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General setting of the problem

Background

Three static fields: metric, electromagnetic field and scalar field.
In Schwarzschild–like coordinates (n+2 dimensions):

ḡ = −f (r)dt2 +
ζ(r)

f (r)2
dr2 + S(r)2dX 2

(n) , (1)

Ā = a(r)dt , (2)

ϕ̄ = φ(r) . (3)

dX 2
(n) =


dx2

1 + ...+ dx2
(n), K = 0 , planar

dΩ(n), K = +1 , spherical

dH(n), K = −1 , hyperbolic

. (4)

Action:

S =

∫
dn+2x

√
−g
(
R − 2Λ− η(∂φ)2 − 1

4
Z (φ)F 2 − V (φ)

)
(5)
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General setting of the problem

Background

Einstein equations:

φ′′ =φ′
(
ζ ′

ζ
− n

S ′

S

)
− a′2Z ′ + 4ηf ′φ′ − 2ζ2V ′

4ηf
, (6)

a′′ =a′
(
ζ ′

ζ
− n

S ′

S
− Z ′φ′

Z

)
, (7)

S ′′ =
ζ ′S ′

ζ
− η

n
Sφ′2 , (8)

0 =S2
(
2ηf φ′2 − Za′2

)
− 2nSf ′S ′ − 2n(n − 1)fS ′2+

+ 2ζ2
(
n(n − 1)K − S2(V + Λ)

)
, (9)

f ′′ =Za′2 +
f ′ζ ′

ζ
− (n − 2)

f ′S ′

S
− 2(n − 1)

S2

(
ζ2K − fS ′2

)
− 2η

n
f φ′2 . (10)
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General setting of the problem

Gravitational, electromagnetic and scalar
perturbations

We seek for a new solution (for simplicity, we restrict to planar symmetry):

gµν = ḡµν + ε δgµν + ... (11)

Aµ = Āµ + ε δaµ + ... (12)

ϕ = ϕ̄+ ε δϕ+ ... (13)

Plug into Einstein equations, expand in ε.
System of nonlinear Einstein equations → infinite system of linearized
equations.
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General setting of the problem

Gravitational, electromagnetic and scalar
perturbations

Form of perturbations (tensor, vector and scalar sectors):

δgµν =



htt
1
2htr ik htx 0 ... 0 htz

1
2htr hrr ik hrt 0 ... 0 hrz
ik htx ik hrx −k2hxx 0 ... 0 ikhxz

0 0 0 −k2hyy 0 0 hyz
...

...
... 0

. . . 0 0

0 0 0 0 0
. . . 0

htz hrz ikhxz hyz 0 0 −k2hzz


e ikx ,

δAµ =
(
at , ar , ikax , 0 , ... , 0 , az

)
e ikx ,

δϕ = δφe ikx ,

(14)

also introduce hxx = h+ + n
n−1h−, hyy = ...hzz = h+ − 1

nh−.
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General setting of the problem

Linear gauge invariants

Gauge transformations induced by linear gauge vector ε ζµ:

hµν → hµν + Lζ ḡµν , (15)

aµ → aµ + LζĀµ , (16)

δφ→ δφ+ Lζϕ̄ . (17)

Two ways: choose a certain gauge (e.g. Regge–Wheeler
(hrx = htx = h− = 0), Detweiller (h+ = htx = h− = 0)) or construct
gauge invariants.
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General setting of the problem

Linear gauge invariants

Tensor sector:

Hyz ≡ hyz , (18)

Vector sector:

Htz ≡ htz − ∂thxz , (19)

Hrz ≡ hrz − ∂rhxz + 2
S ′

S
hxz , (20)

Az ≡ δaz , (21)

(22)

Scalar sector:

Htt ≡ htt − 2∂thtx + ∂2
t h− + k2 f ′

2nSS ′
(h− − nh+) , (23)

Htr ,Hrr ,Hrx ,At ,Ar , ϕ = ... . (24)
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Master equations for the system

Einstein Equations can be all fulfilled introducing master scalar functions:

Tensor sector Vector sector Scalar sector

Φ
(T )
G

Φ(V ) =

(
Φ

(V )
G

Φ
(V )
E

)
Φ(S) =

Φ
(S)
G

Φ
(S)
E

Φ
(S)
S


Master scalars fulfil coupled wave equations:(

�̄−W (T )
)

Φ
(T )
G = 0 (25)(

�̄−W(V )
)

Φ(V ) = 0 (26)(
�̄−W(S)

)
Φ(S) = 0 (27)

W(V ) and W(S) are 2x2 and 3x3 symmetric matrices.
Express all variables in terms of Φ’s and their derivatives.
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Master equations for the system

Potentials

Tensor sector:

W (T ) = 0 (28)

Vector sector:

W(V ) =

(
W

(V )
G W

(V )
G ,E

W
(V )
G ,E W

(V )
E

)
, (29)

where

W
(V )
G (r)=−n

(
f ′S′
ζ2S
− fS′2
ζ2S2 + K

S2

)
+η fφ′2

ζ2 .

W
(V )
G ,E (r)=−

√
k2−nK

√
Za′
ζS

,

W
(V )
E (r)=− f ′S′

ζ2S
+(n−2)

(
K
S2−

fS′2
ζ2S2

)
+ Za′2

ζ2 + f ηφ′2

nζ2 −

1
8ηζ2

Z ′
Z (−2ζ2V ′+a′2Z ′)− Z ′2

Z2
fφ′2

4ζ2 −
Z ′
Z

fS′φ′

ζ2S
+ fφ′2Z ′′

2ζ2Z
,
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Master equations for the system

Tensor sector:

Hyz ≡ S2Φ
(T )
G , (30)

Vector sector:

Htz ≡ n
fSS ′

ζ
Φ

(V )
G +

fS2

ζ
∂rΦ

(V )
G ,

Hrz ≡
ζS2

f
∂tΦ

(V )
G ,

Az ≡
√

k2 − nK
S√
Z

Φ
(V )
E .

(31)

Scalar sector:

Hrx =
√

n−1
n

√
k2−nK ζS2

D

(
2
√
ηkζφ′Φ

(S)
S −
√

2nS ′a′ZΦ
(S)
E

)
+S2∂rΦ

(S)
G

+ ζ2S
nS′fD(nS ′(k2Sf ′+2fS ′((n−2)k2−n(n−1)K))+2ηk2S2f (φ′)2+2k4ζ2)Φ(S)

G (32)

...
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Extensions, possible applications

Application: quasinormal spectrum

Calculating quasinormal modes more efficient:

QNM from master scalar equation
(Φ(t, r) = e−iωtΨ(r)):

n Re(ωn) Im(ωn)
1 ±0.7414299655 −0.2862800072
2 ±1.733511095 −1.343007549
3 ±2.705539866 −2.357061908
4 ±3.689391462 −3.363863379
5 ±4.678735426 −4.367980846
6 ±5.671090621 −5.370783926
7 ±6.665291123 −6.372835299
8 ±7.660712908 −7.374412239
9 ±8.656989607 −8.375668528

10 ±9.653890825 −9.376696881
11 ±10.65126380 −10.37755679
12 ±11.649003 −11.378288
13 ±12.6470 −12.3789
14 ±13.65 −13.38
15 ±15. −14.

QNM (Kovtun, Starinets):

n Re(ωn) Im(ωn)
1 ±0.7414299655 −0.2862800072
2 ±1.733511095 −1.343007549
3 ±2.705539866 −2.357061908
4 ±3.689391462 −3.363863379
5 ±4.678735426 −4.367980846
6 ±5.671090621 −5.370783926
7 ±6.66529112 −6.37283530
8 ±7.66071 −7.37441
9 ±8.65 −8.37

Spectrum was found using A. Jansen, Eur. Phys. J. Plus 132:546 (2017).
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Extensions, possible applications

JOHN F. CLAUSER

Phys. Rev. Lett. 29, 1126 (1972};H. M. Gibbs, ibid.
29, 459 (1972}and in Coherence end Quantum Optics
(see Ref. 1},p. 83; H. M. Gibbs, G. G. Churchill,
and G. J. Salamo, Phys. Rev. A 7, 1766 (1973};

E. Gaviola, Nature 12, 772 (1928). This last experi-
ment is discussed by J. M. %'essner, D. K. Anderson,
and R. T. Robiscoe in Phys. Today 26 (No. 2}, 13
(1973}.
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Perturbation analysis for gravitational and electromagnetic radiation
in a Reissner-Nordstrom geometry

Frank J. Zerl01
Astroigotny Deputfment, University of Washington, Scuttle, %'ushingtoe 98295

(Received 12 October 1973)

%e consider the gravitational and electromagnetic fields produced by a charged (or uncharged}
test particle moving in a Reissner-Nordstr5m geometry as perturbations on the background
Reissner-Nordstr5m geometry and its associated electric field, respectively. The gravita-
tional perturbations are expanded in tensor harmonics in the manner of Regge and %heeler,
vrhile the electromagnetic field is expanded in vector harmonics. Following a previously
proposed convention, @re find that in the Einstein-Maxwell system of equations, electric
gravitational multipoles couple only to electric (TM) electromagnetic multipoles and
similarly for magnetic multipoles. It is possible to reduce the entixe Einstein-Maxwell
system for each type of multipole to bvo second-order Schrodinger-type equations,

I. INTRODUCTION

The problem of gravitational radiation emitted
by moving bodies has had significant attention in
recent years (due in no small part to Weber's
pioneering work in gravitational radiation detec-
tors). In 1957 Regge and Wheeler' outlined a har-
monic analysis for perturbations on a Schwarz-
schild background geometry. This was developed
by Thorne and colleagues, ' Vishveshvrara, ' and
others. Also, a suitable scheme to determine the
gravitational radiation emitted by a body moving
in a Schmarzsehild field eras outlined and a simple
self-a@oint (Schr5dinger-type) differential equa-
tion was found to describe "electric" multipole
gravitational radiation. Regge and Wheeler had
previously found the self-adjoint equation for
"magnetic multipoles. " These equations have since
been studied analytically' and integrated numeri-
cally' to yield results of astrophysical interest.
Concurrently, the problem of gravitational radia-

tion in a flat-space background has received signif-
icant attention and the combined problem of elec-
tromagnetic and gravitational radiation has been
analyzed. However, much of the peculiarly gen-
eral-relativistic effects are slighted in flat-space
treatments. Thus are wish to look at the follovring

speeifie, consistent, and fundamental problem:
Consider a charged test particle moving according
to the Lorentz force lair in a Reissner-Nordstr5m
background geometry and find the gravitational
and electromagnetic fields produced by this test
particle as perturbations on the background elec-
tromagnetic field and geometry.
We decompose the gravitational and electromag-

netic field perturbations and their matter and cur-
rent sources into tensor and vector harmonics.
Just as there are electric and magnetic multipoles
for the electromagnetic field, there are corre-
sponding "electric" and "magnetic" gravitational
multipoles, and, with the proper choice of names,
only electric gravitational multipoles couple to
e?ectric electromagnetic multipoles in the Ein-
stein-Mamrell equations and likewise for magnetic
multipoles. Then, for each type of multipole, de-
noted by the superscript e or m, we derive a
"superpotential" g~» ~ for the gravitational field
and a "superpotential" f~~„) for the electromag-
netic field which satisfy equations of the form

d 2g(g, lt)1,N ( 2 ~(gAIY) )g(a, Ill)
d~~2 + - I, I.~

= ai~'") f~'„")+ grav. source, (&)
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Extensions, possible applications
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Extensions, possible applications

Nonlinear Reissner–Nordström perturbations

for every sector there exist two master scalar variables Φ
(S)
G (t, r) and

Φ
(S)
E (t, r) fulfilling a coupled system of wave equations:

r(−�̄ + V
(S)
G )

(i)Φ
(S)
G

r
+ V

(S)
EG

(i)Φ
(S)
E = (i)S̃

(S)
G , (33)

r(−�̄ + V
(S)
E )

(i)Φ
(S)
E

r
+ V

(S)
EG

(i)Φ
(S)
G = (i)S̃

(S)
E . (34)

(i)Hµν and (i)Aµ a are sums of solutions to the homogeneous
equations and functions responsible for inhomogeneities:

(i)H` tr=...+(i)α , (35)
(i)H` rr=...+(i)β , (36)
(i)H` +=...+(i)γ , (37)
(i)A` t=...+(i)λ , (38)
(i)A` r=...+(i)κ . (39)
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Extensions, possible applications

(i)α = −
2r2
(
r2A2(i)SG

` rr + r2(i)SG
` tt + 2A(i)SG

` +

)
`(`+ 1)r2 (rA′ − 2A + `(`+ 1))

+

−
16Q2A(i)SG

` −
`(`+ 1)r2 (rA′ − 2A + `(`+ 1))

, (40)

(i)β = r

(
2r (i)SG

` tr

`(`+ 1)
+
∂t

(i)α

A

)
, (41)

(i)γ =
r∂r

(i)α + (i)α

A
−

(i)α (rA′ + `(`+ 1))

2A2
, (42)

(i)κ =
r2(i)SM

` r

`(`+ 1)
+

2Q∂t
(i)SG

` −
A`(`+ 1)

, (43)

(i)λ =
r2(i)SM

` t

`(`+ 1)
+

2QA∂r
(i)SG

` −
`(`+ 1)

, (44)

(i)S̃
(S)
E = ... , (i)S̃

(S)
G = ... . (45)

(46)
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Summary

Summary:

We can make the system of linearised Einstein equations with
fundamental fields surprisingly simple: coupled wave equations (no
derivative couplings, symmetric potential matrices)

Form is useful for further generalisations to higher perturbation orders.

Usefulness for numerics (1st order equations instead of 4th w.r.t.
time), linear stability

Conceptual simplicity means possible use to other models (e.g,
cosmological perturbations, A. Rostworowski arXiv:1902.05090)
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Summary

Thank you
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