qquad v_$

ASYMMETRIC BARYONIC MATTER

$$\partial_{\mu}j^{\mu}_{i} = \partial_{\mu}(\bar{\psi}^{i}\gamma^{\mu}\psi^{i}) = \frac{g^{2}}{8\pi} W^{a\mu\nu} \widetilde{W}^{a}_{\mu\nu}$$

Any primordial lepton asymmetry (e.g. from out-of-equilibrium decays of the right-handed N) would be redistributed by B+L violating processes (which *conserve* B-L) amongst *all fermions* which couple to the electroweak anomaly – in particular **baryons**

An essential requirement is that neutrino mass must be *Majorana* ... test by detecting neutrino*less* double beta decay (and measuring the absolute neutrino mass scale)

THE STANDARD $SU(3)_c$ X $SU(2)_L$ X $U(1)_\gamma$ Model Provides an EXACT DESCRIPTION OF ALL MICROPHYSICS (UP TO SOME HIGH ENERGY CUT-OFF M)

The effect of new physics beyond the SM (neutrino mass, nucleon decay, FCNC) \Rightarrow **non-renormalisable operators** suppressed by M^n ... which 'decouple' as $M \to M_P$

But as M is raised, the effects of the **super-renormalisable operators** are exacerbated

One solution for 2^{nd} term \rightarrow 'softly broken' supersymmetry at $M \sim 1$ TeV

This suggests possible mechanisms for **baryogenesis**, candidates for **dark matter**, ... (as also do other proposed extensions of the SM, e.g. new dimensions @ TeV scale)

For example, the lightest supersymmetric particle (typically the neutralino χ), *if* protected against decay by *R*-parity, is a candidate for thermal dark matter

But if the Higgs is composite (as in **technicolour** models of $SU(2)_L \times U(1)_Y$ breaking) then there is *no* need for supersymmetry ... and light TC states can be dark matter

Thermal relics

$$\dot{n} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{\rm T}^2)$$

Chemical equilibrium is maintained as long as the annihilation rate exceeds the Hubble expansion rate

'Freeze-out' can occur either when the annihilating particles are:

 \succ Relativistic: $n \sim n_{\gamma}$

 \succ Non-relativistic: $n \sim n_{\gamma} {
m e}^{-m/T}$

Example 1: $\sum \Omega_{\nu} h^2 \simeq m_{\nu_i}/93 \text{eV}$

➤ But how might this mass scale arise?

(also disfavoured by structure formation)

Example 2:
$$\Omega_{\chi} h^2 \simeq \frac{3 \times 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle_{T=T_f}}$$

→ natural for weak scale mass/coupling

Mass	Particle	Symmetry/	Stability	Production	Abundanc
scale		Quantum #			e
$\Lambda_{ ext{QCD}}$	Nucleons	Baryon number	$\tau > 10^{33} \text{ yr}$	'freeze-out' from thermal equilibrium Asymmetric baryogenesis	$\Omega_{\rm B} \sim 10^{\text{-}10}$ cf. observed $\Omega_{\rm B} \sim 0.05$
$\Lambda_{ m Fermi}$ \sim $G_{ m F}^{-1/2}$	Neutralino?	R-parity?	Violated? (matter parity <i>adequate</i> to ensure B stability)	'freeze-out' from thermal equilibrium	$\Omega_{\mathrm{LSP}} \sim 0.3$

For (softly broken) supersymmetry we have the 'WIMP miracle':

$$\Omega_{\chi} h^2 \simeq \frac{3 \times 10^{-27} \text{cm}^{-3} \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle_{T=T_f}} \simeq 0.1 \text{ , since } \langle \sigma_{\text{ann}} v \rangle \sim \frac{g_{\chi}^4}{16\pi^2 m_{\chi}^2} \approx 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$$

But why should a *thermal* relic have an abundance comparable to *non*-thermal relic baryons?

Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
$\Lambda_{ m QCD}$	Nucleons	Baryon number	τ > 10 ³³ yr (dim-6 OK)	'freez or from therma eq. librium	$\Omega_{ m B}{\sim}10^{\text{-}10}$ cf. observed $\Omega_{ m B}{\sim}0.05$
$\Lambda_{ m Fermi} \sim G_{ m F}^{-1/2}$	Neutralino?	R-parity?	violated?	'freeze-out' from thermal equilibrium	$\Omega_{\mathrm{LSP}}{\sim}0.3$

This yields the 'WIMPless miracle' (Feng & Kumar, PRL 101:231301,2008)

since generic hidden sector matter $(g_h^2/m_h \sim g_\gamma^2/m_\gamma \sim F/16\pi^2 M)$... gives the

required abundance as before!

required abundance as before!
$$\operatorname{since} \ \langle \sigma_{\operatorname{ann}} v \rangle \sim \frac{g_{\chi}^4}{16\pi^2 m_{\chi}^2} \approx 3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}$$

$$\Omega_{\chi} h^2 \simeq \frac{3 \times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}}{\langle \sigma_{\operatorname{ann}} v \rangle_{T=T_{\mathrm{f}}}} \simeq 0.1$$
 Mssm Connector Y Hidden X Such dark matter can have any mass: sub-GeV \rightarrow efew TeV

Such dark matter can have *any* mass: sub-GeV → ~few TeV

Mass	Particle	Symmetry/	Stability	Production	Abundanc
scale		Quantum #			e
$\Lambda_{ ext{QCD}}$	Nucleons	Baryon number	τ > 10 ³³ yr (dim-6 OK)	'Freeze-out' from thermal equilibrium Asymmetric baryogenesis (how?)	$\Omega_{ m B} {\sim} 10^{\text{-}10} \text{cf.}$ observed $\Omega_{ m B} {\sim} 0.05$
$\Lambda_{ m QCD}$, \sim $6\Lambda_{ m QCD}$	Dark baryon?	<i>U</i> (1) _{DB}	plausible	Asymmetric (like the observed baryons)	$\Omega_{DB} \sim 0.3$
$\Lambda_{ m Fermi} \sim \ { m G_F}^{-1/2}$	Neutralino?	<i>R</i> -parity	violated?	'Freeze-out' from thermal equilibrium	$\Omega_{\mathrm{LSP}} \sim 0.3$
F	Technibaryon?	(walking) Technicolour	$ au \sim 10^{18} ext{ yr}$ $e^+ ext{ excess?}$	Asymmetric (like the <i>observed</i> baryons)	$\Omega_{\mathrm{TB}} \sim 0.3$

A new particle can naturally *share* in the B/L asymmetry if it couples to the W... linking dark to baryonic matter! So a O(TeV) mass **technibaryon** can be the dark matter ... alternatively a ~few GeV mass 'dark baryon' in a *hidden sector* (e.g. into which the technibaryon decays)

$$\frac{
ho_{
m DM}}{
ho_{
m B}} \simeq 6 \sim \frac{m_{
m DM}}{m_{
m B}} \left(\frac{m_{
m DM}}{m_{
m B}}\right)^{3/2} {
m e}^{-m_{
m DM}/T_{
m dec|sphaleron}}$$

STERILE NEUTRINO DARK MATTER

If they mix with the left-handed 'active' neutrinos then would behave as super-weakly interacting particles with an effective coupling: θG_{Fermi}

$$heta_{e,\mu, au}^2 \equiv rac{|M_{
m Dirac}|^2}{|M_{
m Majorana}|^2} = rac{\mathcal{M}_{
m active}}{\mathcal{M}_{
m sterile}}$$

$$pprox 5 imes 10^{-5} \left(rac{\mathcal{M}_{
m sterile}}{
m KeV}
ight)^{-1}$$

So they will be created when active neutrinos scatter, at a rate $\propto \theta \Gamma_{\text{active}}$

$$q$$
 q'
 $e^ e^+$
 W^{\pm}
 $\bar{\nu}$
 N_s
 ν
 $\bar{\nu}$
 N_s

Hence although they may never come into equilibrium, the relic abundance will be of order the dark matter for a mass of order KeV (however there is no *natural* motivation for such a mass scale)

AXION DARK MATTER

$$\mathcal{L}_{\text{eff}} = F^2 + \bar{\Psi} \not\!\!\!D \Psi + \bar{\Psi} \Psi \Phi + (D\Phi)^2 + \Phi^2 + \theta_{\text{QCD}} F \tilde{F}$$

The SM admits a term which would lead to CP violation in strong interactions, hence an (unobserved) electric dipole moment for neutrons \rightarrow requires $\theta_{\rm QCD}$ < 10^{-10}

To achieve this without fine-tuning, $\theta_{\rm QCD}$ must be made a *dynamical* parameter, through the introduction of a new $U(1)_{\rm Peccei-Quinn}$ symmetry which must be broken ... the resulting (pseudo) Nambu-Goldstone boson is the QCD **axion** - which acquires a small mass through its mixing with the pion (the pNGB of QCD): $m_a = m_\pi (f_\pi/f_{\rm PQ})$ (Kim, Phys.Rep.**150**:1,1987, Rev.Mod.Phys.**82**:557,2010; Raffelt, Phys.Rep.**198**:1,1990)

When the temperature drops to $\Lambda_{\rm QCD}$ the axion potential turns on and the coherent oscillations of relic axions contain energy density that behaves like cold dark matter with $\Omega_{\rm a}h^2\sim 10^{11}~{\rm GeV}/f_{\rm PO}$... however the *natural* P-Q scale is probably $f_{\rm PO}\sim 10^{18}~{\rm GeV}$

Hence QCD axion dark matter would need to be *significantly diluted*, i.e. its relic abundance is not predictable (or seek anthropic explanation for why θ_{QCD} is small?)

Mass scale	Lightest stable particle	Symmetry/ Quantum #	Stability ensured?	Production	Abundance
	•				
$\Lambda_{ ext{QCD}}$	Nucleons	Baryon number	$\tau > 10^{33}$ yr	'Freeze-out' from equilibrium	$\Omega_{\rm B}$ ~10 ⁻¹⁰ cf. observed
				Asymmetric bayyegenesis	$\Omega_{\mathrm{B}} \sim 0.05$
$\Lambda_{\rm QCD}$, $\sim 6\Lambda_{\rm QCD}$	Dark baryon?	$U(1)_{\mathrm{DB}}$	plausible	Asymmetric (like Observed Caryons)	$\Omega_{\mathrm{DB}} \sim 0.3$
$\Lambda_{ m Fermi}$	Neutralino?	<i>R</i> -parity	violated?	'fræze-out' from	$\Omega_{\rm LSP} \sim 0.3$
$\sim G_{ m F}^{-1/2}$	Technibaryon?	(walking) Techni- colout	~10 ¹⁸ y€	Asymmetric (like observed baryons)	$\Omega_{ m TB}\!\sim 0.3$
$\Lambda_{ m hidden\ sector}$	Crypton?	Discrete	© ≈ 10 ⁴⁸	Varying gravitational	$\Omega_{\rm X}$ ~ 0.3?
$\sim (\Lambda_{\rm F} M_{\rm P})^{1/2}$	hidden valley?	symmetry (very model-	yr	field during inflation	
$\Lambda_{ m see-saw} \sim \Lambda_{ m Fermi}^2/\Lambda_{ m B-L}$	Neutrinos	tep(ndent) Lepton number	Stable _.	Thermal (abundance ~ CMB photons)	$\Omega_{\rm v}$ > 0.003
M /M	Kaluza-Kara	?	?	?	?
$M_{ m string}$ / $M_{ m Planck}$	states?	Peccei-			
	Axions	Quinn	Stable	Field oscillations	$\Omega_{\rm a} \gg 1!$

CONCLUSIONS

- ☐ Searches for dark matter have focussed mainly on WIMPs so far but dark matter may be neither weakly interacting nor massive (and perhaps not even a particle)!
- Lighter particles, which are just as well motivated, have just begun to be searched for with nuclear recoil experiments ... complemented by collider searches for concommitant signals.
- ☐ Dark matter may be coherent oscillations of axions necessitating very different search strategies (over a wide axion mass range).
- □ Colliding galaxy clusters provide an interesting laboratory for strongly self-interacting dark matter (with the DM-stellar pop. separation predicted to be ~10-50 kpc for σ/m ~ barn/GeV)

Interesting times ahead ... recall that it took 48 years from the prediction of the Higgs boson to its discovery