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Why Quantum Gravity?

* Two pillars of modern theoretical physics:

* General Relativity

* Quantum Mechanics (& Field Theory)
—ihd | V) = H|)

* Mutually excluding principles.

* But: Do their domains of applicability intersect?
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Why Quantum Gravity?

* General Relativity
e Basic principles:
* Matter described by classical fields.
* Matter content and geometry interact.

* Physics does not depend on the method of descibing the
system (coordinate system).

* Domain of applicability:
* Large scale (astrophysical, cosmological).
e Strong gravitational fields.
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Why Quantum Gravity?

e Quantum Mechanics (& Field Theory)

e Basic principles:

* Matter described via wave functions & states, not classical
fields

* Fixed background spacetime.
e Coordinates play crucial role in gqunatization process.

* Domain of applicability:
* Small (microscopic) scale.
* Weak gravitational fields.
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Why Quantum Gravity?

e The problem
In the (history of the) Universe there exist physical preess
where the domains of applicabilitypf need)do intersect:

* large energies (quantum effects)

* |large gravitational fields (GR effects)

e These are:
* Early Universe evolution (close to Big Bang).

* Black hole interiors.

* Need unification of both GR and QM/QFT !

* need to include both types of effects.

 Various approaches
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Approaches to QG

e String theory:(in context of AAS/CFT: T. Wiseman & seminars)
* Malin idea:
* particle approach to gravity (graviton)

* Nambu-Goto/Polyakov action on flat spacetime
* high dimension spacetimé&]) spacetime emergent

* Noncommutative GeometryA. Sitarz)
* Malin idea:

* Ordinary Riemannian (spin-)geometries are described by a
commutativeC'™ algebras

* Spacetime is emergent (spectrum)

* Many geometry objects well defined upon generalization to
noncommutative™ algebra

* Classical approach but expected to include quantum effects
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Approaches to QG

* Conformal cyclic cosmology(sir R. Penrose)

* Main idea:

e Restoring conformal invariance in some epoch of Universe
evolution allows to extend the evolution through Big Bang
singularity without taking into account qguantum gravity
effects.

* “Discrete” approaches:
Based on division of / representation of spacetime by discre

structures:
e Causal Dynamical triangulation
* Simplicial gravity
* Loop Quantum gravity (canonical & Spin Foams)

* Loop Quantum Cosmology
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Discrete QG

Main principle:
* background independence — no underlying metric,
* geometry structures emergent

e Causal Dynamical triangulatioR. Loll)

* Main principle:discrete time slices, space decomposed onto
symplexes, evolution governed by axiomatic rules
Implementing causality.

* Predictionsispacetime dimensionality (scale varying).
e Simplicial gravity: (J.Jurkiewicz)

* Main principle: Path integral approach with discretization of
spacetime (usually via decomposition onto symplexes).

* Loop Quantum gravity/Cosmology/SF
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LQG/SF/LQC

e Main principle:

* EXxplicit background independence: geometry represented b
objects (labelled graphs) embedded in manifold withoutrimet

* Explicit (strict) diffeomorphism invarince.

* Non-standard quantum representation.

* Main (independent) branches:

* Loop Quantum gravity: (canonicg[J. Thiemann,
A. Ashtekar)

* Spin FoamgE. Bianchi)

* Loop Quantum CosmologfA. Ashtekar, T. Pawlowski (cont))
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Canonical LQG

See lecture by T. Thiemann.
e Main properties
e Canonical: based oh—+ 1 canonical splitting of the spacetime

* Basic objects: parallel transports (holonomies) and aysadd
electric fluxes.

* Unigue representation of the holonomy-flux algebra (LOST)

» States spanned by labelled graphs: spin-networks
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Canonical LQG

e Main achievements/predictions

Precise mathematical framework on the
diffeomporphism-invariant level

Discrete spectra of geometric (diff-invariant) operat@®a,
volume.

Well defined (diff-invariant) coherent states (preseaty
dynamics unknown)

Reproduced Bekenstein-Hawking formula + quantum
corrections to black hole entropy.

In specific frameworks (wrt. matter content not symmetry)
guantization program completed.

No explicit dynamical calculations as of yet.
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Spin Foams

See lecture by E. Bianchi
e Main properties

e Covariant approach, constructed to mimic the path integfral
LQG spin networks.

* Basic objects — histries of LQG spin networks, same strectur
of quantum labeling.

* Not a path integral folulation of LQG: practical constracts
resemble the simplicial gravity approaches.

* Main achievements/predictions

e Calculted graviton propagator in low field regime.

* Reproduced Newton gravity law.
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Loop Quantum Cosmology

See lecture by A. Ashtekar
e Main properties
* Application of methods of LQG to cosmological models:

* Early stagesymmetry reduced models
* Current stagedivision onto quasi-global degrees of freedom
Including homogeneous “background” ones.

* Not derived as symmetry-reduction of LQG.

* For many scenarios precise and complete guantum frameworks

* Main achievements/predictions

* Explicit calculation of the quantum universe dynamics in
simple (homogeneous) scenarios.

* Early Universe paradigm shift: Big Banrg Big Bounce.

* Predictions of primordial perturbations structure.
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The intersection

Models originally “independent” but precise bridges arage
constructed.

e LQG«+SF

* Feynman-diagramatic approach to @Ewandowski, Puchta,
...). SF can be formulated as Feynman diagrams of evolving
LQG spin networks.

* Path-integral formulation of LQG (specific Hamiltonian)
(Alesci, Thiemann, Zipfel)
e LQG~LQC:

* Approximate cosmologies from SF symplexesvelli,
Vidotto, Garay, ...)

* Evolution eq. of cosmological DOF resemble LQC one but due
to simplifications known only qualitatively.
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The Intersection
* SKLQC:

e Systematic extraction of the cosmological degrees of freed
and their dynamics from specific construction of LQG
Hamiltonian.(Alesci, Gianfrani)

* Evolution eq. of cosmological DOF resemble LQC one but due
to simplifications known only qualitatively.
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LQG - classical framework

* Action: gravity coupled to matter

- [d*z/=gR + Ssm+boundary ter

* 3+ 1 splitting
ds? = —N2dt? 4 qup(Ndt + dz®)(N°dt + da?)

* Ashtekar-Barbero canonical variablensitized triadz;* and
SU (2) valued connectiom®

{AL(2), B (y)} = 05050(, y)
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LQG - classical framework

» Classical constraints (grav. part):
WEEWES G, — 0, L + ¥, AL EY

» Diffeomorphism:[E}SEEDLS NEy Yol

e Hamiltonian:

Hg

e BAED (€9, Fh + 201 — 72K, K3 )

\/ detE

e Constraints form Dirac algebra Dirac quantization program

* Quantize system ignoring constraints
* Express constraints as quantum operators

* Physical states: annihilated by constraints

* Basic variables for quantization: holonomies and fluxes:

Uy(A) = Pexp [ Al Tidx®
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LQG - kinematics

GNS quantization of the holonomy-flux algebra + the Diraayoaon for the
constraintsMany authors, ove25 years of development.
* Kinematical Hilbert spac&{;,: spanned by the spin-network states:

* Embedded graph with oriented edges, (topology fixed but not
restricted)

* spin labels; on its edges, (allow foj = 0)
* intertwiners/ on vertices,
e Solution to Gauss constraint (Thiemann 1993)

* Spin labelgestricted by angular momentum addition rules,

* Intertwiners— (vertex valence dependent) discrete set encoding
addition order,

* Representation is unique (LOST theorem).
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LQG: Diff-invariant sector

* Till recently no diffeo generator in LQG.

* Group averagingverfinite (exponentiated) diffeomorphisms
(Marolf at al 1995)

* The result:For fixed graph topology, on sufficiently large class of
graphs (lattices, etcthe embedded graph lifted to abstract one
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The Hamiltonian constraint

* Regularizatioras proposed by Thiemann: reexpression in terms of
holonomies and volume operator

* Fundamental representatifor holonomies:Uyl/2
(following results by Perez)
* The result quite complicated combinatorial operators coupling

j-labels of the adjacent edges.

* Depending on the formulation Hamiltonian constraint mag ad
new edges to the graph.
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The difficulty

* Hamiltonian constraint too complicated to find explicily kernel.

* The solutions:
* The Master progranDittrich, Thiemann,) Form one constraint
using Feynmann trick
il V= [ 3x[yiGlG, + g CiC, + HIH] |
* Difficulty: kernel elements again impossible to find.
Existence of approximate solutions provénittrich,
Thiemann)

* An alternative:the deparametrization.
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Deparametrization

* |dea:Couple gravity to matter fields. Use them as the frame
* Separation of the Hamiltonian constraint

H =0 < pp = H RIS

(T, pr) - canonical “time” field pair.

e Several frames used:

* Dust: (J Brown, K Kuchar, 1995, Phys.R&b1 5600-5629)

* Tetrad ofmassless scaldields.

* Quantization:applying LQG formalism, two programs:

e Gravity + dust in Algebraic LQG frameworlK Giesel, T
Thiemann, 2010, Class.Quant.G&#&175009

* Massless scalar fields in LQ®& Domagala, K Giesel, W
Kaminski, L Lewandowski, 2010, Phys.RB82 104038
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Simple example of depar.

(Husain, TP)
* Synthesis of several components:
* Specific matter choiceCoupling to the irrotational dust only.
* Providegust timeinstead of full frame.
e Classically considered by Kuchar, Torre 1991
* Natural time gaugeProper time of the dust “particles”
* Slight step away from principles of LQG.

e Diffeo-invariant formalism of the conservative LQG.

* Construction of the space of diffeo-invariant stak&gg

* Graph preserving form of the original Hamiltonian
regularized a la Thiemann defined Bfy;s (action of
components may differ)

* Known diffeo-invariant geometric observables.
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Gravity + Irr. dust

* Gravity coupled to irrotational dust:

S =1 [dtzy/=gR — [d*z\/=g L+

— & [d*z /=gM (g™ 0, TOT + 1)
T - dust potential M - Lagrange multiplier

* The stress energy tens (IR

e Standard canonical formalism:
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Classical deparametrization

* Relation fromequation of motion fo\/:

e Hamiltonian constrainfdensity)

P2+ qPCPCP + He + Hp = 0

» Gauge fixingby proper time of dust particle [iERa

ch=oEMc =0 CT+Op =0

(diffeo constraint like without the dust)

* The deparametrizatiomuhysical Hamiltonian density:

ﬁ:_pT:HG+Hm

No | - | due toM role in (x) and (indep.) def. R EERVAE M.

* Suitable for ANY quantization framework! _p.25



Summary of properties

* System withtrue physical Hamiltonian.

* Hamiltoniannot of the square rooform.
* Defineddirectly onH gz .

* Its action isexplicitly known.

* Physical Hilbert space known explicitl

* All known kinematical diffeo-invariant observables nbwcome
physical

* Evolution is governed btime independent Schrddinger equation
which action orH 1, is explicitly known

i% = [Hg + Hpy) 0

» States can be evolved numerically.
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Open Issues

Applying practically even the simplest framework requita&sng care
of some Issues:
* Specific constructions of the Hamiltonian:

* Many ambiguities of the constructiofactor ordering,
alternative regularizations, choice of component opesato

* Open questionwhich construction gives consistent dynamical
picture
* Lesson from LQCanswer to this nontrivial and important.

* Preservation of the coherent states by the dynamics:

* Serious applications require semiclassical treatmemnttiad
sufficiently well behaved semiclassical states are nepgssa

* EXisting prescriptions never dynamically tested.
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Loop Quantum Cosmology

LQC: Application of LQG methods to models with quasi-global
degrees of freedom (symmetric spacetimes, perturbative
frameworks,...)

* Basic formalism on FRW example

* How LQG methods work in simplest scenarios
e Singularity resolution

* |nclusion of iInhomogeneities
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FRW universe

Isotropic RW cosmological model

Spacetimemanifold M/ x R whereM = R?
M x {t} (wheret € R) —homogeneous slices.

Metric: Juv = _(V’ut)<vyt) + a(t)(ﬂ.*oq)’uy
%ap - flat fiducial metric(dz? + dy? + dz?).

e System is gauge-fixed! Also some background structure ptiese

Triad formalism:%]’, %?, — constant orthonormal triad/cotriad associated
with %p.
Ashtekar-Barbero canonical variabledso subject to symmetries
* Unique class with el. of the form:
A, = ey | B = py e

Constraint algebraSince Gauss and Diffeomorphism constraint are
automatically satisfied the Hamiltonian one is the only t@nst.
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Infrared regulator

* Global degrees of freedonsanonical pai¢, p

Infinity problem: ISIEINGREVEERESS] due to homogeneity.

Solution: Restrict to a box (fiducil cell) of volumeV,.

* Role of the infrared regulatoFinal theory has to be well defined in
the regulator removal limit.

Cell dependence in the symplectic structure

{45, Ef} = 8nGry {¢,p} = 8nGv/3V,

Rescaling to remove the dependence:
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Classical Hamiltonian constr.

* Euclidean and Lorentzian component:

Hy = [y, &Pz [ BfEPFY, — 2(1+4°)EfEV K] K|

[a
wheree = /| det | andK! = K,"°w!.

* Using [ZEEREARERT¢l Ve express the Lorentzian term in terms of field
strengthZ’* and curvature of spin connectidn

FF = 20,AF + *; AL AL L QF, .= 20,TF 4 ¢#,,T T
E?E?KfaKg] = 52 eijkE?E?(Ffb — ng)

where for flat modef)®, =

* Final formof the (gravitational part of the) constraint:

— 1 317 —1 a b Lk
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LQC quantization: kKinematics

Direct application of the LQG gquantization algorithm:
* Holonomies along integral curvés’ suffice to separateomogeneous,
ISotropic connections.

1

* Holonomy along the edge direction of%¢ of length A\V;?

hiyy = cos(Ac/2)I + 2sin(Ae/2)7*

* |n consequencan equivalent of holonomy algebra in LQG is generated
by almost periodic function JAIECRENS S IEAYFPY

* The Gel‘fand spectrum of this algebfsupport of the elements 6f;;°
analog ofis the Bohr compactification of real lirff@gopn;.
* Basic operatorsp, N(»).

* Analog of LQG unique stat€vacuum”) is+ve linear functionalf

f(N(A)) = (5)\7() and.
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LQC quantization: kKinematics

Final results;The GNS construction leads to Gravitational kinematical
SUITYEIETE: 7~ = L%(Reohr, ditHaar) |

* Bohr compactificationSpace of almost periodic functions— N, (c).
The scalar product

(filf) = limp o (1/2L) 1) Fi(e) fale)

Representation of stat@swhich operatop is diagonal. Eigenstates pf
labeled byu satisfy

<:LL1 ‘M2> — 5/11 y2

Action of fundamental operators:

plp) = dmylaypulp)  exp(ire/2) ) = |+ A)
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Hamilt. constr. regularization

Expression in terms of holonomies and fluxgsiiemann)

e Theterme 'EE
eijke—lEaijk: Zk 2ﬁsgn<p)1/3 Eabco ATI‘(hO\){h()\) 1 V} )

YGAV,

* The field strength operator

1
* Given a square in— j plane of the side lengthV,* wrt. %,

T A ko o ,J
Fab——zhmAlD_)O 3 Tr(h 1)0 Wy, W

A) 7 (A A)y\ — A)y\ —
wherel IR ) I (A R A

(¥
* Problem:the limit Arg — 0 of above operatorioesn’t exist!

* Solution:We takeAr = A, whereA — smallest non-zero eigenvalue

of area operator in full LQUBSIIIESNANSR/AVAT ST/ N

* Consequencex is function of u:
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Holonomy component operator

* Relevant holonomy:

* L' can be expressed in termns&f(new basic operator).

* Action of the component operator:

* Exponentiated!/dy is well defined

N (1) = expliA(p)(d/dp)] ¥ ()

* The affine parameter alond x)(d/du) is given by
v = K sgn(p)|p|?/?, whereK — const.

e Convenient reparametrizatiot, p) — (b, v)

v =K sgn(p)|p|*?

plv) = 217V A)*P v |v)

* Action of basic operators:

Nlv) = [v+1)
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LQC Hamiltonian constraint

* The final form:(symmetric ordering)

wherea = 2myV/ A3, ~ 1.3563,

* Basic properties:
* |s essentially self-adjoint.

* Non-positive definite.
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Matter coupling

* To build nontrivial system we have to introduce some matbatent.

* Several possiblilities:

* Massless scalar fielariginally considered in LQC (see talk by
A. Ashtekar).

* Other mattewith quadratic kinetic term.
* Application of the irrotational dust frame from LQ€&nvenient for
demonstration.
* Dust time framefor gravity + dust
* H¢ becomegphysical Hamiltonian
* H, = L*(RBonr, dtmaar) becomephysical Hilbert space

» Evolution: Schrédinger equatiogeiA ORI 0N

* Since laps€V = 1 presence of singularities related to extendability of
evolution for allt € R (see talk by H. Ringstrom).
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Digression: Geometrodynamics

Wheeler-DeWitt quantization program for flat FRW with dust.

S EIRS SRS  — —dt2 + a”(¢)(da? + dy? + dz?)

* Geometry variablesanalogous to LQC:

= oo’ AR (0.} = 2

* Hamiltonian: e (et ushai]

e Schrodinger quantization:
S ERESEWS 7 = L4(R, dv)

* Hamiltonian: e —%\@\ISQM

—p. 38
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WDW Hamiltonian properties

* Negative definite

* Self-adjointness:

 H defined on domain

D ={¢ € S,¢(0) = 9,1(0) = 0}

wheresS is Schwartz space.

* Deficiency subspacésS..: spaces of normalizable solutions. to

(s Hy Fil ) = 0, ¢ €D

e If dim(K, ) = dim(K_) # 0 domain of H, has many extensions.
All of them are defined by unitary transformatiofis : £, — K_:

Dg ={v + ale+ + Usle+)); € D,a € C}
* Deficiency eq solvablelim(K) = dim(K_) = 1.
* 1-parameter family of self-adjoint extensiobs.

S —p. 39
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Auxiliary space

In original repsresentation difficult ot solve

» Auxiliary Hamiltonian: [ feRe ey N el

There exisinvertible map such that
—P; '[Hg|"Ps = Hg |

Configuration variablefaeayiX-a V|

Physical state:

QEKEYCINTeNE U (2, ¢) = (Rt W(z 1), w(k) = 370201k

* Free propagating wave packet with extenson dependent phasge
at the singularity.
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WDW dynamics

* In auxiliary space the observabie= |a|® has simple form.

* the quantum trajectory:

* The consequances:
* Additional boundary data needed at the singularity 0.
* Att=t, V = 0 up to variance.

e Singularity not resolved in any sense (deterministic or
dynamical).
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LQC dynamics

* Auxiliary Hamiltonianper analogy to WDW:

Hg = PHP~' = —[3iml3,0 sin?(b)0y] T

whereP - invertible mapping like for WDW.

* The time evolution FEEEEEad()

H > PU(z) = [°dkU(k)elketwk)t)

* Freely propagating wave packet.

* the trajectoryi(t, - point wher)

* Consequences:
* Evolution unigue (self-adjointness).

* Minimal V' well separated from - Big Bounce

* Singularity resolved deterministically and dynamically.
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The comparizon

True for all values of cosmological constant

e Geometrodynamics (WDW)

* Lackof singularity resolution:

* additional boundary data at the singularity
* minimal volume comparable to dispersions

* Loop Quantum Cosmology

* Dynamicalsingularity resolution

° unigue unitary evolution
* minimal volume well isolated fronV = 0
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