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Lecture 1: Structure of Neutron Stars. Mass, radius and tidal deformability. Nuclear interactions and
nuclear matter, effective field theory. Phase transitions.

Lecture 2: Neutron star cooling: Proto-neutron star evolution, supernova neutrino emission and
detection. Cooling of isolated neutron stars, heating and cooling in accreting neutron stars.
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Core-collapse Supernova
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Thermal Evolution of an Isolated Neutron star
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Supernova Neutrinos

SN 1987a: ~ 20 neutrinos ..in support 100.00
of supernova theory
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Neutron Star Cooling

Crust cools by conduction
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Isothermal core cools

by neutrino emission
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Neutrino Emissivity e

Ve
Single -particle reactions are fast. Beta decay is the only -
reaction - “Direct Urca” 4
n
Multi-particle reactions are slow. “Modified Urca” can
be thought of as beta-decay in the presence of a "
companion.
U
Bremsstrahlung reactions are even slower. Because the v

neutrino momenta are much smaller than that of
electrons.
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Neutrino Emission Rates in Normal Nuclear Matter
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Proton Fraction & Direct URCA
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Neutron Star Cooling - Normal Nucleons

Energy Balance Equation:
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Analytic Model for Neutron Star Coollng
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Neutron Star Cooling Data: Isolated Neutron Stars with Thermal Emission.
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Cooling Models with only Normal Neutrons is Inadequate

Even a small fraction of the normal
core with DURCA can lead to very

rapid cooling.

This Is iIncompatible with the
observed trends Iin the neutron stars
population.

There Is a need for an intermediate
orocess between DURCA and
MURCA.




Phases of Cold Dense Matter in Neutron Stars

p-wave neutron pairing
s-wave proton pairing
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S-wave pairing
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® The nucleon-nucleon interaction is ol A
attractive at low energy. 9 BCS/
o
® Perturbation theory fails, but Quantum ;; |
Monte Carlo and lattice methods may be 5|
reliable.
® Best estimates for the critical temperature -
suggest that a large fraction of neutrons In 0 - 3
the crust will be superfluid in the crust. Logp (g/cm3)

Cold atom experiments help validate many-body theory of strong short-range interactions.

Bulgac, Carlson, Drut, Gandolfi, Gezerlis, Forbes, Pethick, Reddy, Schwenk, ..



P-wave Triplet Pairing

Spin—triplet pairs

N o

LL>0

S-wave mteractlon IS repulsive at high density.

Attraction is in spin-1 channel due to P-wave
Interaction.

Neutron pairing in the core has a large effect
on neutron star cooling. Magnitude of the
pairing gap and critical temperature is very
uncertain .. large many-body corrections.

10
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Neutron °P, —F,

Page et al. (201 1)




Neutrino Emission in Superfluid Neutron Matter

Near the critical temperature Cooper pairs form and (n n)
dissociate due to thermal fluctuations.

Two neutron quasi-particles combine to form a Cooper
pair, the binding energy is radiated as neutrino- anti-

neutrino pairs.

This process is called the PBF process - Pair Breaking
and Formation.
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Spin-spin correlation function in superfluid neutron matter. COOpe r pa | r
Flowers, Ruderman, Sutherland (1976) (Kundu & Reddy (2012) Leinson (2015) fo rm atlo n



Neutrino Emission in Supertluid Neutron Matter

MEDIUM
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Neutrino Emission Rates in Normal Nuclear Matter
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A Finely Tuned Model with Neutron Pairing

Neutron stars in the their mia-
ife are roughly compatible with
a finely tuned model of
neutrinos cooling with 3P»
neutron superfluidity.

The situation (in my opinion)
suggests that there Is
something missing.
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Transiently Accreting Neutron Stars
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Physical Processes |n Accretlng Neutron Stars

» Accreting neutron
stars host
phenomena that
uniquely probe the
physics of its ultra
dense interior.

* lt IS a data driven
field.

Interpreting this
data requires a
coordinated effort
that combines
theory, experiment
and observations.
JINA-CEE has
played a key role.
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= density (g/cm?)
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Cooling Post Accretion
All known Quasi-persistent sources show cooling after accretion

eAfter a period of intense accretion the
neutron star surface cools on a time
scale of ~1000 days.

e This relaxation was first discovered In
2001 and 6 sources have been studied to
date.

*Expected rate of detecting new sources
~ 1/year.
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Thermal Evolution of the Crust

logiop (g cm™)
11 12

Temperature profile in the crust depends
on the duration of the accretion phase.

When accretion ends heat flows into the
core and is radiated away as neutrinos.

Timescale for cooling is set by the heat
diffusion time.

11.4 11.2 11.0
radius [km]

10.8




Connecting to Crust Microphysics

Crustal Specific Heat Crust Thickness

N\ /
TO ™ Cv AR?

Y
Thermal Conductivity /

* Observed timescales are short.
* Requires small specific heat and large thermal conductivity.

 Favors a solid (with small impurity fraction) and superfluid inner crust.
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Phonons in the Inner Crust

neutrons neutrons

i

Proton (clusters) move collectively on lattice sites.
Displacement is a good collective coordinate.

Vector Field: &;(r,t)

Scalar Field: ¢(r,¢)

Neutron superfluid: Goldstone excitation is the
fluctuation of the phase of the condensate.



Excitations and Interactions in the Inner Crust

. 0000000000 AVAVAVAVAVAVAV
Electrons and 2 Iongltudlnal and 2 lattice superfluid

electrons

transverse phonons are the relevant phonons phonons
excitations. electron-phonon

the solid and superfluid crust can be :

Thermal and transport properties of
electron-impurity

calculated using an effective field
theory. >

Mixing between phonons leads to electron-electron
strong Landau damping. Phonon
conduction is highly suppressed.




Crustal Specific Heat

Electrons:
CS ~u2 T

Phonons:

3
ok L
|%4 U,?

If neutrons were normal

their contribution would
overwhelm.

Page & Reddy (2012), Chamel, Page, Reddy (2013)



Thermal Conduction T 0000000000 VVVWWWV

E(p) =p w(p)=cp  w(p)=vp
| lattice superfluid
o — 1 C < X )\ electrons phonons phonons )
— o (y

: ? /\Landau Damping - \

® Dissipative processes:

Electron-Impurity

® Umklapp is important:

- 7\ 1/3
= | — 1
qD (2> g

Electron Bragg scatters and emits a transverse phonon. Flowers & Itoh (1976)




Superfluid Heat Conduction

Photographs: JF Allen and MG Armitage (St Andrews University 1982).

Its impossible to sustain a temperature
gradient in bulk superfluid helium !

—

Q = SEPMTH

1 27
(sPh) _ = ~(sPh) _ TS
> SC” 15 ¢

Two fluid model: Counter-flow transports heat.
(Its the superfluid phonon fluid)

The velocity is limited only by fluid dynamics: (i) boundary shear viscosity or
(i) superfluid turbulence.

Why does this not occur in neutron stars ?
Answer: Fluid motion is damped by electrons.

Aguilera, Cirigliano, Reddy & Sharma (2009)



Electron Conduction
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Impurity scattering is important at low temperature.

Flowers & ltoh (1976)



Unraveling Thermal Relaxation

® | ate time signal is sensitive to iInner
crust thermal and transport properties.

® |mpurity parameter can be fixed at
earlier times.

® \ariations in the pairing gap (changes
the fraction of normal neutrons) are
discernible |

® |[f neutrons were unpaired the cooling
time scale would be too large.
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Measuring the Heat Capacity of the Core

Heat the star, allow it to relax, and observe the
change in temperature: Cns dI'=dQ

@7
When Cvs=aT: 5 (TF —T7) = AQ

. JAN
Lower Iimit:  Cns(Ty) > QT—Q
f

AQ:HXtH—LVX (tH—I—tObS)

neutrino

cooling rate

duration time of observation
of heating (after heating ceases)

heating
rate




Observations of KS 1731-260

Quiescent Surface Temperature (post relaxation): Ts=63.1 eV
Accretion Phase: 12 yrs at dM/dt =1017 g/s
Thermal Relaxation: t = 8 yrs

Inferred Core Temperature:
Insulating envelope supports a temperature gradient near the surface.

oo 1.82
Heavy element envelope: T =7.0x 10" K 2
63.1 eV

oo 1.65
Light element envelope: T =3.1 x 10" K S
9 P e = 31 x 1D (63.1 eV)

Inferred Energy Deposition:

. M tH
A — H t — 6 1043 Qnuc
© e : R (2 Me\/'> (1017 g/s) (10 yrs)




Lower Limit on the Core Specific Heat: Current & Future

39
10

The limit Is compatible with most
models of dense matter.

Normal
Nucleons

One exception is a neutron star core

made entirely of CFL quark matter. fo
D)
If temperature variation is observed =
on a 10 year time scale, it would © 10
imply some form of exotic matter in
which most baryons are frozen!
10

L,/TS [ergs™']

Cumming, Page, Brown, Reddy, Horowitz and Fatttoyev (2016)



| ong Term Evolution of Accreting Neutron Stars

Balance between neutrino
luminosity

and crustal heating sets the
average core temperature.

If we know the heating and
accretion rate on average then
a measurement of the neutron
star surface temperature
provides a constraint on the
core neutrino luminosity!

20 30
Time (years)




Rapid neutrino cooling in the neutron star M XB 1659-29

Edward F. Brown,!'* Andrew Cumming,? T Farrukh J. Fattoyev,® *

SIS

C. J. Horowitz,>3 Dany Page,* ¥ and Sanjay Reddy’
Phys.Rev.Lett. 120 (2018) no.18, 182701

1039
Evidence for diversity. Not all
neutron star cores are the same! —
1, 10%
If we observe cooling on a 10 %0
year timescale we can obtain —
an upper bound on the core z|:°° 1037
specific heat as well! QO
10°%°




Conclusions and Outlook

Theory and observations have revealed much about the crust and the outer core during
recent years. Nuclear physics provides a consistent interpretation of diverse data.

Small observed radii and large maximu
the speed of sound Iin the inner cores o

to quark degrees of freedom.

M mass of neutron stars suggest a rapid increase in
" neutron stars. Favor a complex yet smooth transition

—volution of accreting neutron stars provided new insights about the thermal and transport

poroperties of the inner crust. Interpretation requires a superfluid state.

Observations of GWs and
opportunities for research
signals relies on it.

-M signals from neut

ror

IN dense matter theo

fy.

star mergers will offer many exciting
he interpretation of the multi-messenger

We need a few more GW170817/’s and a core-collapse supernova in our own galaxy is now

well overdue.



