Kinematics of Coronal Mass Ejections in the LASCO field of view

Anitha Ravishankar dr hab. Grzegorz Michalek; Seiji Yashiro Astronomical Observatory of the Jagiellonian University; NASA GSFC

Coronal Mass Ejections

- A coronal mass ejection (CME) are huge expulsions of magnetized plasma from the solar atmosphere.
- Great advances have been made in understanding CMEs by SOHO, Wind, ACE and the latest STEREO mission, to learn their 3D structure.

Gif: SOHO LASCO C2 coronograph

SOHO LASCO

- ◆ SOlar and Heliospheric Observatory (SOHO) carries Large Angle Spectrometric Coronograph (LASCO) onboard. Launched in 1995 and has recorded ~ 30,000 CMEs till now.
- ◆ Field of View of LASCO,C2 and C3 is 2 32 solar radius.

Observations obtained from 1996 to Oct 2017,i.e., 23 and 24 solar

cycle.

Data

- Aim: to study the acceleration and velocity profiles of CMEs near the Sun, up to ≈ 30 solar radius using SOHO/LASCO catalog.
- The velocity and acceleration was obtained by fitting a straight and quadratic line to all the height-time data.

Initial and residual acceleration

- Initial Acceleration = $V_{max}/(T_{max}-T_{onset})$
- Residual Acceleration = (V_{res}-V_{max}) / (T_{res}-T_{max})

Distribution of velocity

Distribution of Acceleration

Gopalswamy et al., 2015;

- The reduced cloud spedd at 1 AU can be attributed to the enhanced drag in SC 24 due to diminished solar wind speed and increased CME size.
- Since the drag force is proportional to the square of the speed difference between the CME and the solar wind, a slower wind will result in a larger drag.
- Similarly the drag is also proportional to CME cross sectional area, so wider CME in cycle 24 provides a larger area and increases the drag.

Summary

- A statistical analysis of the Coronal Mass Ejections recorded by SOHO/LASCO during Solar Cycles 23 and 24, 1996 – 2017.
- The initial acceleration is in the range 0.24 to 2616 m/s2 with a median (average) value of 57 (34) m/s2.
- The residual acceleration is in the range -1224 to 0 m/s2 with a median (average) value of -34 (-17) m/s2.
- The residual acceleration is much smaller during solar cycle 24 than the 23rd cycle.
- The space weather during Solar Cycle 24 was extremely mild. A significant drop in the density, magnetic field, total pressure and solar wind.

Future work

Panel a: Solar cycle vs Rmax Panel b: Solar cycle vs Tmax