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Introduction and Background @

The Einstein-Hilbert Action

> The Einstein-Hilbert Action gives us the Einstein Field Equations:

Szzlﬁ/d‘*a:\/ngJrSM

| (Variation W.R.T g,,)

1
R/“/_ERQN'V = k1

> k=81G = 87T/Mp2
» R is the only independent scalar which we can construct (up to
second derivatives) of the metric
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Motivating Modifications to General Relativity

v

General Relativity (GR) is the simplest theory coupling spacetime
curvature to matter

v

Can consider other theories by adding terms to the Hilbert action, as
long as they:

> Are diffeomorphism invariant, scalar, etc.

» Limit correctly to GR and Newtonian gravity
Good reason to look at modified theories

» Quantum fluctuations, string theory

v

What effect do these modifications have?

v

» Must look at strong gravity
» = Binary Systems are an ideal testing ground

Zachary S. C. Picker, University of Sydney 4
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The Post-Newtonian Formalism

» The Post-Newtonian (PN) formalism is an iterative expansion
scheme in v/c, for arbitrarily precise solutions to Einstein field
equations

» Requires slow moving, weakly stressed sources (valid for inspiralling
binary black holes up to v/c = .5)
> Naturally includes non-linearity and higher multipole characteristics
» Convention is to just track 1/¢™, and call those terms “%PN order’
> OPN order is called “Newtonian" order
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The Quadratic Action

» We will include in our action all independent terms up to 4th
derivatives of the metric:

S = / dtay/— [ + BR? +YR™ R, | + Su

» These are unavoidable from one-loop renormalisation of matter with
semi-classical gravity

» Non-renormalizability of higher loops means these must be found
experimentally

» Consider gravitational waves (GWs) from a compact binary system:

2
Sy = Z/dt MaC\/ (—Guv)aVh VY
a=1

» By comparing our new gravitational wave solutions to LIGO
observations, we can constrain 8 and ~.
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Recasting Corrections as Massive Scalar and

Tensor Fields
We can recast both quadratic terms as massive spin-0 and spin-2 fields

with some clever manipulation:
y R V(. s ) s
S= | dz/—g [%—5 OO g + mammag
1 ~
-5 <au¢aﬂ¢> + m;gb?)] + Su

'he mass terms are:
1 1
2 2
m e — PR
¢ 126(6 4 v/4)

To linear order, the transformation to this frame is:

Euu R GutV 2/§77;w¢ + v 4'%77—#1/
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Quadratic Gravity as an Effective Field Theory

» We cutoff our Lagrangian at quadratic order to avoid

non-renormalizability at the 2-loop level
» Stelle! noted the negative norm states of the massive spin-2 field
» We must interpret this as an effective field theory

» Quick and dirty calculation to show realm of validity:
Mg R > qRd Mz p> > ap® (In momentum space)
= M;/r2 > a/rd
Mg 7 R Mg/oz = Mg > 1

» We can then see that far-field plane waves e~ *“!=k%) are suppressed:

v? =~ GM/r <1 <Ml = Mg x> 02 ~ w?

2

= F=w-mj, <0

K. S. Stelle (1978). “Classical Gravity with Higher Derivatives’.
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Existing Constraints and Work

» Current constraints on deviations from gravity:
» Torsion-balance experiments (excluded in 107%eV < my < 1073V )
» Lunar ranging, satellite, and solar system tests (eg. Stelle’s estimate:
my 2 10716eV)
» Astrophysical distance measurements constrain f(R) gravities
(my 2 1073%V)
> To lowest order, these deviations look like Yukawa potentials
aGe /A
» Usually constrain on the coupling strength « for fixed range A
» We set o =~ 1 and the instead constrain the mass mg » =~ 1/A

» We follow the well-studied PN methodology for finding GWs,
specifically the formalism of Blanchet's detailed review.?

2| uc Blanchet (2014). “Gravitational Radiation from Post-Newtonian Sources and
Inspiralling Compact Binaries”.
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Linearized Equations of Motion

» We can find the linearized field equations for ¢ and m,,:
» We also cut off the source terms at lowest PN order

2
Op—mio=—> ﬁm NCEAG)
a=1
2

2
C N _
DW}W — miww = Z \/Ema <Uuavva + 477,LL1/> 53(16’ - yll(t))

a=1

» Which have Yukawa-like solutions:
G e~ Meclf—Ta(tr)]
m c————
T — G (tr)]
G My ( 02 ) e—mwc|f—ﬂa(tr)|
Tuw(®) = =D A\l o-— | VuaVva + M | —=— =7~
o () ; 27 ¢ parva 477“ |Z — a(ty)]
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Modified Binary Dynamics

» We can compute corrections to the geodesic equation by

transforming the conservation equation 6,;7’“” = 0 back into our
original g,,, coordinates.

» Then we can calculate the relative acceleration to Newtonian order,
as well as the angular frequency:

G(ml + mg)

al = —Tﬁ (142" ™" (mgr 4+ 1) — 3e~™ " (mgr + 1))
G
02 = W (1+2e7™" (mgr + 1) — 3¢~ ™" (mgr + 1))

> where r = |1 — 92|, and 1 = (th — 3o)/r
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Energy-Balance Equations

» From the acceleration, we can find an effective Lagrangian for the
binary and therefore the energy:

G 1 : :
E—_ mrlmQ <2 4 Qe MeT _ 36mﬂ7> (1)

> The far-field flux will be highly suppressed for the massive fields, and
so we can use the usual GR flux

» ldentifying flux and energy loss gives us a convenient way to
calculate the change in phase, without needing high PN terms:
dE
— =—-F 2
i (2)
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Corrections to the Binary Phase

> It is possible to carefully subsitute (in a PN-sense) our angular
frequency €2 into the energy-balance equation

» Then use the definition of phase Cth = (2 to solve an ODE in ¢ and r.

ro/2 5 5

S Tpe ™o (22
4 32myima(G(my + mg))3/? [ e <2 3m¢r>

e (155 1
—e (4 2m7r?"> + 0O <02>]

» There are both OPN and -1PN terms

» We can get multipole moments lower than quadrupole from the
massive fields

Zachary S. C. Picker, University of Sydney 13
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Using Observations to Constrain Corrections

©9 N
«©¥p O
40 &
8% SR
e el
e H
“«EO O
<o B
o0HO |

im @ Gwismia
] V Gwisizze
B Gwi7o104
107 5 t Q GW170608
ES ] gk GWIT0814
b € Combined
6 > Combined (SEOBNRv4)
107

I T P
R R R S = <
PN MR M R ;}Q NP E)

» 90% upper bounds on the GR
violating parameter §¢

Zachary S. C. Picker, University of Sydney

» GW observations allow us
constrain possible deviations
of phase from GR at each PN
order

> Then we can constrain our
spin-0 and spin-2 masses:

my > 2.3 x 10" eV
my > 3.2 x 107 eV

(LIGO/Virgo Collaborations, 2019)
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Conclusions

Conclusions

» Recast quadratic gravity as a massive spin-0 and spin-2 field
alongside the usual graviton, and derived linear, lowest order field
equations

» To Newtonian order, they respectively act as attractive and repulsive
Yukawa potentials modifying gravity

> Found -1PN and OPN corrections to GW phase of an inspiralling
binary system in quadratic gravity

> Placed constraints on quadratic gravity from real GW observations
from LIGO and Virgo Collaborations

Thanks to the 59th Cracow School of Theoretical Physics for inviting me
to give this seminar!

Zachary S. C. Picker, University of Sydney 15



Extras

Extras: Recasting the Lagrangian

S = / d*zv/—g { + BR? +7R“”R,W] + Sum
Setting S, = Ry — ZQWR and o = 3+ 7,

S = / d*z/—g [ + aR? —i—’yS“”SW] + Sum

Using Lagrange multipliers, and the following conformal transformation,

g;w = Q2g;w 0% = (1 + \/ﬁ@f))
+Su
(3)

S = / d%:ﬁ

1 1
—I— i SW — Ew” T = 5 (@qua“qb + mi(bQ)

Separating ™ from R we obtain the final result.

Zachary S. C. Picker, University of Sydney 16
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Extras: Geodesic Equations

Taking the spatial component of @uT’“’ = 0, we can find the geodesic
equations in our original frame:

dP; , 1
d?R = F4r+V167G 0;¢ — V321G O;myvFv” + O <02> (4)

Here the linear momentum density P, and the force density F, 5 are
given by

GR,,u
. gt
Por=c £
_gp GRqypyyo
c 0O v
L (5)

)2 w77
GR — 2 /_g/%.R,Up,Uo'
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Extras: Details on Binary Phase Calculations 1

Freq. parameter x, with M = my + mo, u = mymqy/M,v = p/M:

(GMfz)?»
T =
3
GM o GM GM _ y GM
=>r=—>1(1+2¢ me S me—s + 1) —3e mx S my—s + 1
zc? rc? xc?

Then its possible to solve

dE o[l 1 ., cu GM GM\?
I = ke [2 + 3¢ zeZ | 5+ 5myg v me

Extras

And we also have the usual GR flux in terms of x:

32¢° 1
F = 22 25 [1 + 0 (—2)]
Zachary S. C. Picker, University of Sydney 5G c
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Extras

Extras: Details on Binary Phase Calculations 2

Then we introduce a dimensionless time parameter, where t. is the binary
collision time:

V03

_ dyp _ 9 3/2

Then our energy-balance equation becomes
dE dz 23/2¢3
dx dp GM
Then we can write down the full differential equation for the phase:

dp 5277211 1, cu GM GM\?
dr ~ 32v §+§e 5+5m¢ -\ xc?

1 _,, cM GM GM\?> 1
e CE (54 hmp s — (g +0|( =
2 xc? rc? c?

Zachary S. C. Picker, University of Sydney

o=

- -F (6)




Extras

Extras: Constraints on 5 and v

my > 2.3 x 107 eV
my > 3.2 x 107 eV
This corresponds to:
B/M} < 10YeV 2
v/M? <100V 2

Although these may seem like 'big" numbers, we are in the weakly
stressed regime so curvature is small and we are still within the realm of
validity for our EFT: mg 1 2 1

Zachary S. C. Picker, University of Sydney 20
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