
Microvariability of bright blazars – probes from optical polarization and color variability

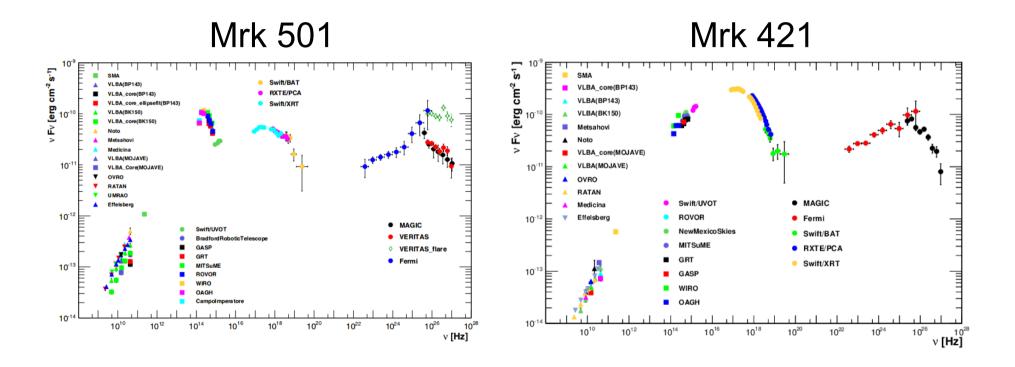
Magdalena Pasierb (megan@oa.uj.edu.pl)
Astronomical Observatory of the Jagiellonian University

In collaboriation with: **A. Goyal, M. Ostrowski**, L. Stawarz, S. Zola, V. Larionov, D. Morozova, F. Alicavus, A. Erdem, R. Itoh

AGNs in Universe

"Twinkle, twinkle, quasi-star Biggest puzzle from afar How unlike the other ones Brighter than a billion suns (...)"

- George Gamow (May 1964)



Blazars:

Mrk 421

- → jet viewing angle ≤ 5°
- → luminosities up to 10⁴⁸ erg/s
- → highly variable in whole e-m spectrum

Spectral Energy Distribution

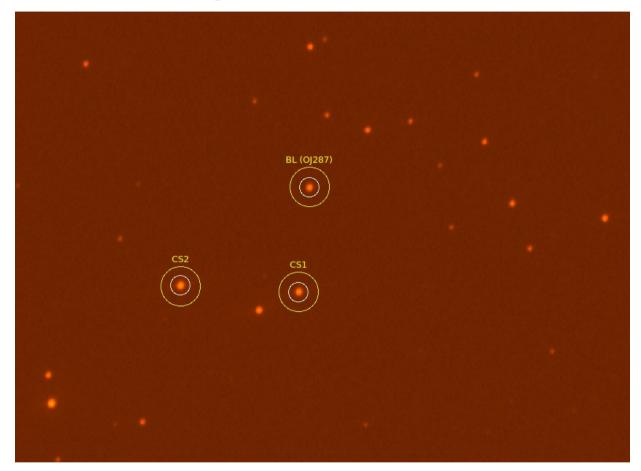
Motivation:

Innermost parts of the jet with light crossing timescales GM/c³ ~
 15 minutes for 10⁸ M_☉ BH

Intra-night flux changes are challenging

$$\Delta T_{obs} = (1+z) \Delta T_{rest} / \delta$$
 (δ - Doppler boosting factor)

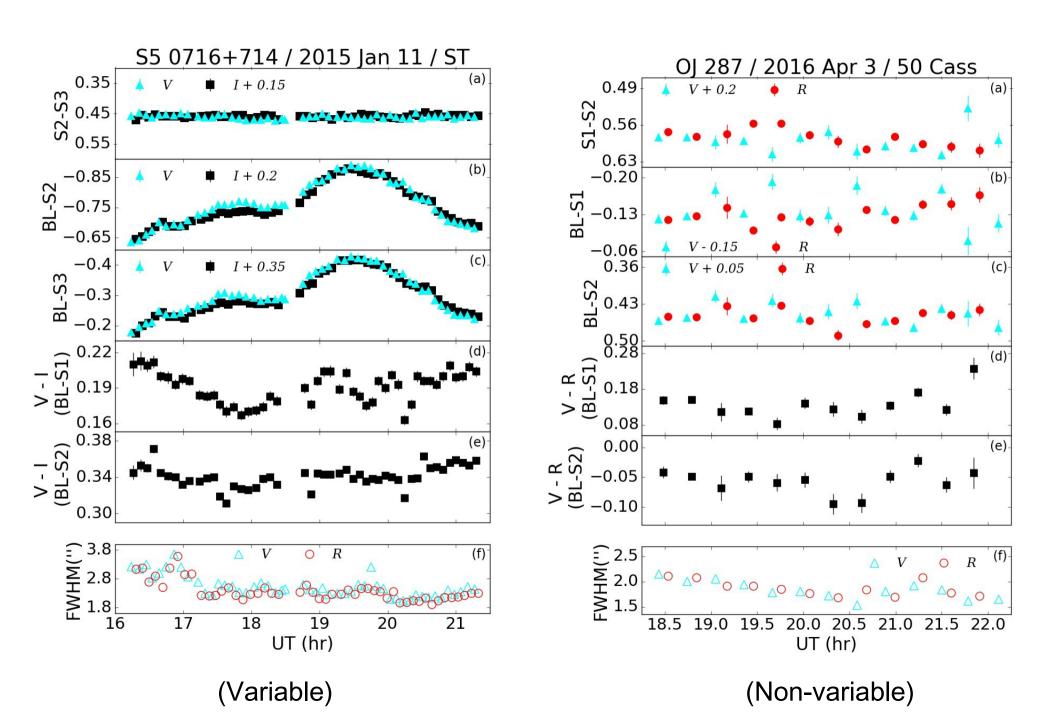
- Invokes large Doopler boosing factors $\delta \sim 50-100$
- From radio measurements, Doppler boosting factors are of the order of 10–15
- Highly efficient particle acceleration is needed


To probe the plasma conditions in detail:

- Studies of a sample of blazars in flux, color and polarization at optical frequency
- A systematic study for a sample of optically bright (< 16 mag)
 blazars
- Simultaneous color and polarization monitoring
- Involving few observatories/telescopes fitted with CCD and polarimeter

Data acquisition and analysis

- Optical flux monitoring:
 - 50cm Cassegrain (OA-UJ, Poland)
 - ST-104cm and DOT (India),
 - IST-60cm (Turkey)
- Optical polarization monitoring: 1.5m KANATA (Japan),
 40cm (St. Petersburg) and 70cm in Crimea
- Flux measurements in few filters (**B,V, R,** and **I**) and polarization measurements in **R-band** for a continuous duration of ~4 hr.
- Data analysis for the total intensity measurements (IRAF)
 - → Differential photometry


CCD image of blazar OJ 287

Differential Photometry

- brightness of blazar measured against one comparison star
- check star (to ensure the comparison star is not varying itself)
- > differential light curves (DLCs)

DLCs examples

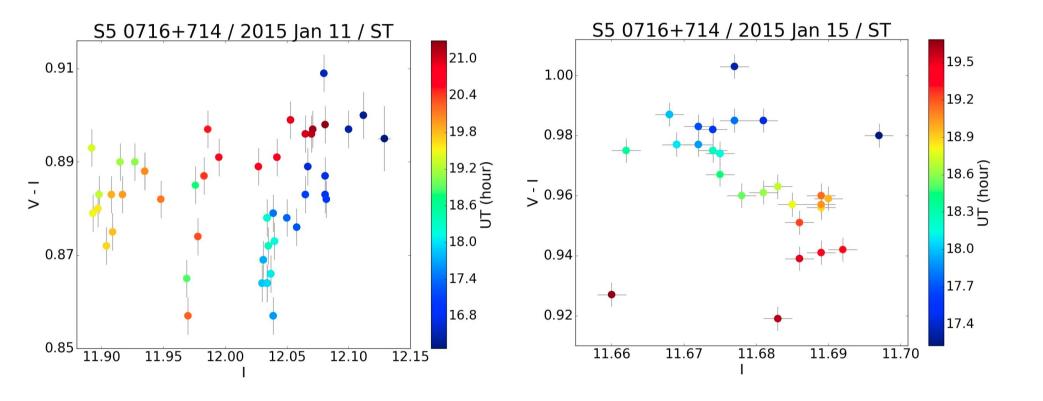
Object Name	Date of observation	Telescope used	Filter used	Dur. (h)	Np	σ (mag)	ψ (mag)	$F_{CS1}, F_{CS2},$ $(Status^*)$	F _{CS1-CS2} (Status)	Final status
		(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)
0109+224	$2015 \ \mathrm{Nov} \ 14$	IST60	В	5.92	30	0.0278	0.115	2.01, 7.74 (PV, V)	1.82 (N)	PV
			V	5.74	28	0.0165	0.097	1.81, 5.21 (N, V)	1.83 (N)	PV
			R	5.74	25	0.0186	0.101	3.79, 7.33 (V, V)	2.67 (V)	N
3C 66A	2015 Oct 19	IST60	В	6.11	34	0.0113	0.083	2.30, 0.91 (V,N)	0.72 (N)	PV
			V	6.11	34	0.0080	0.074	2.49, 1.46 (V,N)	0.74 (N)	PV
			R	6.11	35	0.0104	0.065	1.68, 1.45 (N,N)	1.38 (N)	N
	2015 Nov 15	IST60	В	5.69	37	0.0159	0.045	0.72, 1.06 (N,N)	1.25 (N)	N
			V	5.69	36	0.0082	0.073	1.42, 0.74 (N,N)	0.67 (N)	N
			R	5.08	32	0.0073	0.036	0.88, 0.61 (N,N)	0.73 (N)	N
S5 0716+714	2015 Jan 11	ST	V	5.03	50	0.00656	0.254	147.38, 212.65 (V,V)	1.20 (N)	V
			I	5.02	49	0.0048	0.233	271.87, 326.90 (V,V)	0.97 (N)	V
	2015 Jan 13	ST	V	1.29	10	0.0067	0.020	1.27, 3.33 (N,PV)	1.19 (N)	N
			I	1.16	11	0.00608	0.055	10.31, 17.19 (V,V)	1.13 (N)	V
	2015 Jan 15	ST	V	2.35	27	0.00707	0.090	10.42, 20.40 (V,V)	1.52 (N)	V
			I	2.46	27	0.0044	0.040	6.88, 7.72 (V,V)	0.98 (N)	V
	2015 Feb 9	ST	V	5.18	55	0.0054	0.073	5.91, 3.90 (V,V)	1.46 (N)	V
			I	5.54	62	0.0080	0.039	5.97, 6.82 (V,V)	1.37 (N)	V
OJ 287	$2014~{\rm Feb}~20$	DOT	V	6.26	17	0.0027	0.073	89.66, 84.64 (V,V)	1.54 (N)	V
			I	6.48	17	0.00228	0.066	89.90, 72.33 (V,V)	0.93 (N)	V
	2015 Feb 12	ST	V	4.52	27	0.00835	0.067	3.53, 3.61 (V,V)	1.17 (N)	V
			I	5.86	35	0.00556	0.019	0.96, 1.43 (N,N)	1.05 (N)	N
	2016 Jan 13	IST60	В	3.01	16	0.0202	0.080	2.71, 1.94 (PV,N)	1.68 (N)	N
			V	3.01	22	0.0074	0.052	1.20, 1.59 (N,N)	0.39 (N)	N
			R	2.90	22	0.0111	0.046	0.90, 1.97 (N,N)	0.72 (N)	N
	2016 Feb 6	50CAS	V	6.21	25	0.0191	0.205	3.53, 3.01 (V,V)	1.25 (N)	V
			R	6.21	26	0.01938	0.150	2.63, 3.02 (V,V)	1.20 (N)	V
	2016 Mar 7	IST60	В	5.97	33	0.0119	0.087	5.37, 7.33 (V,V)	0.85 (N)	V
			V	5.80	27	0.0072	0.066	5.77, 10.99 (V,V)	0.72 (N)	V
			R	5.80	29	0.0126	0.097	4.09, 10.47 (V,V)	1.06 (N)	V
	2016 Apr 2	50CAS	В	5.69	32	0.01879	0.119	3.75, 6.03 (V,V)	1.34 (N)	V
			V	5.54	31	0.01057	0.106	5.00, 7.21 (V,V)	0.86 (N)	V
			R	5.56	30	0.0145	0.091	3.74, 6.66 (V,V)	1.40 (N)	V
	2016 Apr 3	50CAS	V	3.67	13	0.0229	0.101	2.20, 0.99 (N,N)	1.40 (N)	N
			R	3.37	12	0.0171	0.062	1.46, 1.36 (N,N)	1.37 (N)	N
	2016 Apr 4	50CAS	V	3.84	27	0.01637	0.093	1.79, 1.77 (N,N)	0.88 (N)	N

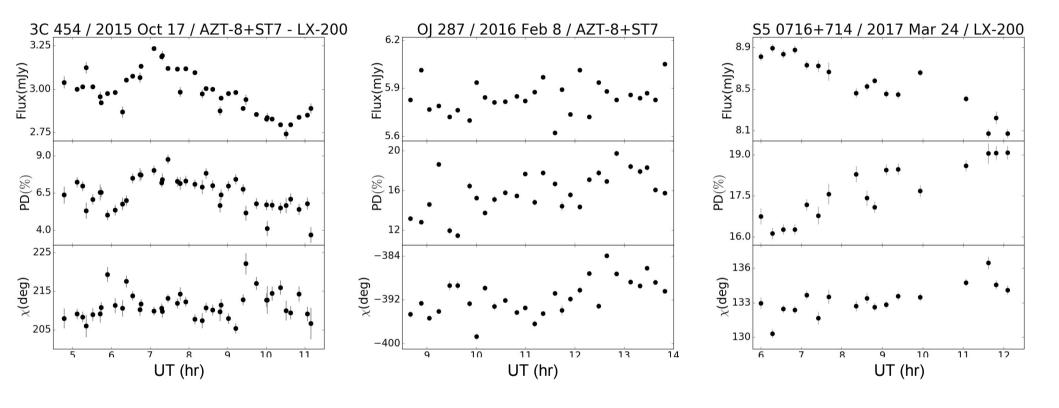
7 blazars, 20 nights in total

Statistical test for variability

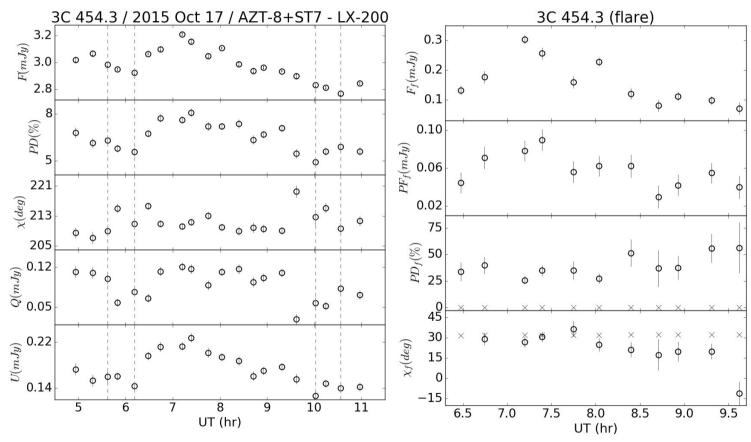
F-test (deDiego 2010, Goyal et al., 2013):
$$F_{\nu}^{\alpha} = \frac{V_{\text{obs}}}{V_{\text{exp}}} = \frac{V_{t-s}}{\langle \eta^2 \sigma_{t-s}^2 \rangle}$$

Number of false-positives (type 1 error)


The significance level assess the expected number of false positives Detections. For our sample of 20 observations we can expect \sim 0.2 and \sim 1 light curves to be variable (with α =0.01 and 0.05, respectively)


in agreement with our results

Duty Cycle of microvariabilty:


Color vs. flux variability – clues to particle acceleration

Polarization microvariability light curves

Flare analysis

$$F_{total} = F_{base} + F_{flare}$$
 $Q_{total} = Q_{base} + Q_{flare}$
 $U_{total} = U_{base} + U_{flare}$

Results and Summary

- Microvariability DC is ~45% (checks with previous results)
- Blazars show achromatic flux variability on hourly timescales.
 The color microvariability DC ~ 25%
- Significant changes are noted in PD and EXPA on hourly timescales.
- From the flare analysis, the flare has a PD ~40% as against the total PD ~8% → the emission region has highly uniform B-field (similar to Bhatta et al. 2015).
- The analysed microflare shows an exponential rise and decay with a sharp peak in between → indicates a small volume filling factor for the production of highest energy electrons and short radiative

Thank you for your attention