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Lecture 1: Structure of Neutron Stars. Mass, radius and tidal deformability. Nuclear interactions and
nuclear matter, effective field theory. Phase transitions.

Lecture 2: Neutron star cooling: Proto-neutron star evolution, supernova neutrino emission and
detection. Cooling of isolated neutron stars, heating and cooling in accreting neutron stars.
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Sources: Neutron Stars are Central
Supernova Binary Neutron Star Mergers
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The Ultimate Collision

Movie Credit: NASA Goddard
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The Ultimate Collision

The gravitational waves, electromagnetic and neutrinos from neutron star mergers
are sensitive to the properties of dense matter. Especially to the neutron radius and
maximum mass. '




Neutron Star Structure: Observations

2 M. neutron stars exist.
PSR J1614-2230: M=1.93(2)

PSR J0348+0432: M=2.01(4) M

MSP J0740+6620: M=2.17(10) Me




Neutron Star Structure: Observations

2 M. neutron stars exist.
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Inferred NS radii are small. " . | e
Despite poorly understood systematic
errors, x-ray observations suggest

R ~ 9-13 km. Perhaps even preferring a
smaller range R~ 10-12 km.
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Compressing Matter:

A tale of frustration and liberation

Densit Fermi Energy Phenomena
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Composition and Phases of Dense Matter in Neutron Stars
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Composition and Phases of Dense Matter in Neutron Stars
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Phase Diagram of Hot & Dense Matter
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Neutron Star Mass and Radius
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Neutron Star Mass and Radius

P(e) + Gen.Rel. = M (R)

The relation between pressure and energy density (EoS)
uniquely determines the structure of neutron stars.
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Energy of Uniform Matter: Nucleons in a Large Box
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Energy of Uniform Matter: Nucleons in a Large Box
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Nuclear Interactions

QCD (Lagrangian) is simple is write down
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Nuclear Interactions
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F. Wilczek, Physics Today (2000)
but Is difficult to solve at low energy.

Sum rules

't gets simpler at high energy (asymptotic freedom).

X

bb threshold

gauge theory

PP, PPV +
Deep inelastic scattering

The low energy QCD vacuum is non-
perturbative:
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e |t confines quarks to color singlet states.

e Spontaneously breaks chiral symmetry.
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Nuclear Interactions

eBaryons and mesons are the relevant low energy degrees of freedom at low
energy. Interactions between them are strong, complex, and short-range.

ePions are special. They are the Goldstone bosons associated with chiral symmetry
breaking and provide the longest range force between nucleons.

e Other mesons are significantly heavier. It is not very useful to single them out as
mediators of the strong interaction between composite color singlet states.

eHow then can we write down a theory of strong interactions between nucleons at
low energy 7

Potential Models “ffective Field Theories (EFT)



Nucleon-Nucleon Potentials
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Nucleon-Nucleon Potentials

One-pion e V? Ja ,t _a a
exchange: LNNm =N (Zﬁt QMN) YN f YNT O VTN
N N
I 2
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Potential depends on spin and Iso-spin.

't has a tensor component: S5 = 3(o1 - 71) (09 - T9) — 01 - 09

. 1
't Is singular: V(ir—0)~ =

r3



Nuclear Forces at Short Distances
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A Realistic Potential Model
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Potential is Neither Unigue Nor Observable (in QM)

Potential Models: Relies on a set of (reasonable) assumptions about the short
distance behavior to solve the Schrédinger equation and fit observables.

Effective Field Theory: Relies on a separation of scales to Taylor expand potential In
powers of momenta or inverse radial separation. Coefficients of the expansion are
determined by fitting to observables.
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Potential is Neither Unigue Nor Observable (in QM)

Potential Models: Relies on a set of (reasonable) assumptions about the short
distance behavior to solve the Schrodinger equation and fit observables.

Effective Field Theory: Relies on a separation of scales to Taylor expand potential in
powers of momenta or inverse radial separation. Coefficients of the expansion are
determined by fitting to observables.

A simple (heuristic) EFT example:

-xchange of heavy bosons at
OW energy cannot be resolved.

When several heavy particles may be exchanged, or when the underlying
mechanism Is unknown, the general expansion IS

2
Vvshort(Q) :CO_|‘02 XQ ...




Nucleons are composite with internal excitations

N

N

N

N

At low energy

ma —mpy >~ 1232 — 939 MeV = 300 MeV

There are three and many-body forces:

N N
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At low energy
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Chiral EFT

3N Force 4N Force

Systematic approach to low energy
nuclear interactions.

Expectation Is that the expansion
will remain valid up to 1-2 times
nuclear saturation density.

Consistent treatment of two, three
and many-body forces.




Effective Field Theory: Error Estimation
9,

Organizes the nuclear Hamiltonian in powers of the momentum: —

Ap
o XH o - - —
o XHEME - = T
w bR RO o
H L H H Hl IH [>< H H H H W

Allows for error estimation. Provides guidance for the structure of three and many-body forces.

Beane, Bedaque, Epelbaum, Kaplan, Machliedt, Meisner, Phillips, Savage, van Klock, Weinberg, Wise ..



Ground State Energy

vZ
Hpuclear = N/ - VN 4+ Ve 4

P ~

two-body nucleon-
nucleon potential is well
constrained by scattering
data.

three-neutron potential is
constrained by light
nuclel.

Quantum Many-Body
Theory:

Quantum Monte Carlo
Diagrammatic Methods
(perturbation theory)

E(pn, pp) . Energy per particle



Diagrammatic Methods

Sum certain classes of Feynman
diagrams to capture non-perturbative
aspects.

N \ nucleon-nucleon interaction

Eg. Bruckner or G-matrix Theory:

|| - rY
G| - +fY+ G|+ | G

1 1 1

<k’1 I\Q \G(w) |A3A4>= (klkg

v|\kaky) +

1-Op(k3))(1-Or(k})
+ Tge e kalol ) -2 ()

3 4

(kaki

G(w)

kaky)



Quantum Monte Carlo

Uy | H|Wy
Variational Monte Carlo: Eyv = Wv[H W) > F
(v ¥y )
Greens Function Monte Carlo:
U(T) =exp|—(H — Eo)T|¥y = Z exp|—(En — Eo)T|antn
\II(T — OO) — ao”(,c';?()

* Evolve particle coordinates.

e MC Kinetic terms.

e Explicitly compute potential.
U(Rn,T) = /(; R, R, 1) - G(Ri,Ro)¥y(Ro)dRn_1 - - - dRo

Fermion sign problem - limits GFMC



Equation of State of Neutron Matter

Reliable calculations of neutron matter are
now possible using QMC and EFT inspired

Hamiltonians.

Order-by-order convergence is good at
n=0.16 fm-3 and reasonable at n=0.32 fm-3.

n=0.16 fm-3 | n=0.32 fm-3
Energy (MeV) 15+ 3 30 £ 15
Pressure (MeV/fm-3) 2.5+ 1 135

>

E/A M

45—

A0F
351
30F

25

AVE Tews et al. (2018)
AVE + UIX

LO

NLO
N2LO (TPE + V1)
N2LO (TP:
N2LO (TP:

-
-
-
-
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’f
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-

”

'’y

’
’’’
Ry
’

O I |
0.00

0.05 0.10 0.15 0.20 0.25 0.30

n :fm_?’]

Akmal & Pandharipande 1998, Hebeler and Schwenk 2009, Gandolfi, Carlson, Reddy 2010, Tews, Kruger, Hebeler, Schwenk (2013),
Holt Kaiser, Weise (2013), Roggero, Mukherjee, Pederiva (2014), Wlazlowski, Holt, Moroz, Bulgac, Roche (2014), Tews et al. (2018)
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Equation of State and Neutron Star Structure

P(e) + Gen.Rel. = M (R)

A small radius and large maximum mass implies a rapid
transition from low pressure to high pressure with density.
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Dense matter EOS and NS structure

Neutron matter calculations and a
sound speed at higher density
constrained by 2 solar mass NS and
causality provide useful constraints on
the NS properties.

R1.4=9.5-12.5 km

Mmax =2.0-2.5 Msolar

[}
O
7p)
%
©
&
-

©
o,

2]
p)
%
©
&
&
-

E
3
©

=

12
Radius [km]




Neutron Star Structure: Observations

2 M. neutron stars exist.
PSR J1614-2230: M=1.93(2)

PSR J0348+0432: M=2.01(4) M

MSP J0740+6620: M=2.17(10) Me




Neutron Star Structure: Observations

2 M. neutron stars exist.
PSR J1614-2230: M=1.93(2)

PSR J0348+0432: M=2.01(4) M
MSP J0740+6620: M=2.17(10) M

— M28
M30

—— NGC 6304
NGC 6397
o Cen
47 Tuc X5

Inferred NS radii are small. " . | e
Despite poorly understood systematic
errors, x-ray observations suggest

R ~ 9-13 km. Perhaps even preferring a
smaller range R~ 10-12 km.

S5
Radius (km)




Bmary mspwa\ and Gravitational Waves

GWs are produced by fluctuating quadrupoles.

b (1,8) = 22 Ty (tR)

I

.I.U( ) M Rorblt f2 ~ M5/3 f2/3
1025 (Mas 3 f  \*? /100 Mpc
M@ 200 Hz I

- Advanced LIGO can detect GWs from binary
neutron stars out to about 200 Mpc at design
sensitivity. Detection rate ~ 1- 50 per year.
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Tidal Deformation: Measuring the Neutron Star Radius

Tidal forces deform neutron stars.
Induces a quadrupole moment.
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Tidal Deformation: Measuring the Neutron Star Radius

Tidal forces deform neutron stars.
Induces a quadrupole moment.

/ 0°V;

v = Y Ex EFE = —
Q Y Y Ixy 0x0y

Rorblt ~ 10 RNS

tidal deformability  external field

117 s M

Tidal interactions change the rotational phase: 6@ = 756 " — A

S
Dimensionless binary tidal deformability: A = S ((Ml) (1 | %ﬂ A+1o 2)
|

j“i RZS
Tidal deformations are large for a large NS: A, =—- = sz



Tidal Effects at Late Times
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Neutron Stars are Small

A = 222.29+419.83 245.39+123.12 233.39+127-33

B Uniform distribution
B Double Neutron Stars
B Galactic Neutron Stars
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Tidal deformations observed
in GW170817 are small and

suggests that the NS radius:

R < 13 km

Requiring a maximum mass
greater than 2 Msun implies:

R > 9 km



Future Constraints from aLIGO-VIRGO Observations

Forbes, Bose, K

eddy, Zhou, Mukherjee, De (2019)
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At aLIGO design sensitivity we should be able to constrain the
outer core at the 20% level with 15-20 observations.

—0OS of dense matter in the



Speed of Sound in Dense Matter

L arge observea Neutron stars
maximum mass
combined with small
radius and neutron matter
calculations suggests a
rapid Increase In pressure
IN the neutron star core. Conformal limit
Implies a large and non- Perturbative QCD
monotonic sound speed -
in dense QCD matter.

Causality: ¢ < 1




Composition of the Inner Core

@ 1014 Outer Core
Many possibilities have been considered in S neutrons, protons
past which include: U_}‘Z electrons, muons

*Hyperons
* Pion and Kaon Condensates ‘o quark-
-Mixed phases of nuclear and quark matter I hadron
3 6x1014 ¢ iti
*Pure quark matter. 2 ransition
~3

In all of these scenarios the equation of state is typically

softened by the appearance of new degrees of freedom.

Supporting 2 solar mass neutron stars is not easy.

15
The Alternate: 10

Quark-hadron transition is smooth.
*May not even be a phase transition - cross-over.

*In the core, nucleons could persist as correlated states at the quark Fermi surface.

McLerran and Reddy (2019)



A Model for Cold Dense Quarkyonic Matter

At intermediate density nucleons are
confined to a shell.

The shell has a width of the order of

Fermi Shell of
Baryons Jo(k)

kF%\\

Fermi Sea of
Quarks

Quarks inside the Fermi surface are
weakly interacting due to Pauli
blocking of intermediate states.

Density of nucleons saturates due to
strong repulsive forces.

McLerran and Reddy (2019)



A Model for Cold Dense Quarkyonic Matter

At intermediate density nucleons are [.0p | - - - - 1
confined to a shell. — Quarkyonic-Nuclear Matter
----- Non-Int. Nuclear Matter
The shell has a width of the order of 0.8+ — Quarkyonic-Neutron Matter |+
----- Int. Neutron Matter
0.6
C\]Qc:;
Quarks inside the Fermi surface are
. . . 0.4+
weakly interactingduetoPauh 4 /] A\
blocking of intermediate states.
0.2+

Density of nucleons saturates due to
strong repulsive forces.
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