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Cosmology with scalar �eld

Scalar �eld approach:

I Uses the scalar �eld φ in order to describe dark energy and
in�aton �eld.

I Provides description of the acceleration of the Universe with

the energy density of φ dependent on time.

I In general, requires implementation of the potential U(φ),
a�ecting the scalar �eld φ.
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Purpose of the research

I An investigation of the cosmological model with scalar �eld
non-minimally coupled to the gravity, describing both

in�ation and late-time acceleration.

I A meticulous analysis of changes of the dynamics of the

cosmological equations under a variation of the parameters.

I An extraction of scenarios with an emergence of a
non-singular evolution of the universe starting from

de Sitter state (in�ation) to another de Sitter state (late-time

acceleration after inclusion of matter).

I A study of bifurcations within given scenarios�how many

qualitatively di�erent behaviours occur?
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Non-minimal coupling model

I The action

S = Sg + Sφ,

where

Sg =
1

2κ2

∫
d
4x
√
−gR (Einstein-Hilbert action),

Sφ = −1

2

∫
d
4x
√
−g

ε∇αφ∇αφ︸ ︷︷ ︸
kinetic energy

+2U(φ)︸ ︷︷ ︸
potential energy

+εξRφ2︸ ︷︷ ︸
R�φ coupling

 ,
with

I ε = ±1�canonical or phantom scalar �eld, respectively,
I ξ�coupling parameter, ξ 6= 0�non-minimal coupling,
I κ2 = 8πG , c = 1 and the signature is (−+ ++).
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Non-minimal coupling model

Sφ = −1

2

∫
d
4x
√
−g

ε∇αφ∇αφ︸ ︷︷ ︸
kinetic energy

+2U(φ)︸ ︷︷ ︸
potential energy

+εξRφ2︸ ︷︷ ︸
R�φ coupling

 ,

I The introduction of NMC is forced upon us in many situations

of physical and cosmological interest

I NMC arises at the quantum level due to quantum corrections

and is required to the renormalizability of the scalar �eld theory

I The value of ξ is not arbitrary but is determined by the

underlying physics (allowed ranges for ξ)
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Field equations

I Variation of the action w.r.t. gµν and φ produces Einstein and

Klein-Gordon equations, respectively:

Rµν −
1

2
gµνR = κ2T (φ)

µν ,

�φ− ξRφ− εU,φ = 0,

where the energy-momentum tensor

T (φ)
µν =ε∇µφ∇νφ−

1

2
εgµν∇αφ∇αφ− gµν U(φ)+

+ εξφ2
(
Rµν −

1

2
gµνR

)
+ εξ

(
gµν�φ

2 −∇µ∇νφ2
)
,

and

U,φ := dU/dφ
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Assumptions

I Spatialy �at (k = 0) universe with
Friedmann-Lemaître-Robertson-Walker (FLRW) symmetry

ds
2 = −dt2 + a

2(t)
(
dx

2 + dy
2 + dz

2
)
,

I Linear barotropic equation of state between energy density ρφ
and pressure pφ

pφ = wφρφ.

I We use the Ratra-Peebles potential

U(φ) =
Mn+4

φn
,

where n is a dimensionless parameter and M > 0 is a dimensional

constant.

I Well known form of potential in quintessence models
I Allows for a solution of the �ne tunning of initial conditions
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Cosmological equations

I Applying these assumptions, we obtain cosmological equations

I Friedmann equation

3

κ2
H

2 = ρφ =
1

2
εφ̇2 + U + 3εξH2φ2 + 6εξHφφ̇,

I acceleration equation

−
1

κ2

(
2Ḣ + 3H

2
)

= pφ =
1

2
εφ̇2(1− 4ξ) + 6εξ2φ2H2 + 2εξHφφ̇− U + 2ξφU,φ

1− εκ2ξφ2(1− 6ξ)
,

I Klein-Gordon equation

φ̈+ 3Hφ̇+ 6ξφ
(
Ḣ + 2H2

)
+ εU,φ = 0,

I where U,φ := dU/dφ.
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Dynamical equations

I Let us introduce dimensionless phase space variables

u =
φ̇

Hφ
, v =

√
6

κ

1

φ
.

I In new variables, cosmological equations produce the
dynamical system

u′ =

[
−
1

2
u2(2 + n)−

3

2
u(1 + 4ξn) +

1

2
εnv2 − 3ξ(1 + n)

] [
1

3
εv2 − 2ξ(1− 6ξ)

]2
+

+ (6ξ + u)

[
1

3
εv2 − 2ξ(1− 6ξ)

]
·

·
(
u2 [1− ξ(2− n)] + 4ξu(2 + 3ξn)−

1

2
εv2(1 + 2ξn) + 3ξ [1 + 2ξ(1 + n)]

)
,

v ′ =− uv

[
1

3
εv2 − 2ξ(1− 6ξ)

]2
,

where f ′ = df
d ln a

= H−1 ḟ .
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Investigation of the dynamics of the system

I We start with �nding equilibria, i.e. points, in which u′ = 0

and v ′ = 0 (no evolution).

I There are six equilibria (A�F ) in �nite space.

I Coordinates and stability features of these points depend on
model parameters ε, ξ and n.
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Bifurcation theory

I As said before: Stability features of equlibria depend on

parameters of the model...

I ...this leads to the methods of bifurcation theory.

I De�nition: The appearance of topologically nonequivalent

phase portrait under variation of parameters is called a

bifurcation.
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Bifurcation diagrams of local stability in equilibria
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What is the de Sitter universe?

I In the de Sitter universe the dynamics is dominated by the

cosmological constant Λ, so the matter component (both

baryonic and dark) is neglected.

I Pressure and energy density satisfy

pdS = −ρdS = − Λ

κ2
=⇒ wdS =

pdS

ρdS
= −1.

I For the spatially �at universe (k = 0) the scale factor a

depends on time as

a(t) ∝ e
±
√

Λ
3
t
.

I For `+' sign it is de Sitter state, while for `−' it is anti
de Sitter state.

I De Sitter state describes dynamics of cosmic in�ation.
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Bifurcation diagrams of local stability in equilibria
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Cases of de Sitter�de Sitter evolution of the universe

I Looking at bifurcations diagrams, we could extract ranges of

parameters for which evolution of the universe starts in
de-Sitter state (in�ation) and �nishes in another
de Sitter state (late time acceleration after the inclusion
of matter).

Table: Sets of parameters for which the universe undergoes the evolution
starting from the de Sitter state and �nishing in the de Sitter state.

no. ξ n ε starting point �nal point
1. Generic de Sitter�de Sitter evolution

(a) 3
16

(0,+∞) +1 unstable node A stable focus E

(b) 3
16

(−2, 0) −1 unstable node A stable focus E

(c)
(

3
16
, 1
4

)
−2 −1 unstable node C stable focus E

2. Non-generic de Sitter�de Sitter evolution
(d) (−∞, 0] −2 +1 saddle E stable node C
(e) 3

16

(
−3 5

9
,−2

)
−1 saddle A stable focus E

(f) 3
16

[
−4,−3 5

9

)
−1 saddle A saddle E

(g)
[
0, 3

16

)
−2 −1 saddle C stable node/focus E

(h)
(
1
3
,+∞

)
−2 −1 saddle E stable node C
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`Collisions' of equilibria for generic dS�dS scenarios

I Again, bifurcation diagrams (showing `collisions' of equilibria)

indicated that one phase portrait is fully representative for

each of scenarios (a)�(c).
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Phase portrait for scenario (a)
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Phase portrait for scenarios (b) and (c)
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Evolution of physical quantities for case (a)

-2.0 -1.5 -1.0 -0.5 0.5
t

-1.5

-1.0

-0.5

-500 -400 -300 -200 -100
t

-2.5

-2.0

-1.5

-1.0

-0.5

wϕ

-2.0 -1.5 -1.0 -0.5 0.5
t

-100

-50

50

-4 -3 -2 -1 1
t

-2

2

4

6

8

10

12

H

H


H
2
+H



wϕ

-2.0 -1.5 -1.0 -0.5 0.0 0.5
t

0.5

1.0

1.5

2.0

-500 -400 -300 -200 -100 0
t

100

200

300

400

500

Ωϕ,kin

Ωϕ,pot

Franciszek Humieja Generic cosmological solution without singularity



Evolution of physical quantities for cases (b) and (c)
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Conclusions

I We considered cosmology with scalar �eld coupled to the

gravity; this approach enabled us to include both the
in�ation and the late-time acceleration in a single model.

I The application of bifurcation theory allowed us to distinguish

sets of parameters for which the universe undergoes a
generic evolution without presence of the initial
singularity.

I There occured two types of non-singular initial states: the
de Sitter state and the static universe.

I From the bifurcation analysis, we obtained pairs of the critical

values of the parameters (ξ, n) which corresponded to

bifurcation values.

I THANK YOU FOR YOUR ATTENTION!
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