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Introduction

Relativistic bulk motion

Object Evidence Lorentz Radiation
factor mechanism

Radio Galaxies synchrotron
Micro-Quasars synchrotron
y-ray Bursts synchrotron/IC
v-ray Blazars synchrotron/IC
Pulsar Winds synchrotron

In all cases ¥(particle) > I (bulk)

= Particle Acceleration
Hillas’ (1984) limit: Energy < (v/c) ZeTB
Highest energy: relativistic flows with maximal B
= Low density, Poynting-flux dominated
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Pulsar Wind Nebulae

> 2000 pulsars, ~ 50 with observed nebulae
Crucial advance:
high resolution images

PSR 1509

H.E.S.S., TeV gamma-rays
White contours: ROSAT
(0.6—-2.1 keV)
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~ 40 PWN are TeV gamma-ray
sources (H.E.S.S. A&A '18)
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Introduction

Pulsar Wind Nebulae

> 2000 pulsars, ~ 50 with observed nebulae
Crucial advance:
high resolution images

Crab
optical: red (Hubble ST)
X-ray: blue (Chandra)

(Image: NASA/CXC//SAO)



Introduction

Outline

@ Acceleration in vacuum waves

@ Low density “force-free” approximation for steady flows — the
unipolar inductor

@ Mix waves and low density flows — striped winds and
reconnection

@ Lower the density still further — inductive acceleration

e application to y-ray flares from the Crab
e the importance of proton loading
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Historical context

Historical context — The Crab Nebula

@ Shklovsky '54: Diffuse optical emission is synchrotron
radiation.

@ Piddington '57: Magnetic field originates in the central star.

@ Pacini '67: Nebula powered by magnetic dipole radiation
(vacuum wave) of a rotating neutron star.

@ Staelin & Reifenstein '68: Discovery of the Crab Pulsar.
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Vacuum waves

Plane waves

@ Circular polarization

@ E and B rotate at angular
speed w, with constant
magnitudes and E1B.

@ [f particle moves in a circle,
with v always parallel to B:

B _
a
=I9lE/p = w

=y = V1+a2

Strength parameter = |q| E/Mcw

Radius = ¢/w = A/2n
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Plane waves

@ Linear polarization

@ Start at rest, v A B force
drags particle with wave

@ Recoil into zero momentum
frame moving with I' ~ a, so
W ~wla

@ In this frame, particle moves
in “figure-of-eight”, Lorentz
factory’ ~ a
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Vacuum waves

Plane waves

Linear polarization

@ Start at rest, vV A B force

o

drags particle with wave

Recoil into zero momentum
frame moving with I' ~ a, so
W ~wla

In this frame, particle moves
in “figure-of-eight”, Lorentz
factory’ ~ a

Size of orbit

AX ~ 2rnc/w ~ a2rc/w
AZ = a%2nc/w

—-20
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Vacuum waves

Plane waves

o Linear polarization 0 i\\m RN AR AR AR RN AR

@ Start at rest, v A B force
drags particle with wave

@ Recoil into zero momentum -10
frame moving with I' ~ a, so %
W ~wla

@ In this frame, particle moves %0

in “figure-of-eight”, Lorentz
factory’ ~ a

B b b I d

oo oo b b b

@ Size of orbit ey 1 2
AX =~ 2nc/w’ ~ a2nc/w wave ——
AZ = a%2nc/w

@ Maximum Lorentz factor
y~Ty ~a?



Vacuum waves

Spherical wave

@ Inwave zone, E,Boc 1/r,i.e., a < 1/r.

@ Define a fiducial strength parameter ar, (L stands for “light
cylinder”) at the start of the wave zone

a = ayn/r = a.c/rw

(Hillas’” extended limit is y < ar)



Vacuum waves

Spherical wave

@ Inwave zone, E,Boc 1/r,i.e., a < 1/r.

@ Define a fiducial strength parameter ar, (L stands for “light
cylinder”) at the start of the wave zone

a = ayn/r = a.c/rw

(Hillas’” extended limit is y < ar)
@ Release particle at rest at r = r, orbit size Az = an. > r..



Vacuum waves

Spherical wave

@ Inwave zone, E,Boc 1/r,i.e., a < 1/r.

@ Define a fiducial strength parameter ar, (L stands for “light
cylinder”) at the start of the wave zone

a = ayn/r = a.c/rw

(Hillas’” extended limit is y < ar)
@ Release particle at rest at r = r, orbit size Az = an. > r..
@ Plane wave approximation requires Az < r,



Vacuum waves

Spherical wave

@ Inwave zone, E,Boc 1/r,i.e., a < 1/r.

@ Define a fiducial strength parameter ar, (L stands for “light
cylinder”) at the start of the wave zone

a = ayn/r = a.c/rw

(Hillas’” extended limit is y < ar)
@ Release particle at rest at r = r, orbit size Az = an. > r..
@ Plane wave approximation requires Az < r,
@ which implies r 2 yane = a-/°ri, where a ~ ayiue = a,'°.



Vacuum waves

Spherical wave

©

In wave zone, E,B oc 1/r,i.e., a < 1/r.

©

Define a fiducial strength parameter a, (L stands for “light
cylinder”) at the start of the wave zone

a = ayn/r = a.c/rw

(Hillas’” extended limit is y < ar)
Release particle at rest at r = r;, orbit size Az = a%r. > .

which implies r 2 e = a-/°r., where a ~ apine = a,°.

2 2/3

)
@ Plane wave approximation requires Az < r,
)

° plane = aL ’

Therefore, maximum Lorentz factor is ym.x = a
significantly smaller than ar. (cumn & ostriker 1969)



Vacuum waves

Spherical wave

@ Inwave zone, E,Boc 1/r,i.e., a < 1/r.

@ Define a fiducial strength parameter ar, (L stands for “light
cylinder”) at the start of the wave zone

a = ayn/r = a.c/rw

(Hillas’” extended limit is y < ar)
@ Release particle at rest at r = r, orbit size Az = an. > r..
@ Plane wave approximation requires Az < r,

@ which implies r 2 yane = a-/°ri, where a ~ ayiue = a,'°.

2 2/3

@ Therefore, maximum Lorentz factor is yn.x ~ a Clane = AL

significantly smaller than ar. (cumn & ostriker 1969)

Note: are = [4r (L /dR) e2/m?c5|""" = 3.4 x 100 (4rLs/Q) '



Vacuum waves

Vacuum waves — summary

@ Hillas’ limit not reached.
@ Energy depends sensitively on launch phase.

@ Negligible DC component of magnetic flux (c 1/r°)
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@ Force-free approximation: add some charge/current carriers,
but neglect exchange of energy/momentum with EM fields, by
setting f* = 0:

pE+7AB = 0



MHD outflows

MHD outflows

Equations of motion:

a“ (TSK’I) = = _8/‘ (Tg;ﬁcles)

@ Force-free approximation: add some charge/current carriers,
but neglect exchange of energy/momentum with EM fields, by

setting f* = 0:
pE+7AB = 0

@ Eliminate p and ffrom Maxwell’s equations and solve for fields



MHD outflows

MHD outflows

Equations of motion:

Oy (TSK/[) = = _8/1(Tg:nicles)

@ Force-free approximation: add some charge/current carriers,
but neglect exchange of energy/momentum with EM fields, by
setting f* = 0:

pE+7AB = 0

@ Eliminate p and ffrom Maxwell’s equations and solve for fields
@ Numerical solutions not guaranteed to have E-B=0



Vacuum waves MHD outflows

MHD outflows

Equations of motion:

Ou(Thry) = 1 = =0 (Tt

particles )

@ Force-free approximation: add some charge/current carriers,
but neglect exchange of energy/momentum with EM fields, by
setting f* = 0:

pE+7AB = 0

@ Eliminate p and ffrom Maxwell’s equations and solve for fields
@ Numerical solutions not guaranteed to have E-B=0
@ Solutions can imply unphysical charge carriers
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MHD outflows

Axisymmetric, rotating monopole

@ Exact, force-free solution is available! wmichel 1973, Aps

@ Properties:
Spiral field lines, angle & between 7 and B is

& = arctan (rsin6/n.)

o Er:E¢:BQZO,andE9:B¢

Q@ = VY > Vaiift = \/1 +r23in29/rL

@ Inertia becomes important when yais < Ysound = VO

o =(Poynting flux) / (Particle energy flux — including rest-mass)
Supersonic, radial MHD flows have y = constant.
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Newly born magnetars/young pulsars as sources of UHECR?
Bell 1992, Blasi et al 2000, Arons 2003
@ Time-independent field with Eg = By oc 1/r = electrostatic
potential
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® Pro’s:
@ DC magnetic flux carried out by plasma (B o 1/r)
o Hillas’ limit reached for test particles that move from equator to
pole (or vice-versa).



MHD outflows

The unipolar inductor

Newly born magnetars/young pulsars as sources of UHECR?

Bell 1992, Blasi et al 2000, Arons 2003

@ Time-independent field with Eg = By oc 1/r = electrostatic
potential

¢ = B;pLncosé

@ Pro’s:
@ DC magnetic flux carried out by plasma (B o 1/r)
o Hillas’ limit reached for test particles that move from equator to
pole (or vice-versa).
@ Con’s:
@ Trajectories complicated — unclear what fraction (if any) of
injected particles achieve the maximum energy
o Test-particle treatment: no backreaction on the flow
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The striped wind

e ° HELICAL WIND °

®
o HELICAL WIND .
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The striped wind

@ Vacuum wave + plasma
rearranges itself into
‘step-function’ wind, (MHD
wave) which reconnects
Michel '71, 82, Coroniti 90

@ ...but also accelerates

@ Min. sheet thickness:
Y &« I’1/2 Lyubarsky, JK '01
e Tearing mode:
Y &« I’5/12 JK & Skjaeraasen '03
e Fastreconnection:
Y &« r1 3 Drenkhahn *02
Maximum energy ymax = ar /KL,
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MHD to vacuum transition

The striped wind

@ Vacuum wave + plasma
rearranges itself into
‘step-function’ wind, (MHD
wave) which reconnects
Michel '71, 82, Coroniti 90

@ ...but also accelerates

@ Min. sheet thickness:
Y o« I’”2 Lyubarsky, JK '01
e Tearing mode:
Y & I’S/12 JK & Skjaeraasen '03
@ Fastreconnection:

Y &« r1/3 Drenkhahn '02

Maximum energy ymax ~ ar /KL,

achieved atr ~ a .n..

HELICAL WIND ° e
Reconnection in stripes:
@ = slow, bulk acceleration
e Failsatr~«2n < rrs



MHD to vacuum transition Gamma-ray flares

Local PIC simulations

Zrake '16

@ Stripes unstable, fully turbulent at TS

. but bulk acceleration not taken into account.



MHD to vacuum transition Gamma-ray flares

Global PIC simulations

Cerutti & Philippov '17

@ Striped wind launched by
split monopole pensiy
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Global PIC simulations

Cerutti & Philippov '17

@ Striped wind launched by
split monopole

@ Stripes reconnect at ~ 100,
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MHD to vacuum transition

Global PIC simulations

@ Striped wind launched by
split monopole

@ Stripes reconnect at ~ 100,
@ ...buta. ~100

@ and initial conditions favour
dissipation

Gamma-ray flares

Cerutti & Philippov '17




MHD to vacuum transition Gamma-ray flares

Observational constraint

THE ASTROPHYSICAL JOURNAL, 613:L57-L60, 2004 September 20
© 2004. The American Astronomical Society. Al rights reserved. Printed in U.S.A.

THE DOUBLE PULSAR SYSTEM J0737—3039: MODULATION OF THE RADIO EMISSION
FROM B BY RADIATION FROM A

M. A. McLAUGHLIN,' M. KRAMER,' A. G. LYNE,' D. R. LORIMER,' I. H. STAIrs,” A. PosseNTI,> R. N. MANCHESTER,*
P. C. C. FrReIre,” B. C. JosHL,® M. BUrGAY,’ F. CamiLo,” AND N. D’ Amico®
Received 2004 July 13; accepted 2004 August 11; published 2004 August 18

“...we conclude that the observed modulation is due to the
influence of the 44Hz magnetic dipole radiation on the
magnetosphere of B” (located at r = 1600r)
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MHD to vacuum transition

Reconnection in the striped wind — summary

@ Pulsars launch an MHD-type wave.

@ Two phase (hot sheet, cold stripes) analytical results:
reconnection causes bulk acceleration, y o« r'/3-1/2 and
relatively slow wave damping into particle energy. Complete
conversion at r < apn.

@ Simulations suggest more rapid (too rapid?) damping.

1/2

N because the sheet must

@ Hillas’ limit not reached: ym.x < a
have time to thermalize.
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The striped wind — inductive acceleration
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10

log(r/r)

@ Replace current sheet by
force-free magnetic shear,
jllB.

@ Inertia — misalignment
— jxB=#0.

@ [nductive acceleration —
3 phases:
JK, Mochol '11, JK & Giacinti '17
@ MHD, vy, o constant
@ Acceleration, y « r,
oo« i/r.
@ Coasting, wave fully
dissipated
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The striped wind — inductive acceleration

log(y,o)
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@ Replace current sheet by
force-free magnetic shear,
jllB.

@ Inertia — misalignment
— jxB#0.

@ [nductive acceleration —
3 phases:
JK, Mochol '11, JK & Giacinti '17
@ MHD, vy, o constant
@ Acceleration, y « r,
oo« i/r.
@ Coasting, wave fully
dissipated
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MHD to vacuum transition

Inductive acceleration in the striped wind — summary

@ Two-fluid, analytical results: for «p. < aﬂ/z, bulk acceleration
occurs without thermalization, giving y o« r.
@ Process relatively slow; complete conversion at r = a .

@ So far, no simulations in this regime

@ Hillas’ limit reached for i, ~ 1
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The Crab Nebula — gamma-ray flares

Energy [ev]
, 0% 10¢ 102 10° 107 "10¢ 10° 10° 10® 107 104

Three major puzzles: ’ e

10 ’ —
: ,% - i
10° d 1
4 N o
/’ .

@ Synchrotron emission at -
y / .,.\;:\.

400 MeV ke ! AN
@ Variability on timescale of el =y
L B + + Ppulsar

hours ol I3 Mo

+ + April 2011 flare |30=
1 + + Inner knot

@ Gamma-ray power < 0.1x
. v[Hz]
entire nebula?

Buehler & Blandford '14; Porth et al '17
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The Crab Nebula — gamma-ray flares

Three major puzzles:
@ Synchrotron emission at

400 MeV

@ Variability on timescale of

hours

@ Gamma-ray power < 0.1x

entire nebula?

Reconnection? Doppler boosting? Magneto-luminescence?
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The Crab Nebula — gamma-ray flares

Three major puzzles:
@ Synchrotron emission at

400 MeV

@ Variability on timescale of

hours

@ Gamma-ray power < 0.1x

entire nebula?

Reconnection? Doppler boosting? Magneto-luminescence?

Inductive acceleration uk s Giacint, PRL 17
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Bulk acceleration of the pulsar wind

Inductive acceleration — not A AR ALAMMMLAN
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Gamma-ray flares

Bulk acceleration of the pulsar wind

Inductive acceleration — not o ARALAARLRARAL AR RLAARALAARRLE] NRLARARLAS
complete until r = apr. > rrs

Quiescent Crab parameters:
a. =7.6x10"
u=10%, (x ~ 10%)

During an interruption of the 2r \ ]
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Bulk acceleration of the pulsar wind

Inductive acceleration — not
complete until r = apr. > rrs

Quiescent Crab parameters:
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During an interruption of the
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Bulk acceleration of the pulsar wind

Inductive acceleration — not
complete until r = apr. > rrs

Quiescent Crab parameters:
a. =7.6x10"
u=10%, (x ~ 10%)

During an interruption of the
supply of pairs:
p=aL(k~1)

= Injection into the nebula of
radially-collimated multi-PeV
electron/positron beams

log(y,a)

10

Gamma-ray flares

70

log(r/r)

10 11
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Flares from pulsar wind nebulae

4 Dep|etion to M= aL in cone > |
(2, containing line of sight to iatl \

observer >ty

@ Injection of radial pair
beams with y = ap.



Flares from pulsar wind nebulae

@ Depletion to u = ar. in cone
Q, containing line of sight to
observer

@ Injection of radial pair
beams with y = ap.

@ Deflection downstream:

80 MeV v
hv Vmax
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Gamma-ray flares



Flares from pulsar wind nebulae

@ Depletion to u = ar. in cone
Q, containing line of sight to
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@ Injection of radial pair
beams with y = ap.

@ Deflection downstream:
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Flares from pulsar wind nebulae

@ Depletion to u = ar in cone 6 - ° -
Q, containing line of sightto ~ _ ]
observer o f
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Flares from pulsar wind nebulae

@ Depletion to u = ar. in cone
Q, containing line of sight to
observer

@ Injection of radial pair
beams with y = ap.

@ Deflection downstream:

50 — (80MeV)(1_ v

hv Vmax

@ For 6 < Q'/2:
power/sr
~ f X particle wind power/sr

|

log[vF,(erg cm-25-1)]
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Flare spectrum
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Flare spectrum

T T T T T
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Flare spectrum
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Summary — gamma-ray flares

@ An inductively accelerated wind solves the three main puzzles
surrounding gamma-ray flares from the Crab.

@ Flares may give insights into cascade physics/geometry,

@ reveal the properties of beam divergence, and, hence, probe
the turbulence in the nebula.

@ Similar flares from J0537-6910, B0540-69, 3C 58,
Black Widow...?
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Adding some spice. ..

2-fluids: electron, positron
+ protons

@ Set KLp = 1

@ Lepton dominated: no
change (Hillas’ limit not
reached)

@ Proton dominated:

o Rapid lepton acceleration

o ForkL. =1, Hillas’ limit
reached by protons and
leptons

@ Heavy particles speed up
acceleration

log(y)

Gamma-ray flares

log(r/r)



