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Problem
To solve vacuum Einstein equations

d(d—1)

d
Rw[g]—’fﬁguv:(), k=0,+1,—-1, A=« S

in the form of a perturbation of some known exact solution gy, i.e.

Suv = guv+5guv

Once we expand _ _
58uv = Z (l)huv g

1<i

we describe linear (i = 1) and nonlinear (i > 1) gravitational waves

Key assumption: the background metric g, can be put in the form

ds? = gup(y)dy*dy® + F*(y)d&?, where d6 is a metric of n-dimensional
maximally symmetric space (spherical/euclidian/hyperbolic) and n =d — 1
(does not apply to Kerr); harmonic functions in this maximally symmetric space

define modes (and polarizations) of linear gravitational waves.
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Problems that can be addressed with perturbation
framework

@ in linear approximation: linear stability of solutions, ringdown phase of
black holes merging (QNMs), imprint of cosmological perturbations in the
CMB fluctuations

@ beyond linear approximation:
establishing full stability of solutions: relaxation
Schwarzschild — Schwarzschild with shifted mass parameter or

Schwarzschild — Kerr,
my personal motivation: AdS instability vs existence of AdS geons.
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Metric perturbations in vacuum - general setup
Setting

8uv = 8uv + 58uv
and expanding
i
we get a hierarchy of linear PDEs
(0 _ ol 0 _ o)
ALh/vtv = Suv — Ath uv Sl: uv
Aphgy = % (= Vahuy =V Vvh = 2Ry ph ™ + 9 V% hva + Yy o) . h=" by, hP =g gy

Thus, we trade nonlinearities of Einstein equations for an infinite system of

linear inhomogeneous equations (the sources SE,"LV are constructed from
metric perturbations hg)uv, with j < 7). To solve it one needs:
@ a general solution of the principal (homogeneous) part
- inherited from the linear approximation
@ a particular solution of an inhomogeneous part
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Solution in three steps:

@ Separate the "the angular dependence” and organise metric
perturbations into two/three different sectors.
Done with scalar-vector-tensor (% — ¥ — .7) decomposition (there is no
tensor sector for n =2 (D = 4))

© Then, for each multipole, rewrite perturbations into gauge-invariant
combinations (or equivalently fix the gauge uniquely with Regge-Wheeler
or Detweiler (easy) gauge)
This is necessary because of the gauge freedom:

XMt —elt Sguy — Oguv +ELBuv + O (€7)

© Solve the resulting system of PDEs for gauge invariants (or RW/D gauge
invariant characteristics of perturbations)
(after separating "the angular dependence”/expanding into multipoles,
this is 14 1 dimensional problem)
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scalar-vector-tensor (S-V-T) decomposition in
n—dimensional maximally-symmetric space
ds* = gap(y)dy“dy” + F*(y)d&*

@ scalar §

@ vector 4
Vi= 9V + V; , where VIV, =

~— =~

scalar  vector

@ rank-2 symmetric tensor
Tij = Qgij +2 (Vl'Vj — g,-jv2> T—l-ZV(,'Tj) + Tij
n B —— ~—~
~~ vector tensor
scalar
where

< <«
- <2
Il
o o
o9l
5
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The key result of BH linear perturbations:

Linear metric perturbations (of maximally symmetric BHs) were studied in full
generality (i.e. allowing for any value of cosmological constant and different
horizon geomeries) by [Kodama&Ishibashi, 03]

Outcome: perturbations split into two (in D = 4) or three (in higher
dimensions) decoupled sectors; in each sector gauge invariant characteristics
of perturbations are given in terms of master scalar variables (one type of
scalar for each sector ) satisfying homogeneous wave equations on the zero
order solution, with suitably chosen potential. (The master scalars appear in a
few copies (polarizations) in vector/tensor sectors for D > 4 and in a single
copy (polarization) in a scalar sector).

The same structure emerges for Einstein equations coupled to matter in the form of
some fundamental fields (Maxwell, scalar field, etc.) but derivations become more and

more involved. These results are conventionally obtained by a kind of massage of
linearized Einstein equations (no guiding principle known a priory).

| will discuss a new perspective on perturbation expansion which provides a guiding
principle (algorithm) for such derivations, can be easily extended beyond linear level
and works also for an effective matter model (perfect fluid) used in cosmological

models (thus time dependent backgrounds). 252



PHYSICAL REVIEW VOLUME 108, NUMBER 4 NOVEMBER 15, 1957

Stability of a Schwarzschild Singularity
TuLLio REGGE, Istituto di Fisica della Universitd di Torino, Torino, Italy
AND
Joun A, WHEELER, Palmer Physical Laboratory, Princeton University, Princeton, New Jersey
(Received July 15, 1957)

It is shown that a Schwarzschild singularity, spherically symmetrical and endowed with mass, will
undergo small vibrations about the spherical form and will therefore remain stable if subjected to a small

nonspherical perturbation,

VoLuME 24, NUMBER 13 PHYSICAL REVIEW LETTERS 30 MarcH 1970

EFFECTIVE POTENTIAL FOR EVEN-PARITY
REGGE-WHEELER GRAVITATIONAL PERTURBATION EQUATIONS*

Frank J. Zerilli
Physics Department, University of North Carolina, Chapel Hill, North Carolina 27514
(Received 29 January 1970)

The Schridinger-type equation for odd-parity perturbations on a background geometry
has been extended to the even-parity perturbations. This should greatly simplify the
analysis for calculations of gravitational radiation from stars and from objects falling

into black holes.
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Progress of Theoretical Physics, Vol. 110, No. 4, October 2003

A Master Equation for Gravitational Perturbations of Maximally

Symmetric Black Holes in Higher Dimensions

Hideo Kopanmal*) and Akihiro IsHIBASHIZ**)

! Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto 606-8502, Japan
’D.A.M.T.P., Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received May 27, 2003)

‘We show that in four or more spacetime dimensions, the Einstein equations for gravita-
tional perturbations of maximally symmetric vacuum black holes can be reduced to a single
second-order wave equation in a two-dimensional static spacetime, irrespective of the mode
of perturbations. Qur starting poeint is the gauge-invariant formalism for perturbations in
an arbitrary number of dimensions developed by the present authors, and the variable for
the final second-order master equation is given by a simple combination of gauge-invariant
variables this formalism. Our formulation applies to the case of non-var g as well as
vanishing cosmological constant A. The sign of the sectional curvature K of each spatial
section of equipotential surfaces is also kept general. In the four-dimensional Schwarzschild
background with A = 0 and K = 1, the master equation for a scalar perturbation is identical
to the Zerilli equation for the polar mode and the master equation for a vector perturba-
tion is identical to the Regge-Wheeler equation for the axial mode. Furthermore, in the
four-dimensional Schwarzschild-anti-de Sitter background with A < 0 and K = 0,1, our
equation coincides with those recently derived by Cardose and Lemos. As a simple appli-
cation, we prove the perturbative stability and uniqueness of four-dimensional non-extremal
spherically symmetric black holes for any A. We also point out that there exists no simple
relation between scalar-type and vector-type perturbations in higher dimensions, unlike in
four dimension. Although in the present paper we treat only the case in which the hori-
zon geometry is maximally symmetrie, the final master equations are walid even when the
horizon geometry is described by a generic Einstein manifold, if we employ an appropriate
reinterpretation of the curvature K and the eigenvalues for harmonic tensors.
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Homogeneous part - inherited from the linear approximation

Guiding principle to solve the homogeneous part:

to express gauge invariant characteristics of perturbations for each mode as
linear combinations of master scalar and its derivatives with the master
scalar satisfying the homogeneous wave equation with a potential (to be
determined). In present days, the (function) coefficients of such linear
combinations and the form of the potential in the wave equation can be easily
found by substitution of such ansatz into (the homogeneous part of)
perturbative Einstein equations and use of computer algebra packages.
Solving a system of linear algebraic equations we express the potential and all
but one coefficient in those linear combinations in terms of a single coefficient
for which we have to solve a simple differential equation - its solution
introduces a multiplicative constant, as should be expected.
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Particular solutions at higher orders

It seems that the particular solutions can be found in the form of linear
combinations of the sources S%v and their derivatives once the master
scalar variables satisfy inhomogeneous wave equation with a suitably
defined scalar source Sﬁi). Again, (function) coefficients of this linear
combinations can be easily found by plugging the ansatz into perturbative

Einstein equations and using a computer algebra package.

Remark: to obtain the scalar source for the inhomogeneous wave equation
master scalars must be given in terms of gauge invariant characteristics of
perturbations (also needed to relate initial data for scalar wave equations with
the solution of the initial value problem for Einstein equations of physical
interest, cf, [Moncrief, 74]).
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Key issues at higher orders

@ l|dentities for the sources S

(i)
Luv
They are crucial for the consistency at higher orders.
Gauge issues with §g,v = Y, sihg)v:
once we perform a gauge transformation

() _ gl

coming from V4 (ALhéuv (uv) =0.

ot —elH Sguy — Sguv +ELBuv + O (€7)

At higher orders, gauge issues can become a nuisance [Bruni et al., 97]
and there is no need to mess them up (cf. [Garat&Price, 00], [Brizuela et al.,
09]). Thus, we do not use fully gauge invariant approach at higher orders
of perturbation expansion!

In fact, while Athzw given in terms of (D(D+ 1)/2 — D) Regge-Wheeler
g

gauge invariants only, S v
orders j < i.

However, since we solve perturbations iteratively, gauge invariance in the
Regge-Wheeler sense seems sufficient! (Moreover RW gauge is neither
asymptotically flat (in A = 0 case) nor asymptotically AdS (in A < 0 case)

thus suitable gauge transformation are needed.)

depend on the gauge choices made at lower
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Perturbations in vacuum - general strategy - summary

ALh() — g

tuv =St v —>ECI>§’):S§,’), CIJ()<—>h()

L uv

@ A general strategy to solve the homogeneous part:
Linearised gravity is about gravitational waves. Thus gauge invariant
characteristics of metric perturbations h;lLv should be given in terms of
master scalar variables satisfying the homogeneous scalar wave
equation (with some potential) on the zero order solution g, ; we make
an ansatz that the gauge invariant characteristics of hé’iw are given in
terms of linear combinations of master scalar variables and their
derivatives

@ A general strategy to find a particular solution of an inhomogeneous part:
It follows from a few case studies that particular solutions of

A h;l)” SE Lv are given in terms of linear combinations of the sources
SELV and their derivatives. Thus, we take it as the general ansatz for

particular solutions. We will also have to introduce source terms Sff

scalar wave equations for master scalar variables

into
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Partial summary

Thus, in D = 4, at each order of perturbation expansion, the problem of solving
the system of 10 (linear but highly coupled) PDEs of mixed (hyperbolic and
elliptic) type is reduced to solving only 2 scalar wave (hyperbolic) equations
and some linear algebra (i.e. the only integration to be done is at the level of
scalar wave equation!)

For scalar wave equations one can set the initial data freely!

In 4 < D, there exist three (instead of two) master scalar variables (coming in
some number of copies/polarizations).

There exists robust and conceptually simple guiding principle to deal with
perturbation expansion.
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Two worked examples:

@ Schwarzschild BH perturbations
(up to arbitrarily high order of perturbation expansion)
Phys. Rev. D96, 124026

@ cosmological perturbations in 2 + 2 splitting
(at linear level)
[arXiv:1902.05090]

15/32


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.124026
http://arxiv.org/abs/1902.05090

Example1: Schwarzschild BH perturbations

Phys. Rev. D96, 124026

@ We will limit ourselves to axial symmetry (stepping beyond axial
symmetry is a technical, not a conceptual, issue). Then we can limit
ourselves to scalar (scalar / polar / parity-even) perturbations only
(vector/axial/parity-odd perturbations can be treated analogously)

@ We use multipole expansion. At nonlinear orders of perturbation
expansion the £ = 0, 1 parts need special treatment
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.124026

Polar perturbations at axial symmetry (on concrete example)
Schwarzschild in static coordinates:

1
ds* = —A(r)dt* + ——dr* +7dQ3, A=1—xr*/(*—2M/r

A(r)
1) (1,r,0) = YAy, (1,r)Pi(cos 0)
h by by 0 (0 L0
) h(t) h(l) ht(l) 0 hre (t7 r76) = th re(tv V)&@PK(COSO)
hap=| 60 0 0 : !
ht@ hre hGO 0 L (i)
0 0 0 h% Similarly, the sources S, and

perturbative Einstein equations
expanded into multipoles

RW gauge: only hg ,)t, hé Zr, hg ,),, hézr (h%e —i—hé ¢¢/ s1n26) /2 non zero,
or out of seven polar metric components four RW gauge invariant functions
£ 0, fé(’[)r ff(ﬁ)r can be constructed

(1) =1l =20y + ANBY g+ 24NN — 249 h 200", ...

17/32



fg(lg(t, r),fé(?r(t, r),ff(?r(t, r) andfﬂ(t, r) are Regge-Wheeler (gauge invariant)
variables

Q(/;) (t,r), CK@ (t,7), Cé(z(t, r) define the j-th order polar gauge vector
G =51 (&) Pilcos 0). £[Pi(cos 0). £ Pi(cos0). 0)
and the corresponding gauge transformation x* — x* — g/ { V)1

Zsihg)v — Zeihg)v + ejfgwguv +0(et).

1<i 1<i

At each order:

@ in axial sector: three equations for two RW gauge invariant variables
@ in polar sector: seven equations for four RW gauge invariant variables
(1) (D) () ) ()| _ o)

ALhZ uv [fétr’fé rr’ff tr’fli' +| Sy

L uv
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) 2A+rA')? —2(rA' )2 +2(0-1)((+2)A (A A A i
AL<,)M:[( o =20 42t 1 )+(T*7)""5‘9" oh,,% a“] ¥,

; Al 24 i
’.)fé‘n-*— [(7 + T) 9x+Aatr] (’.)f(‘rrv

= [ AR o] [ 2) o]

24+ 1A")? AN
[% —3,-%— att

47243 442 e

(2A+1A")2 424 (2rA" + (L= 1)(£+2) A A 1 ; ;
[ EerA )+(I+7)9*+£‘9” %W,(Mzaﬁ a,,)(%“.‘,

E A
Aﬂ”hm-**al(}‘[quKzA r)a‘ afr] %++ Ohl*

’
AN 8] e [(M“A’ ) ea]

ALy 4 = A

2 . .
+3 [(/ —1)(£+2) — r(4A + Aoy — P Adpy + % a,,] @ —ra, 0,

. ) . )
AL Oy g = ! [(A’+A9r) @, — 43, — 3,0k, +] ,

. A4 g 1y [ L[ 2A+mA i
AL(‘)hug — 4rr (% e Ea,(%+ - aaz(%/ﬂr > (*; +9r) “}(’n»

2A 2rA
A ()h[— = ( hrt (i.)ffrr) .
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General approach to gravitational perturbations (2)
@ At each order there is only one scalar gravitational degree of freedom
(for polar/axial perturbations, and for a given multipole ¢) satisfying
(in)homogeneous linear wave equation with a potential (to be determined)

o\ (1,r)

Oy (1,r) o= r (-0 V) === =5 (1)

Q@ RW variablesﬁ’l,fﬁr,ﬁ?y,fég are given as linear combinations of <I>E,i)
and its derivatives (+ source functions at nonlinear orders):

7 =Bo\) + co0\) + Do, @\ + Ed, @ + F3,®) + o (1,r), (2)

m:---w/(m, Jzir:-~-+v£'><w>
© Satisfying (perturbative) Einstein equations fixes the potential V; and the
coefficient functions in the equations above uniquely (!)
© The relations (2) can be inverted for CI)éi). There is a unique (!) way
compatible with the ADM initial problem formulation. This also gives the
source Sgi) in (1) uniquely (!)
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Perturbations of spherically symmetric spaces,
A=1+xr*/[>—2M/r (an easy way to the Zerilli equation)
master wave equation:

£, at,cp — A0, — A" 9,9\ + (A + v> o) =5
potential (the celebrated Zerilli potential in the Schwarzschild case):
(e+1) A 2A(rA' —2) — (rA')* + 2({ + 1)?

——+(2A rA' —2) 5
~— 2 P2A—rA =L+ 1))
—6M/r

Vi =

72

and RW variables in terms of the master scalar variable (and source functions
at nonlinear orders):

Do (1,r)

J— ,_
£ — 43,0 r<£(£+1) 24—rA =2 >8t

2 2A—rA —L(£+1)
fip= B 0r)
fy=42 )
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Perturbations of spherically symmetric spaces,
A=1+xkr?/(>—-2M/r

The master variable in terms of RW potentials - the unique form compatible
with the ADM initial problem formulation:

o) — £ Affy, = o)
¢ €(£+ 1) it €(€+ 1) —2A+rA’
Then the sources Sﬁ at higher order scalar wave equations can be read off
from

. . Al o
Ol = a,,cp — 40,0 — 45,0 + < ~|—V> o) =3
(i) 4r2 A 1 (—1)((+2)—2(34-2) (). e 5
A =1 G e e )
2[(””/4\ s, g+ L DUEEDERD) g

3

24—rA —2 Al 14 A(L—=1)(t+2) ) 1
-t (S (A, - s, ) - A (Al ()
2A—rAl —((l+1) <r (A St =g Stu rQRA—rAT —(((+1)) St g Stu

— ’_ — — I _ —_ 4 o [ A
QA -2) UL+ 1) (A A —U(+1)) -2 1)(é+1)A(,}S/772A9’_((,k/+/r2)72%(1;;1)/4(,)‘9/’6))

3 (24 —rA! —L(£+1))
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To fix the source functions océ(;i), B}i) and }/éi) we write them down as linear

combinations of the sources SE@‘LV and their first derivatives. Fixing

3 x 7 x 3 = 63 function coefficients of these linear combinations is a technical
task. It turns out that 54 functions (out of 63) are fixed in terms of 9 free
functions. Moreover, in the resulting expressions, coefficients of these 9 free
functions are identically zero due to the identities for the sources, thus the final
expressions are uniquely defined:

24 (7 (a's)), - as), ) +25)")
() (UL 1) —2A+rA)

a1 n L(l+1)=2A+rA"
B = (ra,,ap_(*) tr a;>>

A 2A

ol

G _ Ty @, 2

’}/( :X&fa/f +£(£+1) ltr
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Example2: Cosmological perturbations in the 2 4 2 splitting

[arXiv:1902.05090]
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http://arxiv.org/abs/1902.05090

Motivation
Schwarzschild black hole perturbations

studied in 2+2 splitting resulting in
scalar/vector sectors (after expansion
into suitably chosen scalar/vector
spherical harmonics) [Regge&Wheeler,
57]

The key result: the general linear
perturbation can be given in terms of
only two (scalar/vector) master scalars
satisfying scalar wave equation on the
Schwarzschild background with
Regge-Wheeler/Zerilli potentials for
scalar/vector sectors; this can be
extended beyond linear level

1
EIJ'V ::Ruv - 7Rguv+AglJV - T[JV — 07

2

FLRW perturbations studied in 1+3
splitting resulting in
scalar/vector/tensor sectors
[Lifshitz, 46]

Does the same structure emerge for
FLRW?
(time-dependent background)

(8nG=1)
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Setup
8uv =8uv+ EhLRVW) + 0 (82)

dStrpw= a*(7) [~dT° +dq* + *(9)dQ3]|,  f(g) = q,sing,sinhg
dQs = du? /(1 —u?) + (1 —u?)d¢?, —1<u=cosf<1

Axial symmetry:

hRY) [Clarkson, Clifton & February, 2009]

v
(@ + 20+ we) Py(u) o(Py(u) 0 m(1—u?)P(u)
y * (@e+ xe) Pe(u) 0( | ne (1—u?) P)(u)
- Py(u
0=t 0 0 P 0
* 0 @ (1—u?)Pe(u)

*

where @, x¢, Wy, 01, my, ny are functions of (7, q)
gauge issues: if x# — x* — e&H then gy — guy + €L guv + O (€7)
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Matter content: a single component perfect fluid

Ty = (p +P)”/.Luv +Pp8uv,
with

(7, q,u) = po(t)+¢€ Y 8pePr(u)+ O (€7)
o</t

p(T,q,u) =po(T)+¢€ Z OpePe(u)+ 0 (82) ;
o</
(5, 4.0) = (~a(2),0,0,0)
ve X (LI 1) i) Pl ) b2 (1) Pl

o</t
+0 (e ),

where dpy, Opy, dwy, v, 8 z¢ are functions of (7, q)
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Background equations

3 ) 1 _f/2
Po = ; ("7{ + ][2 _Aa (3)
L/ 5, 1= . a
po=A——5 | H +—F5—+2H |, H = — conformal Hubble constant
a f a

(4)

Note that [(1—£72) /£?]' =0, thus " = — (1—f2) /f
The system (3,4) is closed by the equation of state of the fluid p = p(p).
Differentiating (3,4) with respect to T and defining the speed of sound as

c; = dp/dp|,_p, ,

we get

7 2 2 l_flz 2 ;
}[:(1+3cs)}[(a{+ 7 >+(1—3c‘y)m[.
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Linear perturbations: equations [Kulczycki&Malec, 2017]

E_:y; =0,
Eq,,:xf»— =0,
" 2f! . 1) -2
E+:u—xé’+%xé—2ﬂu—2ﬂx[+ ( 2> 2=0
L+1)+6/2—4 l+1)+3f7 -3 !
Err:2a*8p, = (% +2ﬂ2) m+z<% 392 ¢f+2§ (20 +29 —4500) + 29 (j + 3¢, —20]) — 29/
(5)
4 e+ 1) 2" 2 a4 -7 7 ; s
Egq:2a"8py = TJJ?{ —4H | 2 +2 7 + A (p;+2fx[+21{((p4 q) —2¢y, (6)
(04 1)+4f7 ! ) )
Exg 24> (o +po) 8wy :7%(&”; (2000 = J0) +2 (X — 9)) +29;,
Ezy:2a° (po +po) S = =250y — 0]+ 20y + ¢ -
Using eq. of state egs. (5,6) are combined to yield
N (1438) (147200 - 7) - Gue+ )
ool +27:6 20p+ (1-3¢2) 969y + I o
(1+38)/2-2  caes ’
T © 2_ 2 52 f L _
- 2 +(c7 1)( 7 +J{>+2,’I{ 20— 2¢ }[(aﬁrz/a[) f( l)x,H{(c +1)x @
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Linear perturbations: solution in terms of a master scalar

The simplest solution: xy = 0 = oy and ¢, = @y, with ¢, being a solution of the
homogeneous part of (7).

In the general case we resort to the guiding principle introduced in [R., 2017]:

oy = 06070(13(—1-(1170@134-0(071(132-}-...
xe= Boo®r+Bro®r+Po 1P+ ...
@0 = P+ %00+ 0P+ V0,1 P+ ...
where coefficients ¢ ;, Bi.m, Yoy are (7, q) dependent functions and the master

scalar ®, = ®(1, ¢) solves the scalar wave equation on the FLRW
background, with a potential V; = V;(t, q)

(—Dg-i-Vg)q;é =0
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Linear perturbations: solution in terms of a master scalar (2)

e+1) 7
@
f A

X =a* | f (D] +2HD]) —

Oy = a2 fCI)Z—

((e+1)

(b, +z}[q>g)] ,

(e+1)
2

@ = a* | —f HO| + f () + H®D)) + (Cbe-l-fiﬂ-[‘l)z)} + @,

where
@ _
f

1 /0(6+1
w:<(f2)

a2
(an analogue of the Zerilli potential)

(—Dg-i-Vg) 0,

+ 2}'[)
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Final conclusions

It is rather remarkable that gravitational perturbations of exact solutions of
Einstein equations are in fact governed by two scalar functions, satisfying
scalar wave equations (with a potential) on the background solution,
corresponding to two polarizations of gravitational waves. In our opinion a
deeper understanding of this fact is an interesting mathematical problem.

@ The hard part of solving perturbative Einstein equations (PDEs) can
be reduced to only one scalar wave equation (for each polarization
mode) and some linear algebra (!)

@ Crucial ingredients:

» gauge invariance - implemented iteratively, thus Regge-Wheeler definitions
of gauge invariants are sufficient

» ansatze for the form of solution (for RW gauge invariants and source
functions (particular solutions of the linear inhomogeneous system))

» identities for the sources (inhomogeneous terms) in perturbative Einstein
equations

@ Although the scheme is conceptually simple, its actual realization was
rather unthinkable in pre- computer algebra era

32/32



