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Outline

Perturbative and numerical construction of time-periodic solutions
within the system of self-gravitating massless scalar field in d + 1
dimensions at spherical symmetry with A < 0.

1
GaptA gas = S7G (vm Vb — anﬁvmvw) A= —d(d-1)/(26%)

9PV Vs =0.

Actual and potential outcomes:
» More complete picture of AdS instability
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Outline

Perturbative and numerical construction of time-periodic solutions
within the system of self-gravitating massless scalar field in d + 1
dimensions at spherical symmetry with A < 0.

1
Gop+A gop = 871G (Vaqﬁ Vo — 2ga5V“¢V“¢) , A= —d(d-1)/(20%),
9PV Vs =0.
Actual and potential outcomes:
» More complete picture of AdS instability

» Efficient method for numerical integration of Einstein's equations

» AdS/CFT correspondence interpretation
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Motivation

Main motivation by the conjectures [Bizon&Rostworowski, 2011]

» Anti-de Sitter space is unstable against the formation of a black hole
under arbitrarily small generic perturbations (also in higher
dimensions [Jatmuzna,Rostworowski&Bizon, 2011],
[Buchel,Lehner&Liebling, 2012])
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Motivation

Main motivation by the conjectures [Bizon&Rostworowski, 2011]

» Anti-de Sitter space is unstable against the formation of a black hole
under arbitrarily small generic perturbations (also in higher
dimensions [Jatmuzna,Rostworowski&Bizon, 2011],
[Buchel,Lehner&Liebling, 2012])

» There are non-generic initial data which may stay close to AdS
solution; Einstein-scalar-AdS equations may admit
time-quasiperiodic solutions

Analogous conjecture for vacuum Einstein's equations — existence of
geons [Dias,Horowitz&Santos, 2011], [Dias,Horowitz,Marolf&Santos, 2012].
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Model

» Parametrization of asymptotically AdS spacetimes
62
cos?

(t,z) € R x [0,7/2).

d32 = (—A€_26dt2 + A_ld(EQ + Sin2 de%d—l) 5
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» Parametrization of asymptotically AdS spacetimes
62
cos?

(t,z) € R x [0,7/2).

d32 = (—A€_26dt2 + A_ld(EQ + Sin2 de%d—l) 5

» Field equations (units 87G =d — 1)

d—1-— 2 in 2
A/ZQ(]__A)&_A&/’ 5/:_M(@2+H2)7
sin 2x

5o —517\/ T d—1 55\
@ = (Ae H) s H = m (tan er (b) .

» Auxiliary variables (' = 0,, = 0¢): ® =¢' and Il = A1
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Model

» Parametrization of asymptotically AdS spacetimes
62
ds? = (—Ae_%dt2 + A~ Ydaz? + sin? deQd,l) ,
cos? S

(t,z) € R x [0,7/2).

» Field equations (units 87G =d — 1)
d—1-—cos2z sin 2z
Al=21-A)———M— _ A § = -2 (9% 4+ 112
( ) sin 2x ’ 2 ( + ) ’
: —517\/ : d—1 55\
@ = (Ae H) s H = m (tan er (b) .

Auxiliary variables (! = 9,, = 0;): ®=¢' and Il = A1

v

v

AdS space: ¢ =0, A =1, § = const.

4/16



Boundary conditions

» Smoothness at the center implies symmetry of the fields.
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» Mass function and asymptotic mass:

. d-2
S111 X
/2
M = lim m(t,z) = / A (9 +11%) tan’ 'z dx.
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Boundary conditions

» Smoothness at the center implies symmetry of the fields.
» There is no freedom in prescribing boundary data at = 7/2 if we
require smooth evolution and finiteness of the total mass.
» Mass function and asymptotic mass:
. d—2
Sin x
m(t,x) = ————— (1 — A(t,x)),
(t,2) cos? x ( ( ))
/2
M = lim m(t,z) = / A (9 +11%) tan’ 'z dx.
z—mw/2
0
» Local well-posedness [Friedrich, 1995], [Holzegel&Smulevici, 2011]
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Linear perturbations of AdS

» Linearized equation [Ishibashi&Wald, 2004]

b+Lp=0, L= —% Oy (tand_lxﬁz) ,
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» Linearized equation [Ishibashi&Wald, 2004]

. 1 d—1
¢+L¢:O, L:_maxolan xaz>,

» Eigenvalues and eigenvectors of L are (j =0,1,...)

wjz- =(d+25)? ej(x)=N; cosd:rP]-(d/Q_l’d/2) (cos2x),
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Linear perturbations of AdS

» Linearized equation [Ishibashi&Wald, 2004]

. 1 d—1
¢+L¢:O, L:_maxolan xaz>,

» Eigenvalues and eigenvectors of L are (j =0,1,...)
= (d+25)?, ej(x) = Nj cos wP(d/Q b d/z)(cos 2z),
» AdS is linearly stable, linear solution

x) = Z aj cos(w;t + B;) ej(x),

Jj=0

with amplitudes a; and phases 3; determined by the initial data.
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Perturbative construction

» We search for solutions of the form
¢ = € cos(wyt)e,(z) + O(e?),

with one dominant mode, € is a small parameter.
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Perturbative construction

» We search for solutions of the form
¢ = € cos(wyt)e,(z) + O(e?),

with one dominant mode, € is a small parameter.

» We rescale the time variable

T=0t, Qy=wy+ Z eMwoa

even \>2
and we make an ansatz for the expansion in ¢

¢=¢ cos(T)e,(x) + Z et oa(T, ),

odd A>3

b= Y arz), 1-A= > HA(ra),

even \>2 even \>2
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Perturbative construction — expansion
» We expand functions ¢y, dx, Ay into the eigenbasis

=Y frj(r)e;(x),

J

= da (1) + D da(r)es(@), A= ax;(n)e; (),

with fx ;(7), ax;(7), dx ;(7) being periodic in 7.

This works well for d even — the sums are finite at each order A (the
boundary conditions).

Notation:

8/16



Perturbative construction — expansion
» We expand functions ¢y, dx, Ay into the eigenbasis

=Y frj(r)e;(x),

J
Sn=dr1(7)+ D _drj(Tej(x), Ax=_ax;(7)e;(x),
J J
with fx ;(7), ax;(7), dx ;(7) being periodic in 7.

This works well for d even — the sums are finite at each order A (the
boundary conditions).

Notation:
» Inner product

/2
(flg) = / F(@)g(z) tan®" zdx
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Perturbative construction — expansion
» We expand functions ¢y, dx, Ay into the eigenbasis

=Y frj(r)e;(x),

J

= da (1) + D da(m)es(n), A= ax;(r)e;()

with fx ;(7), ax;(7), dx ;(7) being periodic in 7.

This works well for d even — the sums are finite at each order A (the
boundary conditions).

Notation:
» Inner product

(flg): / f(z)g(x) tan®! zdz

» Coefficient at £* in the power series expansion of f = > M fa
[5)\] f = f)\v
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Perturbative construction — constraint equations

» Metric function §

drg = — = (e |[] sin 2z (82 +112)),
2wi

gauge fixing condition: [} 6] _ =0=dx 1+, dx ;e;(0)
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Perturbative construction — constraint equations

» Metric function §

drg = — = (e |[] sin 2z (82 +112)),
2wi

gauge fixing condition: [} 6] _ =0=dx 1+, dx ;e;(0)

» Metric function A

> {(d —1)6; + (ek

J

1
5 sin 2z e/; — cos 2 ejﬂ ax,; =

i (e ][] (sin2x)?A (9% +11°)),

boundary condition: [e*] (1 —A)| _ =0=13"ax;e;(0)
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Perturbative construction — wave equation |
» Solve inhomogeneous wave equation

(Wia'rr + L) (b)\ = S)\ ;

plugging ¢x = Y _ fa,;(7)e;(x), gives
j

(W20rr +wi) ok = (ex [Sx) ,
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Perturbative construction — wave equation |
» Solve inhomogeneous wave equation

(Wia'rr + L) (b)\ = S)\ ;

plugging ¢x = Y _ fa,;(7)e;(x), gives
j

(W20rr +wi) ok = (ex [Sx) ,

» How do we get secular terms?

§(t) +wig(t) = acos(wt), g(0)=c, ¢(0)=¢,
_ —a(cos(fgiigs(WOt)) , W F W,

g(t) = < sin (wot) + ccos (wot) +
wo .
Zo-tsin (wot) , wo = w,
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Perturbative construction — wave equation |l

» Use the integration constants {chk, €k} to remove resonant terms
cos(wg /w~)T or sin(wg /w4 )T.
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» Use the integration constants {chk, €k} to remove resonant terms
cos(wg /w~)T or sin(wg /w4 )T.

» Dominant mode condition fixes two constants in f ,
(Frr Orfan)] o = (0,0) = ((ey[@), (e410-0))|,_o = (¢, 0)
(=> 6)\,k- = O).

» At anyodd A >3

A\ —
(ex |Sx) =0 for k>7+(d+1+2’y)T7

we are left with (A —1)/24 | (A —1)/(2(d + 27))] undetermined
integration constants {c ,} and frequency shift w, x_1.
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Perturbative construction — wave equation |l

>

Use the integration constants {chk, €k} to remove resonant terms
cos(wg /w~)T or sin(wg /w4 )T.

Dominant mode condition fixes two constants in f -

(fA,’w 6Tf>\,’y) ’7:0 = (07 0) <~ ((e'y |¢)7 (e’y |8‘I’¢))}T:0 = (8, 0)

(=> 6)\,k- = O).
At any odd A > 3

A\ —
(ex |Sx) =0 for k>7+(d+1+2’y)T7
we are left with (A —1)/24 | (A —1)/(2(d + 27))] undetermined
integration constants {c ,} and frequency shift w, x_1.

Use {cax} together with w, x41 to remove
A+1)/2+ [(A—1)/(2(d + 27))] secular terms in ¢ 2.
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Numerical construction
We make an ansatz (7 = Qt)

o= > Y fijcos((2i+ 1)7)e;(x),

0<i<N 0<j<K
II= Z Z pijsin((2i + 1)7)e;j(z) .

0<i<N 0<j<K

» Find the solution by
determining 2 x K x N +1
numbers
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Numerical construction
We make an ansatz (7 = Qt)

o= > Y fijcos((2i+ 1)7)e;(x),

0<i<N 0<j<K
II= Z Z pi,jsin((2i 4+ 1)7)e;(x) .

0<i<N 0<j<K

» Find the solution by
determining 2 x K x N +1

e g
numbers 2 ;
1 1
» Set the equations on a P s e e e
. . ! 1
numerical grid of K x N - i e e e o o o
. . 1
collocation points : i
| ° [ ] ° ° ° ° !
1
! (Xt Tn) i
| ° ° ° ° ° ° !
S d
0 z
X
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Numerical construction
We make an ansatz (7 = Qt)

o= > Y fijcos((2i+ 1)7)e;(x),

0<i<N 0<j<K

1= Z Z pijsin((2i + 1)7)e;j(z) .

0<i<N 0<j<K

» Find the solution by
determining 2 x K x N +1
numbers

» Set the equations on a
numerical grid of K x N
collocation points

» Add one equation for dominant
mode condition

I
e
“

1

1

! ° ° ° ° ° °

i

1

! ° ° ° ° ° °

1

1

1

| ° [ ] ° ° ° °

1

! (X% Tn)

| ° ° ° ° ° °

1

L S S

X
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Numerical construction
We make an ansatz (7 = Qt)

o= > Y fijcos((2i+ 1)7)e;(x),

0<i<N 0<j<K
II= Z Z pijsin((2i + 1)7)e;j(z) .

0<i<N 0<j<K

» Find the solution by
determining 2 x K x N +1

e g
numbers 2 ;
1 1
» Set the equations on a P s e e e
. . ! i
numerical grid of K x N - i e e e o o o
collocation points i i
. . | ° [ ] ° ° ° ° !
» Add one equation for dominant i (X Tn) i
mode condition N A e D D
L S S -
0 z
E , fiy=¢ )

, X

Highly nonlinear system solved with the Newton-Raphson algorithm. y
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Mathematica notebook



Series summation

Improve convergence with the Padé resummation of Q, ford =4, v =0

g

direct sum

Padé

numerics

0.005
0.015
0.025
0.035
0.045
0.055
0.065
0.075
0.085

Estimate for the radius of convergence — threshold for the black-hole

formation

4.0016596666501
4.0151220741462
4.0430867838460
4.0879197007
4.15407139
4.249920
4.39267

4.6230

5.05

4.0016596666501
4.0151220741462
4.0430867838521
4.0879197035435
4.15407167953
4.249932516
4.3929928
4.629225

5.184

-1

([n/nla, (7)) =0,

n‘2

4 6 8

4.0016596666501
4.0151220741462
4.0430867838521
4.0879197035448
4.1540716797440
4.2499325336279
4.3929938556099
4.6292962269712
5.2017714694183

s*‘0.128 0.102 0.095 0.092
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Results

» High order expansion for time-periodic solution — lenghty
formulas in € (solution for d = 4, v = 0 up to 17th order consists of:
1257 terms in ¢, 1137 in A and 1180 in 0 expansion)
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Results

» High order expansion for time-periodic solution — lenghty
formulas in € (solution for d = 4, v = 0 up to 17th order consists of:
1257 terms in ¢, 1137 in A and 1180 in 0 expansion)

» Numerical solutions for descrete values of ¢ — extended
floating-point arithmetic for highly accurate solution

» Consistency of the results — verification by two independent
methods

» Indication on the stability of the obtained solutions
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Summary

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless
scalar field system. They form stability islands in the ocean of instability.

» Cosmological constant confines the evolution in an effectively
bounded domain — the possibility of the existence of time-periodic
solutions (in contrast to asymptotically flat case)
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Summary

There are (non-linearly) stable periodic solutions in Einstein-AdS-massless
scalar field system. They form stability islands in the ocean of instability.

» Cosmological constant confines the evolution in an effectively
bounded domain — the possibility of the existence of time-periodic
solutions (in contrast to asymptotically flat case)

» This result explains the behavior of one(two)-mode initial data
studied by [Bizori&Rostworowski, 2011]

» Time-periodic solutions in pure vacuum case (the cohomogeneity-
-two Bianchi IX ansatz [Bizor,Chmaj&Schmidt, 2005])
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