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Introduction
1. The Dirac equation

iγµ∂µψ(x)−mψ(x) = 0, ψ(x) =


ψ1

ψ2

ψ3

ψ4

 , ψα(x) ∈ C

Scalar product: 〈ψ1|ψ2〉 =
∫

d3x ψ1(x, t)† ψ2(x, t) with arbitrary t .
The Hamiltonian form: i∂tψ = Ĥψ, Hermitian Ĥ = −iγ0γk ∂k + mγ0.
General solution of the equation

ψ(x, t) =
1

(2π)3/2

∫
d3p eipx

(
e−iEp t v (+)(p) + eiEp t v (−)(p)

)
, (1)

where

(γ0γ lpl + mγ0)v (±)(p) = ±Epv (±)(p), Ep = +
√

m2 + p2.

(1) is important as the starting point for QFT of the Dirac field.
Two views on (1): expansion in the basis of common eigenvectors
of commuting observables p̂ = −i∇ and Ĥ (physics); or merely the
Fourier transformation (mathematics).



Introduction
2. There exist Majorana representations for γµ matrices in which they
are purely imaginary. For example,

γ0 =

(
0 σ2
σ2 0

)
, γ1 = i

(
−σ0 0

0 σ0

)
, γ2 = i

(
0 σ1
σ1 0

)
,

γ3 = −i
(

0 σ3
σ3 0

)
, and γ5 = iγ0γ1γ2γ3 = i

(
0 σ0
−σ0 0

)
.

σk – the Pauli matrices, σ0 – the 2× 2 unit matrix. In the Majorana
representations charge conjugation C is represented simply by the
complex conjugation.
By definition, the Majorana bispinors are invariant under C. Thus,
they have real components in the Majorana repr. The Hilbert space of
the Majorana bispinors is over R, not C. The scalar product has the
form 〈ψ1|ψ2〉 =

∫
d3x ψ1(x, t)Tψ2(x, t). QM without complex numbers.

The Dirac bispinor is a composite object:
• ψ = ψ1 + iψ2 with real ψ1,2, Cψ1 = ψ1, C(iψ2) = −iψ2;
• the decomposition ψ = ψR + ψL into the Weyl bispinors;
• two irreducible unitary s = 1/2 reprs of the Poincaré group.



Axial momentum

Questions: •What is the ‘eigenvector’ version of expansion (1)
for the Majorana bispinors?
• p̂ = −i∇ →?

1. There exists 1:1 mapping M between linear spaces of the
Majorana and right-handed (or left-handed) Weyl bispinors.
Take arbitrary right-handed Weyl bispinor φ, γ5φ = φ, and form
ψ = φ+ φ∗ ≡ M(φ). ψ is a Majorana bispinor. M is invertible:
φ = (I + γ5)ψ/2 ≡ ψR . M preserves linear combinations only if their
coefficients are real.
The Weyl bispinors are complex, hence the standard momentum
operator p̂ = −i∇ is well-defined for them. It commutes with γ5,
therefore also p̂φ is right-handed Weyl bispinor. Let us find the
Majorana bispinor that corresponds to p̂φ:

M(p̂φ) = p̂φ+ (p̂φ)∗ = p̂(ψR − ψL) = −iγ5∇ψ ≡ p̂5ψ.

Thus the standard momentum operator in the space of right-handed
Weyl bispinors gives rise to p̂5 = −iγ5∇ – the axial momentum
operator – in the space of Majorana bispinors.



Axial momentum
p̂5 commutes with γ5, therefore it can be used also in the space of
right-handed Weyl bispinors. It is invariant under the mapping M: if
ψ = M(φ) then p̂5ψ = M(p̂5φ) because the matrix −iγ5 is real.

2. Are the two quantum mechanics, Majorana and Weyl, equivalent?
No, because the mapping M does not preserve scalar product. Take
ψ1 = M(φ1), ψ2 = M(φ2),∫

d3x ψT
1 ψ2 =

∫
d3x (φ†1φ2 + (φ†1φ2)∗).

Moreover, there are differences in evolution equations. In the Weyl
case, evolution equation has the form (1) with m = 0; in the Majorana
case m 6= 0 is allowed. Using M−1 one can transform Eq. (1) for ψ to
the space of right-handed Weyl bispinors:

iγµ∂µφ−mφ∗ = 0.

This equation is known as the Majorana equation for φ (φ∗ is charge
conjugation of φ). It can not be accepted as quantum evolution
equation for the Weyl φ because it is not linear over C. The Hilbert
space of the Weyl bispinors is linear over C – it includes all bispinors
such that γ5φ = φ.



Axial momentum
3. The normalized eigenvectors of the axial momentum obey the
conditions

p̂5ψp(x) = p ψp(x),

∫
d3x ψT

p (x) ψq(x) = δ(p− q).

They have the form

ψp(x) = (2π)−3/2 exp(iγ5px) v ,

where v an arbitrary real, constant, normalized (vT v = 1) bispinor,
and

exp(iγ5px) = cos(px)I + iγ5 sin(px).

We call them the axial plane waves.

4. Commutator of the axial momentum with position operator x̂ has
the form

[x̂ j , p̂k
5 ] = iδjkγ5.

The implied uncertainty relation is the well-known one

〈ψ|(∆x̂ j )2|ψ〉〈ψ|(∆p̂k
5 )2|ψ〉 ≥ 1

4
δjk ,

where ∆x̂ j = x̂ j − 〈ψ|x̂ j |ψ〉, ∆p̂k
5 = p̂k

5 − 〈ψ|p̂k
5 |ψ〉 .



Axial momentum
5. The axial momentum commutes with the Hamiltonian

ĥ = −γ0γk∂k − imγ0 only in the massless case:

[ĥ, p̂5] = −2imγ0p̂5.

The operator ∇ commutes with ĥ. Therefore, in the Heisenberg
picture, p̂5(t) = −i γ̂5(t)∇. It turns out that the operator γ̂5(t) has the
following form

γ̂5(t) = γ5 + i
m
ω̂
γ0γ5 [sin(2ω̂t) + Ĵ (1− cos(2ω̂t))].

Here Ĵ = ĥ/ω̂, ω̂ =
√

m2 −∆→ Ep =
√

m2 + ~p 2. Note that Ĵ2 = −I.

Oscillating matrix elements of the axial momentum:∫
d3x ψT

p (~x)p̂5(t)ψq(~x) = p
[
1 +

m2

E2
p

(cos(2Ept)− 1)

]
(vT w) δ(~p − ~q)

−p
m
Ep

[
i sin(2Ept)(vTγ0w) + (1− cos(2Ept))(vTγ5

γ jpj

Ep
w)

]
δ(~p + ~q).



General solution of the evolution equation

1. The expansion of ψ(x, t) into the axial plane waves

ψ(x, t) =
1

(2π)3/2

2∑
α=1

∫
d3p eiγ5px

(
v (+)
α (p)cα(p, t) + v (−)

α (p)dα(p, t)
)
.

As the orthonormal basis of the real bispinors we take the
eigenvectors of γ0γk pk (this matrix commutes with p5):

v (+)
1 (p) =

1√
2|p|(|p| − p2)


−p3

p2 − |p|
p1

0

 , v (+)
2 (p) = iγ5 v (+)

1 (p),

v (−)
1 (p) = iγ0 v (+)

1 (p), v (−)
2 (p) = iγ5 v (−)

1 (p) = −γ5γ
0v (+)

1 (p).

This is rather interesting basis: scale invariant, and real. Can be used
also in the Dirac quantum mechanics.
Another expansion (without p̂5): L. Pedro, arXiv:1212.5465 (2012).



General solution of the evolution equation

2. Time dependence of the real amplitudes cα(p, t), dα(p, t) is found
from the Dirac equation. The amplitudes are split into the even and
odd parts,

cα(p, t) = c
′

α(p, t) + c
′′

α (p, t), dα(p, t) = d
′

α(p, t) + d
′′

α (p, t),

where c
′

α(−p, t) = c
′

α(p, t), c
′′

α (−p, t) = −c
′′

α (p, t), similarly for
d ′,d ′′.
Furthermore, we introduce

~c(p, t) =


c′1
c′′1
c′2
c′′2

, ~d(p, t) =


d ′1
d ′′1
d ′2
d ′′2

, K±(p) =


0 −n1 ±n2 ±n3

n1 0 ∓n3 ±n2

∓n2 ±n3 0 n1

∓n3 ∓n2 −n1 0

,
where Ep =

√
p2 + m2, and

n1 =
m p1

Ep
√

(p1)2 + (p3)2
, n2 =

|p|
Ep
, n3 =

m p3

Ep
√

(p1)2 + (p3)2
.



General solution of the evolution equation

The time dependence of the amplitudes is given by

~c(p, t) = exp(t Ep K+(p)) ~c(p,0), ~d(p, t) = exp(t Ep K−(p)) ~d(p,0).

The matrices K± are antisymmetric, the matrices exp(t Ep K±(p))
belong to the SO(4) group.

3. This solution can be rewritten in terms of quaternions. The
quaternionic units î , ĵ , k̂ are introduced as follows:

î = iγ5, ĵ = iγ0, k̂ = −γ5γ
0.

They obey the usual conditions

î2 = ĵ2 = k̂2 = −I, î ĵ = k̂ , k̂ î = ĵ , ĵ k̂ = î .

The bispinor basis v (±)
α (p) is generated from v (+)

1 (p) by acting with
î , ĵ , k̂ . Moreover, K±(p) = −n1k̂ ∓ n2 î ± n3 ĵ . Therefore, the time
evolution of the amplitudes ~c, ~d at each fixed value of the axial
momentum p is given by a time dependent quaternion.



General solution of the evolution equation

4. The general solution can be rewritten in the form of superposition
of traveling plane waves:

ψ(x, t) =
1

2(2π)3/2

∫
d3p [cos(px− Ept) A+(p) + cos(px + Ept) A−(p)

+ sin(px− Ept) B+(p) + sin(px + Ept) B−(p)] ,

where

A±(p) = v (+)
1 (p)A1

±(p)+v (+)
2 (p)A2

±(p)+v (−)
1 (p)A3

±(p)+v (−)
2 (p)A4

±(p),

B±(p) = v (+)
1 (p)B1

±(p)+v (+)
2 (p)B2

±(p)+v (−)
1 (p)B3

±(p)+v (−)
2 (p)B4

±(p),

and

A1
± = (1± p

Ep
)c1 ∓

m
Ep

d2, A2
± = (1± p

Ep
)c2 ∓

m
Ep

d1,



General solution of the evolution equation

A3
± = (1∓ p

Ep
)d1 ±

m
Ep

c2, A4
± = (1∓ p

Ep
)d2 ±

m
Ep

c1,

B1
± = −(1± p

Ep
)c2 ∓

m
Ep

d1, B2
± = (1± p

Ep
)c1 ±

m
Ep

d2,

B3
± = −(1∓ p

Ep
)d2 ±

m
Ep

c1, B4
± = (1∓ p

Ep
)d1 ∓

m
Ep

c2.

Here p ≡ |p|, Ep =
√

p2 + m2, the amplitudes c1, c2,d1,d2 are the
ones introduced earlier. p is the eigenvalue of the axial momentum.

In the massive case one can not have A− = 0 = B− and
(A+)2 + (B+)2 > 0, or vice versa. Always a component propagating in
the opposite direction is present. It can be weak, ∼ m/Ep.



Relativistic invariance

1. The Poincaré transformations of the real bispinor ψ(x) have the
standard form,

ψ′L,a(x) = S(L)ψ(L−1(x − a)),

where S(L) = exp(ωµν [γµ, γν ]/8), and ωµν = −ωνµ parameterize the
proper orthochronous Lorentz group, L = exp(ωµν ).

In order to identify the pertinent unitary irreducible representations of
the Poincaré group we write

ψ(x, t) =
1

(2π)3/2

∫
d3p eiγ5pxv(p, t),

where v(p, t) is a real bispinor. The Dirac equation⇒

v̇(p, t) = −iγ0γkγ5pk v(p, t)− imγ0v(−p, t).

In the last term we have v(−p, t) because γ0 anticommutes with γ5.
It follows that v̈(p, t) = −E2

p v(p, t).



Relativistic invariance

Solving the latter equation we obtain the explicit dependence on t

ψ(x, t) =
1

(2π)3/2

∫
d3p
Ep

eiγ5px (e−iγ5Ep tv+(p) + eiγ5Ep tv−(−p)
)
,

where the amplitudes v±(p) are restricted by the conditions

Ep v±(p) = γ0γk pk v±(p)±m γ5γ
0 v∓(p).

The Lorentz transformations of ψ(x) are equivalent to the following
transformation of the bispinor amplitudes,

v
′

±(p) = S(L) v±(L−1p). (2)

The spatial translations x′ = x + a are represented by

v ′±(p, t) = e∓iγ5pav±(p, t).



Relativistic invariance

2. In the massive case, v−(p) can be expressed by v+(p). The scalar
product acquires explicitly Lorentz invariant form

〈ψ1|ψ2〉 =
1

m2

∫
d3p
Ep

v1+(p) (γ0Ep − γk pk ) v2+(p),

where v1+(p) = v1+(p)Tγ0.

Representation (2) is unitary with respect to this scalar product. It is
irreducible, and equivalent to a real version of the standard spin 1/2
unitary representation.
For comparison, in the case of massive Dirac particle there are two
spin 1/2 representations.
3. In the massless case, the bispinors v+(p), v−(p) are independent.
They are restricted by the conditions

Ep v±(p) = γ0γk pk v±(p), Ep = |p|.

The resulting linear subspaces of real bispinors are two dimensional.
Each spans the representation (2).



Relativistic invariance

These representations are irreducible, unitary, and characterized by
helicities ±1/2. The Lorentz invariant form of the scalar product:

〈ψ1|ψ2〉 = −2
∫

d3p
|p|

[
w1+(p) (γ0|p| − γk pk ) w2+(p)

+ w1−(p) (γ0|p| − γk pk ) w2−(p)
]
,

where w±(p) are related to v±(p) by

v±(p) = (γ0|p| − γk pk ) w±(p).

Interestingly, the last formula determines w± up to a gauge
transformation of the form

w
′

±(p) = w±(p) + (γ0|p| − γk pk ) χ±(p)

with arbitrary χ±(p), because (γ0|p| − γk pk )2 = 0 (nilpotency). The
scalar product is invariant with respect to these transformations.



Summary

I The axial momentum p5 = −iγ5∇ is a viable observable for the
Majorana particle (to replace p = −i∇). Sensitive to m 6= 0.

I The eigenvectors of p5 are not stationary states. The minimal
stationary block in the Hilbert space is spanned by the two
modes: p,−p.

I The main features of the expansion into the eigenvectors of p5
include:

the presence of quaternions
SO(4) ‘phase’ factors
the presence of pairs of plane waves traveling in the opposite
directions (1 : m/E)

I Relativistic invariance: as expected, and simple.
I Example of QM without complex numbers.

* * *

H. A., Phys. Lett. A 383 (2019) 1242-1246 (arxiv:1805:03016);
H.A. and Z. Świerczyński, a forthcoming paper.
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