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No!reason!not!to!try!quanQzing!discrete!spaceQme.!
May!even!be!certain!advantages!!!!!
e.g.,!!!!!natural!cut!off!(minimum!length)!

! !!!finite!number!of!variables!
!
At!the!Planck!scale,!spaceQme!may!be!discrete!anyway,!
with!rapidly!changing!topologies!!
(spaceQme!foam,!Wheeler)!
!
!

MoQvaQon!for!DiscreQzaQon!



ADM!(ArnowiN,!Deser,!Misner)!Formalism!!
(continuum!classical!canonical!formalism)!

Wheeler!DeWiN!EquaQon!(continuum!quantum!canonical)!

Canonical!FormulaQons!

Discrete!Wheeler!DeWiN!EquaQon!(discrete!quantum!canonical)!

Introducing!a!Qme]slicing!of!space]
Qme,!by!introducing!a!sequence!of!
space!like!hypersurfaces.!

The lack of covariance of the canonical ADM approach has not gone away, and is 
therefore still part of the present formalism.!



Momentum!constraint!

avenues for discretization are possible. One could discretize the theory from the very beginning,

while it is still formulated in terms of an action, and introduce for it a lapse and a shift function,

extrinsic and intrinsic discrete curvatures etc. Alternatively one could try to discretize the contin-

uum Wheeler-DeWitt equation directly, a procedure that makes sense in the lattice formulation,

as these equations are still given in terms of geometric objects, for which the Regge theory is very

well suited. It is the latter approach which we will proceed to outline here.

The starting point for the following discussion is therefore the Wheeler-DeWitt equation for

pure gravity in the absence of matter, Eq. (31),

{

− (16πG)2 Gij,kl(x)
δ2

δgij(x) δgkl(x)
−
√

g(x)
(

3R(x) − 2λ
)

}

Ψ[gij(x)] = 0 (45)

and the diffeomorphism constraint of Eq. (33),

{

2 i gij(x)∇k(x)
δ

δgjk(x)

}

Ψ[gij(x)] = 0 . (46)

Note that these equations express a constraint on the state |Ψ〉 at every x, each of the form

Ĥ(x) |Ψ〉 = 0 and Ĥi (x)|Ψ〉 = 0.

On a simplicial lattice [20, 21, 22, 23, 24] (see for example [25], and references therein, for a

more complete discussion of the lattice formulation for gravity) one knows that deformations of the

squared edge lengths are linearly related to deformations of the induced metric. In a given simplex

σ, take coordinates based at a vertex 0, with axes along the edges from 0. The other vertices are

each at unit coordinate distance from 0 (see Figures 1,2 and 3 for this labelling of a triangle and

of a tetrahedron). In terms of these coordinates, the metric within the simplex is given by

gij(σ) = 1
2

(

l20i + l20j − l2ij
)

. (47)

Note also that in the following discussion only edges and volumes along the spatial direction are

involved. It follows that one can introduce in a natural way a lattice analog of the DeWitt super-

metric of Eq. (26), by adhering to the following procedure. First one writes for the supermetric in

edge length space

‖ δl2 ‖2 =
∑

ij

Gij(l2) δl2i δl
2
j , (48)

with the quantity Gij(l2) suitably defined on the space of squared edge lengths [26, 27]. Through

a straightforward exercise of varying the squared volume of a given simplex σ in d dimensions

V 2(σ) =
(

1
d!

)2
det gij(l

2(σ)) (49)

12

where the latter involves the determinant of the three-metric, g ≡ det gij. As usual gij denotes the

inverse of the matrix gij .

3 Wheeler-DeWitt Equation

Within the framework of the previous construction, a transition from a classical to a quantum

description of gravity is obtained by promoting the metric gij , the conjugate momenta πij , the

Hamiltonian density H and the momentum density Hi to quantum operators, with ĝij and π̂ij

satisfying canonical commutation relations. In particular the classical constraints now select a

physical vacuum state |Ψ〉, such that in the source free case

Ĥ |Ψ〉 = 0 Ĥi |Ψ〉 = 0 , (6)

and in the presence of sources more generally

T̂ |Ψ〉 = 0 T̂i |Ψ〉 = 0 , (7)

where T̂ and T̂i now include matter contributions that should be added to Ĥ and Ĥi.

As in ordinary non-relativistic quantum mechanics, one can choose different representations for

the canonically conjugate operators ĝij and π̂ij . In the functional position representation one sets

ĝij(x) → gij(x) π̂ij(x) → −i! · 16πG · δ

δgij(x)
. (8)

In this picture the quantum states become wave functionals of the three-metric gij(x),

|Ψ〉 → Ψ [gij(x)] . (9)

The two quantum constraint equations in Eq. (7) then become the Wheeler-DeWitt equation [4, 5, 6]

{

− 16πG ·Gij,kl
δ2

δgij δgkl
− 1

16πG

√
g
(

3R − 2λ
)

+ Ĥφ

}

Ψ[gij(x)] = 0 , (10)

Here Gij,kl is the inverse of the DeWitt supermetric, given by

Gij,kl = 1
2 g

−1/2 (gikgjl + gilgjk + α gijgkl) , (11)

with parameter α = −1. The three-dimensional version of the DeWitt supermetric itself, Gij,kl(x)

is given by

Gij,kl = 1
2

√
g
(

gikgjl + gilgjk + ᾱ gijgkl
)

, (12)
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where the latter involves the determinant of the three-metric, g ≡ det gij. As usual gij denotes the

inverse of the matrix gij .

3 Wheeler-DeWitt Equation

Within the framework of the previous construction, a transition from a classical to a quantum

description of gravity is obtained by promoting the metric gij , the conjugate momenta πij , the

Hamiltonian density H and the momentum density Hi to quantum operators, with ĝij and π̂ij

satisfying canonical commutation relations. In particular the classical constraints now select a

physical vacuum state |Ψ〉, such that in the source free case

Ĥ |Ψ〉 = 0 Ĥi |Ψ〉 = 0 , (6)

and in the presence of sources more generally

T̂ |Ψ〉 = 0 T̂i |Ψ〉 = 0 , (7)

where T̂ and T̂i now include matter contributions that should be added to Ĥ and Ĥi.

As in ordinary non-relativistic quantum mechanics, one can choose different representations for

the canonically conjugate operators ĝij and π̂ij . In the functional position representation one sets

ĝij(x) → gij(x) π̂ij(x) → −i! · 16πG · δ

δgij(x)
. (8)

In this picture the quantum states become wave functionals of the three-metric gij(x),

|Ψ〉 → Ψ [gij(x)] . (9)

The two quantum constraint equations in Eq. (7) then become the Wheeler-DeWitt equation [4, 5, 6]

{

− 16πG ·Gij,kl
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δgij δgkl
− 1

16πG
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g
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Energy!constraint!

Wheeler De Witt Eq. in d+1 dim.!
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In!construcQng!a!discrete!Hamiltonian!for!gravity!one!has!to!decide!what!
degrees!of!freedom!one!should!retain!on!the!la`ce.!!
!

! Use!geometric!Regge lattice discretization for!gravity,!with!!
))))edge)lengths)suitably!defined!on!a!random!la`ce!as!the)primary))))))))
)))dynamical)variables.!

avenues for discretization are possible. One could discretize the theory from the very beginning,

while it is still formulated in terms of an action, and introduce for it a lapse and a shift function,

extrinsic and intrinsic discrete curvatures etc. Alternatively one could try to discretize the contin-

uum Wheeler-DeWitt equation directly, a procedure that makes sense in the lattice formulation,

as these equations are still given in terms of geometric objects, for which the Regge theory is very

well suited. It is the latter approach which we will proceed to outline here.

The starting point for the following discussion is therefore the Wheeler-DeWitt equation for

pure gravity in the absence of matter, Eq. (31),

{

− (16πG)2 Gij,kl(x)
δ2

δgij(x) δgkl(x)
−
√

g(x)
(

3R(x) − 2λ
)

}

Ψ[gij(x)] = 0 (45)

and the diffeomorphism constraint of Eq. (33),

{

2 i gij(x)∇k(x)
δ

δgjk(x)

}

Ψ[gij(x)] = 0 . (46)

Note that these equations express a constraint on the state |Ψ〉 at every x, each of the form

Ĥ(x) |Ψ〉 = 0 and Ĥi (x)|Ψ〉 = 0.

On a simplicial lattice [20, 21, 22, 23, 24] (see for example [25], and references therein, for a

more complete discussion of the lattice formulation for gravity) one knows that deformations of the

squared edge lengths are linearly related to deformations of the induced metric. In a given simplex

σ, take coordinates based at a vertex 0, with axes along the edges from 0. The other vertices are

each at unit coordinate distance from 0 (see Figures 1,2 and 3 for this labelling of a triangle and

of a tetrahedron). In terms of these coordinates, the metric within the simplex is given by

gij(σ) = 1
2

(

l20i + l20j − l2ij
)

. (47)

Note also that in the following discussion only edges and volumes along the spatial direction are

involved. It follows that one can introduce in a natural way a lattice analog of the DeWitt super-

metric of Eq. (26), by adhering to the following procedure. First one writes for the supermetric in

edge length space

‖ δl2 ‖2 =
∑

ij

Gij(l2) δl2i δl
2
j , (48)

with the quantity Gij(l2) suitably defined on the space of squared edge lengths [26, 27]. Through

a straightforward exercise of varying the squared volume of a given simplex σ in d dimensions

V 2(σ) =
(

1
d!

)2
det gij(l

2(σ)) (49)
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Degrees!of!freedom!for!edges!and!metric!tensor!are!both!D(D+1)/2!in!D!dimensions.!
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Regge!La`ce!Discretization:!

352 H.W. Hamber, R.M. Williams~Nuclear Physics B 487 (1997) 345-408 

This point of view, while certainly legitimate in discussing some classical aspects 
of the theory, is therefore in our opinion not useful in describing a regulated theory 
of quantum gravity. It leads instead to a string of paradoxical results when lattice 
and continuum language are mixed together, and can be especially misleading when 
discussing such subtle issues as the gravitational functional integration measure. 

It should be emphasized here that in the following we shall restrict our attention 
almost exclusively to the lattice theory, which is defined in terms of its lattice degrees 
of freedom only. Since it is our purpose to describe an ultraviolet regulated theory of 
quantum gravity, we shall follow the usual procedure followed in discussing lattice field 
theories, and discuss the model exclusively in terms of its primary, lattice degrees of 
freedom: the squared edge lengths. As such, the theory will not require any additional 
ad-hoc regulators. Below we shall discuss further at length a number of issues related 
to the precise correspondence between the lattice degrees of freedom and the continuum 
ones, the local gauge invariance of the lattice action (which gives rise in the quantum 
theory the lattice analogs of the Taylor-Slavnov identities) and the need for (or lack 
of) gauge fixing. 

2.3. Curvature and discretized action 

The construction of the lattice action starts from the definition of the elementary 
building blocks for space-time, the n-dimensional simplices. Consider an n-dimensional 
simplex with vertices 1,2, 3 . . . .  n + 1 and square edge lengths 122 = 121 . . . .  Its vertices 
are specified by a set of vectors e0 = 0, el . . . .  en in fiat Euclidean space. The matrix 

gi.j = ei • e.i , (2.6) 

with 1 ~< i , j  <<. n, is positive definite. In terms of the edge lengths lij = lei - ejl (see 
Fig. 2) it is given by 

gij( l  2) = 1[12 i + 12j - 12]. (2.7) 

The volume of a general n-simplex is then given by an n-dimensional generalization of 
the well-known formula for the volume of a tetrahedron, 

= l ~ / d e t  go(12) .  V,~(l 2) (2.8) 

Conversely, in order to obtain a simplex for an arbitrary assignment of edge lengths, the 
generalization to higher dimensions of the triangle inequalities require that V/i) ( l  2) >/0, 
with n = 1 . . . . .  d and i = 1 . . . . .  N, be satisfied for every edge, triangle, tetrahedron etc. 
in the lattice. This can be stated equivalently by requiring 

det gij( l  2) > 0 (2.9) 

for every sub-determinant of the highest dimension det gij. In d dimensions the matrix 
gij has d ( d  + 1 ) /2  components, just as there are d (d  + 1) /2  components for the metric 
g ~  (x) per space-time point in the continuum. 

simplex!

Regge!1961!!



Curved!space(Qme)s!are!piece]wise!linear.!

Deficit!angle!!!Curvature!(defined!at!a!hinge(D-2)!
! ! ! ! ! ! ! !at!a!vertex!for!2]dim,!

! ! ! ! ! ! !at!an!edge!for!3]dim,!
! ! ! ! ! ! ! !at!a!triangle!for!4]dim)!

!

Point!(0!–simplex)!in!0]dim!!
Line!(1!–simplex)!in!1]dim!
Triangle!(2!–simplex)!in!2]dim!
Tetrahedron!(3!–simplex)!in!3]dim!
all!“flat”!

Flat!building!blocks!are!D]dim.!Simplices!(D) 
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Regge!FormulaQon:!
ConsQtuents!

Misner, Thorne, Wheeler 



avenues for discretization are possible. One could discretize the theory from the very beginning,

while it is still formulated in terms of an action, and introduce for it a lapse and a shift function,

extrinsic and intrinsic discrete curvatures etc. Alternatively one could try to discretize the contin-

uum Wheeler-DeWitt equation directly, a procedure that makes sense in the lattice formulation,

as these equations are still given in terms of geometric objects, for which the Regge theory is very

well suited. It is the latter approach which we will proceed to outline here.

The starting point for the following discussion is therefore the Wheeler-DeWitt equation for

pure gravity in the absence of matter, Eq. (31),

{

− (16πG)2 Gij,kl(x)
δ2

δgij(x) δgkl(x)
−
√

g(x)
(

3R(x) − 2λ
)

}

Ψ[gij(x)] = 0 (45)

and the diffeomorphism constraint of Eq. (33),

{

2 i gij(x)∇k(x)
δ

δgjk(x)

}

Ψ[gij(x)] = 0 . (46)

Note that these equations express a constraint on the state |Ψ〉 at every x, each of the form

Ĥ(x) |Ψ〉 = 0 and Ĥi (x)|Ψ〉 = 0.

On a simplicial lattice [20, 21, 22, 23, 24] (see for example [25], and references therein, for a

more complete discussion of the lattice formulation for gravity) one knows that deformations of the

squared edge lengths are linearly related to deformations of the induced metric. In a given simplex

σ, take coordinates based at a vertex 0, with axes along the edges from 0. The other vertices are

each at unit coordinate distance from 0 (see Figures 1,2 and 3 for this labelling of a triangle and

of a tetrahedron). In terms of these coordinates, the metric within the simplex is given by

gij(σ) = 1
2

(

l20i + l20j − l2ij
)

. (47)

Note also that in the following discussion only edges and volumes along the spatial direction are

involved. It follows that one can introduce in a natural way a lattice analog of the DeWitt super-

metric of Eq. (26), by adhering to the following procedure. First one writes for the supermetric in

edge length space

‖ δl2 ‖2 =
∑

ij

Gij(l2) δl2i δl
2
j , (48)

with the quantity Gij(l2) suitably defined on the space of squared edge lengths [26, 27]. Through

a straightforward exercise of varying the squared volume of a given simplex σ in d dimensions

V 2(σ) =
(

1
d!

)2
det gij(l

2(σ)) (49)
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 d +1]!Dimensional!!
Discrete!Wheeler!DeWiN!equaQon!!

Both!equaQons!are!defined!at!each!“point”!in!space.!!
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Involves the variables of the neighbor simplices of a simplex. 
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!!q!:!coordinaQon!number!

Only involves the variables within one simplex. 
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4

to quadratic order in the metric (on the r.h.s.), or in the squared edge lengths belonging to that

simplex (on the l.h.s.), one finds the identity

1

V (l2)

∑

ij

∂2V 2(l2)

∂l2i ∂l
2
j

δl2i δl
2
j = 1

d!

√

det(gij)
[

gijgklδgijδgkl − gijgklδgjkδgli
]

. (50)

The right hand side of this equation contains precisely the expression appearing in the continuum

supermetric of Eq. (26) (for a specific choice of the parameter ᾱ = −2), while the left hand side

contains the sought-for lattice supermetric. One is therefore led to the identification

Gij(l2) = − d!
∑

σ

1

V (σ)

∂2 V 2(σ)

∂l2i ∂l
2
j

. (51)

It should be noted that in spite of the appearance of a sum over simplices σ, Gij(l2) is quite local

(in correspondence with the continuum, where it is ultra-local), since the derivatives on the right

hand side vanish when the squared edge lengths in question are not part of the same simplex. The

sum over σ therefore only extends over those few tetrahedra which contain either the i or the j

edge.

At this point one is finally ready to write a lattice analog of the Wheeler-DeWitt equation for

pure gravity, which reads
{

− (16πG)2 Gij(l
2)

∂2

∂l2i ∂l
2
j

−
√

g(l2)
[

3R(l2) − 2λ
]

}

Ψ[ l2 ] = 0 , (52)

with Gij(l2) the inverse of the matrix Gij(l2) given above. The range of the summation over i and

j and the appropriate expression for the scalar curvature, in this equation, are discussed below and

made explicit in Eq. (53).

It should be emphasized that, just like there is one local equation for each spatial point x in the

continuum, here too there is only one local (or semi-local, since strictly speaking more than one

lattice vertex is involved) equation that needs to be specified at each simplex, or simplices, with

Gij defined in accordance with the definition in Eq. (51). On the other hand, and again in close

analogy with the continuum expression, the wavefunction Ψ[ l2 ] depends of course collectively on

all the edge lengths in the lattice. The latter should therefore be regarded as a function of the whole

simplicial geometry, whatever its nature might be, just like the continuum wavefunction Ψ[gij ] will

be a function(al) of all metric variables, or more specifically of the overall geometry of the manifold,

due to the built-in diffemorphism invariance. On the side we note here that the lattice supermetric

is dimensionful, Gij ∼ l4−d and Gij ∼ ld−4 in d spacetime dimensions, so it might be useful and

convenient from now on to explicitly introduce a lattice spacing a (or a momentum cutoff Λ = 1/a)

and express all dimensionful quantities (G,λ, li) in terms of this fundamental lattice spacing.

13

avenues for discretization are possible. One could discretize the theory from the very beginning,

while it is still formulated in terms of an action, and introduce for it a lapse and a shift function,

extrinsic and intrinsic discrete curvatures etc. Alternatively one could try to discretize the contin-

uum Wheeler-DeWitt equation directly, a procedure that makes sense in the lattice formulation,

as these equations are still given in terms of geometric objects, for which the Regge theory is very

well suited. It is the latter approach which we will proceed to outline here.

The starting point for the following discussion is therefore the Wheeler-DeWitt equation for

pure gravity in the absence of matter, Eq. (31),

{

− (16πG)2 Gij,kl(x)
δ2

δgij(x) δgkl(x)
−
√

g(x)
(

3R(x) − 2λ
)

}

Ψ[gij(x)] = 0 (45)

and the diffeomorphism constraint of Eq. (33),

{

2 i gij(x)∇k(x)
δ

δgjk(x)

}

Ψ[gij(x)] = 0 . (46)

Note that these equations express a constraint on the state |Ψ〉 at every x, each of the form

Ĥ(x) |Ψ〉 = 0 and Ĥi (x)|Ψ〉 = 0.

On a simplicial lattice [20, 21, 22, 23, 24] (see for example [25], and references therein, for a

more complete discussion of the lattice formulation for gravity) one knows that deformations of the

squared edge lengths are linearly related to deformations of the induced metric. In a given simplex

σ, take coordinates based at a vertex 0, with axes along the edges from 0. The other vertices are

each at unit coordinate distance from 0 (see Figures 1,2 and 3 for this labelling of a triangle and

of a tetrahedron). In terms of these coordinates, the metric within the simplex is given by

gij(σ) = 1
2

(

l20i + l20j − l2ij
)

. (47)

Note also that in the following discussion only edges and volumes along the spatial direction are

involved. It follows that one can introduce in a natural way a lattice analog of the DeWitt super-

metric of Eq. (26), by adhering to the following procedure. First one writes for the supermetric in

edge length space

‖ δl2 ‖2 =
∑

ij

Gij(l2) δl2i δl
2
j , (48)

with the quantity Gij(l2) suitably defined on the space of squared edge lengths [26, 27]. Through

a straightforward exercise of varying the squared volume of a given simplex σ in d dimensions

V 2(σ) =
(

1
d!

)2
det gij(l

2(σ)) (49)
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 Discrete WDW!eqns!in!2+1 dim. 

Therefore!even!though!we!have!one!equaQon!for!each!
simplex,!there!should!be!one)wave)func2on!that)sa2sfies)
all)the)equa2ons)for!each!simplices!in!one!configuraQon.!

!

Ψ[l2]!is!a!funcQon!of!the!whole!simplicial!geometry!
(overall!geometry!of!the!manifold),!due!to!the!built]in!
diffeomorphism)invariance.)
)
Ψ[l2]!depends!collecQvely!on!all!the!edge!lengths!in!the!
la`ce.!



A!single!triangle:!!
•  Curvature term is absent in!this!configuraQon.!
•  as!a!starQng!point!for!the!strong!coupling!expansion!in!1/G.!!
•  should!show!the!physical!nature!of!the!wavefuncQon!soluQon!deep!in!the!

strong!coupling!regime.!

If one sets

 [ s ] =  [A� ], (85)

then one can show that

@2

@a @b
 =

1

(16A�)2
(b + c � a) (a + c � b)

 

d2�

dA2
�

� 1

A�

d�

dA�

!

+
1

16A�

d�

dA�
. (86)

Summing the partial derivatives leads to the equation

A�
d2�

dA2
�

+ 2
d�

dA�
+ 16 �̃ A� � = 0 . (87)

A�
d2 

dA2
�

+ 2
d 

dA�
+ 8

�

G2
A�  = 0 . (88)

Solutions to the above equation are given by

 [ a, b, c ] = const.
1

A�
exp



± i · 4A�

q

�̃
�

, (89)

or alternatively by

 [ a, b, c ] =
1

A�



c1 cos
✓

4A�

q

�̃
◆

+ c2 sin
✓

4A�

q

�̃
◆�

. (90)

Note the remarkable, but not entirely unexpected, result that the wavefunction only depends on

the area of the triangle A�(a, b, c). In other words, it depends on the geometry only. Regularity

of the wavefunction as the area of the triangle approaches zero, A� ! 0, requires for the constant

c1 = 0. Therefore the correct quantum-mechanical solution is unambiguously determined,

 [ a, b, c ] =
1

q

2⇡
p

�̃

1

A�
sin
✓

4A�

q

�̃
◆

. (91)
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. (92)

 [ a, b, c ] =

p
G

q

2⇡
p
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1

A�
sin

 

2
p
2�

G
A�

!

. (93)

The overall normalization constant has been fixed by the standard rule of quantum mechanics,
Z 1

0
dA� | (A�) |2 = 1 . (94)

Moreover we note that a bare � < 0 is not possible, and that the oscillatory nature of the wavefunc-

tion is seen here to give rise to well-defined peaks in the probability distribution for the triangle

area, located at

(A�)n =
n⇡

4
p

�̃
(95)

with n integer.
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NormalizaQon!constant!fixed!by!the!
standard!rule!of!quantum!mechanics:!

The overall normalization constant has been fixed by the standard rule of quantum mechanics,
∫ ∞

0
dA∆ |Ψ(A∆) |2 = 1 . (86)

Moreover we note that a bare λ < 0 is not possible, and that the oscillatory nature of the wavefunc-

tion is seen here to give rise to well-defined peaks in the probability distribution for the triangle

area, located at

(A∆)n =
nπ

4
√

λ̃
(87)

with n integer.

6.4 Solution of the tetrahedron problem in 3+1 dimensions

In this section we will consider the nature of quantum-mechanical solutions for a single tetrahedron.

Now, from Eq. (76), the Wheeler-DeWitt equation for a single tetrahedron with a constant curvature

density term R reads
{

− (16πG)2 Gij
∂2

∂si∂sj
+ (2λ−R)V

}

Ψ[ s ] = 0, (88)

where now the squared edge lengths s1 . . . s6 are all part of the same tetrahedron, and Gij is given

by a rather complicated, but explicit, 6× 6 matrix given earlier.

As in the 2+1 case discussed in the previous section, here too it is found that, when acting

on functions of the tetrahedron volume, the Laplacian term still returns some other function of

the volume only, which makes it possible to readily obtain a full solution for the wavefunction. In

terms of the volume of the tetrahedron VT one has the equivalent equation for Ψ[s] = f(VT ) (we

again replace 16πG → G from now on)

7

16
Gf ′(VT ) +

1

16
GVT f ′′(VT ) +

1

G
(2λ−R)VT f(VT ) = 0 (89)

with primes indicating derivatives with respect to VT . From now on we will set the constant

curvature density R=0; then the solutions are Bessel functions Jm or Ym with m = 3,

ψR(VT ) = const. J3

(

4
√
2

√
λ

G
VT

)

/V 3
T (90)

or

ψS(VT ) = const. Y3(

(

4
√
2

√
λ

G
VT

)

/V 3
T . (91)

Only Jm(x) is regular as x → 0, Jm(x) ∼ Γ(m + 1)−1(x/2)m. So the only physically acceptable

wavefunction is

Ψ(a, b, . . . f) = Ψ(VT ) = N
J3(
(

4
√
2
√
λ

G VT

)

V 3
T

(92)
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 Exact!SoluQon!for!A!Single!Triangle!
(2+1 dim.) 

!

(                  )!!!!!!

A!single!triangle:!!
•  Curvature!term!is!absent!in!this!configuraQon.!
•  as!a!starQng!point!for!the!strong!coupling!expansion!in!1/G.!!
•  should!show!the!physical!nature!of!the!wavefuncQon!soluQon!deep!in!the!strong!

coupling!regime.!

If one sets

 [ s ] =  [A� ], (85)

then one can show that
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 =
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Summing the partial derivatives leads to the equation

A�
d2�

dA2
�

+ 2
d�

dA�
+ 16 �̃ A� � = 0 . (87)
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Solutions to the above equation are given by
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or alternatively by
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Note the remarkable, but not entirely unexpected, result that the wavefunction only depends on

the area of the triangle A�(a, b, c). In other words, it depends on the geometry only. Regularity

of the wavefunction as the area of the triangle approaches zero, A� ! 0, requires for the constant

c1 = 0. Therefore the correct quantum-mechanical solution is unambiguously determined,

 [ a, b, c ] =
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The overall normalization constant has been fixed by the standard rule of quantum mechanics,

Z 1

0
dA� | (A�) |2 = 1 . (92)

Moreover we note that a bare � < 0 is not possible, and that the oscillatory nature of the wavefunc-

tion is seen here to give rise to well-defined peaks in the probability distribution for the triangle

area, located at

(A�)n =
n⇡

4
p

�̃
(93)

with n integer.
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6.4 Solution of the tetrahedron problem in 3+1 dimensions

In this section we will consider the nature of quantum-mechanical solutions for a single tetrahedron.

Now, from Eq. (76), the Wheeler-DeWitt equation for a single tetrahedron with a constant curvature

density term R reads
{

− (16πG)2 Gij
∂2

∂si∂sj
+ (2λ−R)V

}

Ψ[ s ] = 0, (88)

where now the squared edge lengths s1 . . . s6 are all part of the same tetrahedron, and Gij is given

by a rather complicated, but explicit, 6× 6 matrix given earlier.

As in the 2+1 case discussed in the previous section, here too it is found that, when acting

on functions of the tetrahedron volume, the Laplacian term still returns some other function of

the volume only, which makes it possible to readily obtain a full solution for the wavefunction. In

terms of the volume of the tetrahedron VT one has the equivalent equation for Ψ[s] = f(VT ) (we

again replace 16πG → G from now on)

7

16
Gf ′(VT ) +

1

16
GVT f ′′(VT ) +

1

G
(2λ−R)VT f(VT ) = 0 (89)

with primes indicating derivatives with respect to VT . From now on we will set the constant

curvature density R=0; then the solutions are Bessel functions Jm or Ym with m = 3,
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Summing the partial derivatives leads to the equation
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Solutions to the above equation are given by
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or alternatively by
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Note the remarkable, but not entirely unexpected, result that the wavefunction only depends on

the area of the triangle A�(a, b, c). In other words, it depends on the geometry only. Regularity

of the wavefunction as the area of the triangle approaches zero, A� ! 0, requires for the constant

c1 = 0. Therefore the correct quantum-mechanical solution is unambiguously determined,

 [ a, b, c ] =
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. (91)

The overall normalization constant has been fixed by the standard rule of quantum mechanics,

Z 1

0
dA� | (A�) |2 = 1 . (92)

Moreover we note that a bare � < 0 is not possible, and that the oscillatory nature of the wavefunc-

tion is seen here to give rise to well-defined peaks in the probability distribution for the triangle

area, located at

(A�)n =
n⇡

4
p

�̃
(93)

with n integer.
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6.4 Solution of the tetrahedron problem in 3+1 dimensions

In this section we will consider the nature of quantum-mechanical solutions for a single tetrahedron.

Now, from Eq. (76), the Wheeler-DeWitt equation for a single tetrahedron with a constant curvature

density term R reads
{

− (16πG)2 Gij
∂2

∂si∂sj
+ (2λ−R)V

}

Ψ[ s ] = 0, (88)

where now the squared edge lengths s1 . . . s6 are all part of the same tetrahedron, and Gij is given

by a rather complicated, but explicit, 6× 6 matrix given earlier.

As in the 2+1 case discussed in the previous section, here too it is found that, when acting

on functions of the tetrahedron volume, the Laplacian term still returns some other function of

the volume only, which makes it possible to readily obtain a full solution for the wavefunction. In

terms of the volume of the tetrahedron VT one has the equivalent equation for Ψ[s] = f(VT ) (we

again replace 16πG → G from now on)

7

16
Gf ′(VT ) +

1

16
GVT f ′′(VT ) +

1

G
(2λ−R)VT f(VT ) = 0 (89)

with primes indicating derivatives with respect to VT . From now on we will set the constant

curvature density R=0; then the solutions are Bessel functions Jm or Ym with m = 3,

ψR(VT ) = const. J3

(

4
√
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√
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G
VT

)

/V 3
T (90)

or

ψS(VT ) = const. Y3(

(

4
√
2

√
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G
VT

)

/V 3
T . (91)

Only Jm(x) is regular as x → 0, Jm(x) ∼ Γ(m + 1)−1(x/2)m. So the only physically acceptable

wavefunction is

Ψ(a, b, . . . f) = Ψ(VT ) = N
J3(
(

4
√
2
√
λ

G VT

)

V 3
T

(92)
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 Exact!SoluQon!for!A!Single!Triangle!

(                  )!!!!!!

A!single!triangle:!!
•  Curvature!term!is!absent!in!this!configuraQon.!
•  as!a!starQng!point!for!the!strong!coupling!expansion!in!1/G.!!
•  should!show!the!physical!nature!of!the!wavefuncQon!soluQon!deep!in!the!strong!

coupling!regime.!

If one sets

 [ s ] =  [A� ], (85)

then one can show that
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Summing the partial derivatives leads to the equation

A�
d2�

dA2
�

+ 2
d�

dA�
+ 16 �̃ A� � = 0 . (87)
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d2 

dA2
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+ 2
d 

dA�
+ 8

�

G2
A�  = 0 . (88)

Solutions to the above equation are given by

 [ a, b, c ] = const.
1
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

± i · 4A�
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, (89)

or alternatively by
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+ c2 sin
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4A�

q
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. (90)

Note the remarkable, but not entirely unexpected, result that the wavefunction only depends on

the area of the triangle A�(a, b, c). In other words, it depends on the geometry only. Regularity

of the wavefunction as the area of the triangle approaches zero, A� ! 0, requires for the constant

c1 = 0. Therefore the correct quantum-mechanical solution is unambiguously determined,

 [ a, b, c ] =
1

q

2⇡
p

�̃

1

A�
sin
✓

4A�

q

�̃
◆

. (91)

The overall normalization constant has been fixed by the standard rule of quantum mechanics,

Z 1

0
dA� | (A�) |2 = 1 . (92)

Moreover we note that a bare � < 0 is not possible, and that the oscillatory nature of the wavefunc-

tion is seen here to give rise to well-defined peaks in the probability distribution for the triangle

area, located at

(A�)n =
n⇡

4
p

�̃
(93)

with n integer.
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Note the remarkable, but not entirely unexpected, result that the wavefunction only depends on

the area of the triangle A�(a, b, c). In other words, it depends on the geometry only. Regularity
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The overall normalization constant has been fixed by the standard rule of quantum mechanics,
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0
dA� | (A�) |2 = 1 . (94)

Moreover we note that a bare � < 0 is not possible, and that the oscillatory nature of the wavefunc-

tion is seen here to give rise to well-defined peaks in the probability distribution for the triangle

area, located at

(A�)n =
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4
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with n integer.
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NormalizaQon!constant!fixed!by!the!
standard!rule!of!quantum!mechanics:!

The overall normalization constant has been fixed by the standard rule of quantum mechanics,
∫ ∞

0
dA∆ |Ψ(A∆) |2 = 1 . (86)

Moreover we note that a bare λ < 0 is not possible, and that the oscillatory nature of the wavefunc-

tion is seen here to give rise to well-defined peaks in the probability distribution for the triangle

area, located at

(A∆)n =
nπ

4
√

λ̃
(87)

with n integer.

6.4 Solution of the tetrahedron problem in 3+1 dimensions

In this section we will consider the nature of quantum-mechanical solutions for a single tetrahedron.

Now, from Eq. (76), the Wheeler-DeWitt equation for a single tetrahedron with a constant curvature

density term R reads
{

− (16πG)2 Gij
∂2

∂si∂sj
+ (2λ−R)V

}

Ψ[ s ] = 0, (88)

where now the squared edge lengths s1 . . . s6 are all part of the same tetrahedron, and Gij is given

by a rather complicated, but explicit, 6× 6 matrix given earlier.

As in the 2+1 case discussed in the previous section, here too it is found that, when acting

on functions of the tetrahedron volume, the Laplacian term still returns some other function of

the volume only, which makes it possible to readily obtain a full solution for the wavefunction. In

terms of the volume of the tetrahedron VT one has the equivalent equation for Ψ[s] = f(VT ) (we

again replace 16πG → G from now on)

7

16
Gf ′(VT ) +

1

16
GVT f ′′(VT ) +

1

G
(2λ−R)VT f(VT ) = 0 (89)

with primes indicating derivatives with respect to VT . From now on we will set the constant

curvature density R=0; then the solutions are Bessel functions Jm or Ym with m = 3,

ψR(VT ) = const. J3

(

4
√
2

√
λ

G
VT

)

/V 3
T (90)

or

ψS(VT ) = const. Y3(

(

4
√
2

√
λ

G
VT

)

/V 3
T . (91)

Only Jm(x) is regular as x → 0, Jm(x) ∼ Γ(m + 1)−1(x/2)m. So the only physically acceptable

wavefunction is

Ψ(a, b, . . . f) = Ψ(VT ) = N
J3(
(

4
√
2
√
λ

G VT

)

V 3
T

(92)
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 Exact!SoluQon!for!A!Single!Triangle!

(                  )!!!!!!



Since!a!discreQzaQon!of!space]Qme!breaks!the!diffeomorphism!
invariance,!it!raises!the!quesQon!of!whether!and!in!what!form!
part!of!the!diffeomorphism!symmetry!can!sQll!be!realized!at!the!
discrete!level.!
!
!
!The!soluQon!only!depends!on!geometry!
i.e., spaQal)diffeomorphism!is!retained.!
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 Significance!of!Single!Triangle!SoluQon!
(2+1 dim.) 

!



In!principle,!any!soluQon!of!the!Wheeler]DeWiN!equaQon!
corresponds!to!a!possible!quantum!state!of!the!universe.!
!

In!our!analyQcal!calculaQons,!we!used!spherical boundary 
conditions for the spatial manifold, 
further,!regular!polyhedra!approximaQons!to!a!2]sphere.!

 Problem!Set]up!(2+1 dim.) 
!

The!boundary!condiQons!on!the!wavefuncQon!will!act!to!restrict!the!
class!of!possible!soluQons;!!
!

in! ordinary! quantum! mechanics,! they! are! determined! by! the!
physical! context! of! the! problem! and! some! set! of! external!
condiQons.!!



 Problem!Set]up!(2+1 dim.) 
The idea:!

Polyhedral!approximaQon!to!a!sphere!

We!even!further!take!a!simpler!approach!and!use!regular!polyhedra!for!a!2gsphere,!i.e., 

tetrahedron! octahedron! icosahedron!

 ConfiguraQons!

(More precisely!!!!!!!!!!!!!!!!!!!,!further more                             )!
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In the limit of small area, the regular solution approaches a constant and the discussion, and

solution, is rather similar to the previous cases. Here one finds

Ψ ! 1 − 4
15 λ̃A

2
tot + 8

285 λ̃
2A4

tot + . . . , (125)

up to terms of O(ε2).

8.6 Summary of Results

Here we will summarize the results obtained previously for the various finite lattices we considered

so far (tetrahedron, octahedron, icosaheadron, and regularly triangulated torus).

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

It is rather remarkable that all of the previous cases (except the single triangle) can be described

by one single set of interpolating functions, where the interpolating variable is related to the overall

lattice size (the number of triangles).

For equilateral triangles and in the absence of curvature, the wave function Ψ(x) for all previous

cases is described by the following equation

Ψ′′ +
2n+ 1

x
Ψ′ + Ψ = 0 (126)

with parameter n given by

n = 1
4 (N∆ − 2) (127)

where N∆ ≡ N2 is the total number of triangles. Thus

N∆ = 4(n + 1
2) (128)

and consequently

ntetrahedron = 1
4 (4− 2) =

1

2
,

noctahedron = 1
4 (8− 2) =

3

2
,

nicosahedron = 1
4 (20− 2) =

9

2
,

ntorus = 1
4 (13− 2) =

11

4
. (129)

Note that for a single triangle one has n = 1
2 as well, but the definition of the scaled area is different

in that case.
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and leads therefore to a wavefunction that is not normalizable.

We record here the small x (small area) behavior of the normalized wavefunction in Eq. (131)

Ψ(x) ∼ N
(

1
2

)n

Γ(n+ 1)
, (138)

and the corresponding large x (large area) behavior

Ψ(x) ∼ N
√

2

π

1

xn+
1
2

cos
(

x− nπ

2
− π

4

)

, (139)

both of which reflect well known properties of the Bessel functions Jn(x).

(b) Equilateral Case with Curvature Term (ε = 0)

When the curvature term is included in the Wheeler-DeWitt equation, still in the limit of

equilateral triangles, one obtains the following interpolating differential equation

Ψ′′ +
2n+ 1

x
Ψ′ − 2β

x
Ψ + Ψ = 0 , (140)

which now describes the radial wavefunction for a quantum particle in D = 2n + 2 dimensions,

with a repulsive Coulomb potential proportional to 2β.

The non-singular, normalizable solution is now given by

Ψ(x) # e− i x
1F1

(

n+ 1
2 − iβ, 2n+ 1, 2 i x

)

, (141)

up to an overall wavefunction normalization constant Ñ (n,β). The normalization constant can be

evaluated analytically, but has a rather unwieldy form, and will not be recorded here.

Notice that the imaginary part (β) of the first argument in the confluent hypergeometric function

of Eq. (141) depends on the topology, but does not depend on the number of triangles. Note also

that, in spite of appearances, the above wavefunction is still real for nonzero β.

In view of he previous discussion the parameter n increases as more triangles are included in

the simplicial geometry. For the regulat triangulations of the sphere the total deficit angle (the sum

of the deficit angles in a given simplicial geometry) is always 4π, so even if one writes for the wave

functional Ψ[Atot, δtot], the curvature contribution
∑

h δh is a constant and does not contribute in

any significant way.

The general asymptotic behavior of the solution Ψ(x) is easily determined from Eq. (140). For

small x one has

Ψ(x) ∼ xα (142)
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regular solution close to the origin is not affected by the presence of the β (curvature) term. In

other words, the wavefunction solution Ψ(x) in Eq. (141) is still well behaved for small areas, and

therefore leads to a perfectly acceptable, normalizable solution.

Furthermore, the combination and properties of arguments in the confluent hypergeometric

function in Eq. (141), allows one to write it as a Coulomb wave function

Cl(η) ρ
l+1 · e− i ρ

1F1 (l + 1− i η, 2 l + 2, 2 i ρ) = Fl(η, ρ) , (149)

where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [28, 29]. The latter is a

solution of the radial differential equation

d2 Fl

d ρ2
+

[

1 − 2 η

ρ
− l(l + 1)

ρ2

]

Fl = 0 , (150)

with the actual radial wavefunction then given by Rl(r) = Fl(kr)/r. After comparing the above

equation with Eq. (141) one then identifies ρ = x, l = n− 1
2 and η = β. Thus l = N∆/4− 1 where

N∆ is the number of triangles on the lattice. The proportionality constant Cl in Eq. (149) is given

by

Cl(η) ≡
2l e−

π η
2 |Γ(l + 1 + i η)|
Γ(2l + 2)

. (151)

One then has immediately, from Eq. (141), an equivalent representation for the regular wavefunction

as

Ψ(x) #
[

C
n− 1

2
(β)

]−1 Fl(β, x)

xn+
1
2

, (152)

again up to an overall wavefunction normalization constant Ñ (n,β). Again we note that the

irregular Coulomb wavefunction [usually denoted by Gl(η, ρ)] is singular for small r, and will not

be considered here. Further relevant properties of the Coulomb wave function can be found in

[28, 29, 30, 31, 32].

The known asymptotics of Coulomb wavefunction [30, 31, 32] allows one to derive the following

result for the wavefunction Ψ for large x

Ψ(x) # Ñ 1

C
n−

1
2
(β)xn+

1
2

sin

[

x− β ln 2x− (2n − 1)π

4
+ σn

]

(153)

with phase

σn = argΓ(n+ 1
2 + iβ) (154)

and from Eq. (151)

C
n−

1
2
(β) ≡

2n−
1
2 e−

π β
2 |Γ(n+ 1

2 + iβ)|
Γ(2n+ 1)

. (155)
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"!!Coulomb!wave!funcQon!

! ¼
!Y

"

A"

"
!0
#
1þ !2

!X

"

A"

"
2

þ !4

!X

"

A"

"
4
þ # # #

$
(85)

and then expand the solution in " for small s. To
zeroth order in ", we had the solution!$ JnðxÞ=xn
with x ¼ 2

ffiffiffiffi
~#

p
Atot and n ¼ 1=2. This gives in

Eq. (85) !0 ¼ 0, !2 ¼ ' 2
3
~# and !4 ¼ 2

15
~#2. To

linear order [Oð"Þ] one finds, though, that terms
appear which cannot be expressed in the form of
Eq. (85). But one also finds that, while these terms
are nonzero if one uses the Hamiltonian density
(the Hamiltonian contribution from just a single
triangle), if one uses the sum of such triangle
Hamiltonians, then the resulting solution is symme-
trized, and the corrections to Eq. (85) are found to be
of order Oð"2Þ. Then, the wave function for small
area is of the form

!$ 1' 2

3
~#A2

tot þ
2

15
~#2A4

tot þ . . . (86)

up to terms Oð"2Þ.

C. Octahedron

The discussion of the octahedron proceeds in a way that
is similar to what was done before for the tetrahedron. In
the case of the octahedron, one has 8 triangles, 12 edges
and 6 vertices, with 4 neighboring triangles per vertex.
Again we will now discuss the various cases individually.

(a) Equilateral case in the strong coupling limit (" ¼ 0)
Again, we look first at the case " ¼ 0 in Eq. (52),
deep in the strong coupling region and without the
curvature term. Following Eq. (53) we define the
scaled area variable as

x ¼ 2
ffiffiffiffi
~#

p
Atot ¼ 8( 2

ffiffiffiffi
~#

p
A" (87)

and it is found that the solution is a function of this
variable only. For equilateral triangles the wave
function ! needs to satisfy

!00 þ 4

x
!0 þ! ¼ 0: (88)

The correct solution can be written in the form

!ðxÞ ¼ N
JnðxÞ
xn

(89)

with

n ¼ 3

2
(90)

so that

!ðxÞ ¼ N
J3=2ð2

ffiffiffiffi
~#

p
AtotÞ

ð2
ffiffiffiffi
~#

p
AtotÞ3=2

: (91)

The wave function normalization factor is given by

N ¼
ffiffiffiffiffiffi
15

p
~#1=4: (92)

Equivalent forms of the above wave function are

!ðAtotÞ ¼ N
1

23=2#ð52Þ

( expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1ð2; 4; 4i

ffiffiffiffi
~#

p
AtotÞ

¼ N
#
' cosð2

ffiffiffiffi
~#

p
AtotÞ

2
ffiffiffiffiffiffiffi
2$

p
~#A2

tot

þ sinð2
ffiffiffiffi
~#

p
AtotÞ

4
ffiffiffiffiffiffiffi
2$

p
~#3=2A3

tot

$
:

(93)

These can be expanded for small Atot or small x to
give

! ¼ N

ffiffiffi
2

p

3
ffiffiffiffi
$

p
#
1' x2

10
þ x4

280
þOðx6Þ

$
: (94)

We note here again that both Bessel functions of the
first (J) and second (Y) kind, in principle, give
solutions for this case, as well as the two corre-
sponding Hankel (H) functions. Nevertheless, only
the solution associated with the Bessel J function is
regular near the origin.

(b) Equilateral case with curvature term (" ¼ 0)
Next, we include the effects of the curvature term.
Since here the deficit angle % ¼ 2$=3 at each ver-
tex, the curvature contribution for each equilateral
triangle is & # 2$3 # 3 ¼ 2$&. For the octahedron, one
has in Eq. (40)

&octa ¼ 2 # 1
4
: (95)

With the curvature term, one finds

!ðAtotÞ ’ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

4$&octaffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"

¼ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

2$ffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"
: (96)

Note that in this case one had to include a factor
Atot=ð4A"Þ, which in the octahedron case equals
two.

(c) Large area in the strong coupling limit (" ! 0)
In the limit of large areas, the two independent
solutions reduce to

!$x!1 expð)ixÞ $ expð)2i
ffiffiffiffi
~#

p
AtotÞ (97)

to all orders in ". In other words, to Oð"nÞ with
n ! 1, as for the tetrahedron case. Note also that
in the strong coupling limit, the two independent
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In the limit of small area, the regular solution approaches a constant and the discussion, and

solution, is rather similar to the previous cases. Here one finds

Ψ ! 1 − 4
15 λ̃A

2
tot + 8

285 λ̃
2A4

tot + . . . , (125)

up to terms of O(ε2).

8.6 Summary of Results

Here we will summarize the results obtained previously for the various finite lattices we considered

so far (tetrahedron, octahedron, icosaheadron, and regularly triangulated torus).

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

It is rather remarkable that all of the previous cases (except the single triangle) can be described

by one single set of interpolating functions, where the interpolating variable is related to the overall

lattice size (the number of triangles).

For equilateral triangles and in the absence of curvature, the wave function Ψ(x) for all previous

cases is described by the following equation

Ψ′′ +
2n+ 1

x
Ψ′ + Ψ = 0 (126)

with parameter n given by

n = 1
4 (N∆ − 2) (127)

where N∆ ≡ N2 is the total number of triangles. Thus

N∆ = 4(n + 1
2) (128)

and consequently

ntetrahedron = 1
4 (4− 2) =

1

2
,

noctahedron = 1
4 (8− 2) =

3

2
,

nicosahedron = 1
4 (20− 2) =

9

2
,

ntorus = 1
4 (13− 2) =

11

4
. (129)

Note that for a single triangle one has n = 1
2 as well, but the definition of the scaled area is different

in that case.
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and leads therefore to a wavefunction that is not normalizable.

We record here the small x (small area) behavior of the normalized wavefunction in Eq. (131)

Ψ(x) ∼ N
(

1
2

)n

Γ(n+ 1)
, (138)

and the corresponding large x (large area) behavior

Ψ(x) ∼ N
√

2

π

1

xn+
1
2

cos
(

x− nπ

2
− π

4

)

, (139)

both of which reflect well known properties of the Bessel functions Jn(x).

(b) Equilateral Case with Curvature Term (ε = 0)

When the curvature term is included in the Wheeler-DeWitt equation, still in the limit of

equilateral triangles, one obtains the following interpolating differential equation

Ψ′′ +
2n+ 1

x
Ψ′ − 2β

x
Ψ + Ψ = 0 , (140)

which now describes the radial wavefunction for a quantum particle in D = 2n + 2 dimensions,

with a repulsive Coulomb potential proportional to 2β.

The non-singular, normalizable solution is now given by

Ψ(x) # e− i x
1F1

(

n+ 1
2 − iβ, 2n+ 1, 2 i x

)

, (141)

up to an overall wavefunction normalization constant Ñ (n,β). The normalization constant can be

evaluated analytically, but has a rather unwieldy form, and will not be recorded here.

Notice that the imaginary part (β) of the first argument in the confluent hypergeometric function

of Eq. (141) depends on the topology, but does not depend on the number of triangles. Note also

that, in spite of appearances, the above wavefunction is still real for nonzero β.

In view of he previous discussion the parameter n increases as more triangles are included in

the simplicial geometry. For the regulat triangulations of the sphere the total deficit angle (the sum

of the deficit angles in a given simplicial geometry) is always 4π, so even if one writes for the wave

functional Ψ[Atot, δtot], the curvature contribution
∑

h δh is a constant and does not contribute in

any significant way.

The general asymptotic behavior of the solution Ψ(x) is easily determined from Eq. (140). For

small x one has

Ψ(x) ∼ xα (142)
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regular solution close to the origin is not affected by the presence of the β (curvature) term. In

other words, the wavefunction solution Ψ(x) in Eq. (141) is still well behaved for small areas, and

therefore leads to a perfectly acceptable, normalizable solution.

Furthermore, the combination and properties of arguments in the confluent hypergeometric

function in Eq. (141), allows one to write it as a Coulomb wave function

Cl(η) ρ
l+1 · e− i ρ

1F1 (l + 1− i η, 2 l + 2, 2 i ρ) = Fl(η, ρ) , (149)

where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [28, 29]. The latter is a

solution of the radial differential equation

d2 Fl

d ρ2
+

[

1 − 2 η

ρ
− l(l + 1)

ρ2

]

Fl = 0 , (150)

with the actual radial wavefunction then given by Rl(r) = Fl(kr)/r. After comparing the above

equation with Eq. (141) one then identifies ρ = x, l = n− 1
2 and η = β. Thus l = N∆/4− 1 where

N∆ is the number of triangles on the lattice. The proportionality constant Cl in Eq. (149) is given

by

Cl(η) ≡
2l e−

π η
2 |Γ(l + 1 + i η)|
Γ(2l + 2)

. (151)

One then has immediately, from Eq. (141), an equivalent representation for the regular wavefunction

as

Ψ(x) #
[

C
n− 1

2
(β)

]−1 Fl(β, x)

xn+
1
2

, (152)

again up to an overall wavefunction normalization constant Ñ (n,β). Again we note that the

irregular Coulomb wavefunction [usually denoted by Gl(η, ρ)] is singular for small r, and will not

be considered here. Further relevant properties of the Coulomb wave function can be found in

[28, 29, 30, 31, 32].

The known asymptotics of Coulomb wavefunction [30, 31, 32] allows one to derive the following

result for the wavefunction Ψ for large x

Ψ(x) # Ñ 1

C
n−

1
2
(β)xn+

1
2

sin

[

x− β ln 2x− (2n − 1)π

4
+ σn

]

(153)

with phase

σn = argΓ(n+ 1
2 + iβ) (154)

and from Eq. (151)

C
n−

1
2
(β) ≡

2n−
1
2 e−

π β
2 |Γ(n+ 1

2 + iβ)|
Γ(2n+ 1)

. (155)
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"
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þ !4

!X

"

A"

"
4
þ # # #
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and then expand the solution in " for small s. To
zeroth order in ", we had the solution!$ JnðxÞ=xn
with x ¼ 2

ffiffiffiffi
~#

p
Atot and n ¼ 1=2. This gives in

Eq. (85) !0 ¼ 0, !2 ¼ ' 2
3
~# and !4 ¼ 2

15
~#2. To

linear order [Oð"Þ] one finds, though, that terms
appear which cannot be expressed in the form of
Eq. (85). But one also finds that, while these terms
are nonzero if one uses the Hamiltonian density
(the Hamiltonian contribution from just a single
triangle), if one uses the sum of such triangle
Hamiltonians, then the resulting solution is symme-
trized, and the corrections to Eq. (85) are found to be
of order Oð"2Þ. Then, the wave function for small
area is of the form

!$ 1' 2

3
~#A2

tot þ
2

15
~#2A4

tot þ . . . (86)

up to terms Oð"2Þ.

C. Octahedron

The discussion of the octahedron proceeds in a way that
is similar to what was done before for the tetrahedron. In
the case of the octahedron, one has 8 triangles, 12 edges
and 6 vertices, with 4 neighboring triangles per vertex.
Again we will now discuss the various cases individually.

(a) Equilateral case in the strong coupling limit (" ¼ 0)
Again, we look first at the case " ¼ 0 in Eq. (52),
deep in the strong coupling region and without the
curvature term. Following Eq. (53) we define the
scaled area variable as

x ¼ 2
ffiffiffiffi
~#

p
Atot ¼ 8( 2

ffiffiffiffi
~#

p
A" (87)

and it is found that the solution is a function of this
variable only. For equilateral triangles the wave
function ! needs to satisfy

!00 þ 4

x
!0 þ! ¼ 0: (88)

The correct solution can be written in the form

!ðxÞ ¼ N
JnðxÞ
xn

(89)

with

n ¼ 3

2
(90)

so that

!ðxÞ ¼ N
J3=2ð2

ffiffiffiffi
~#

p
AtotÞ

ð2
ffiffiffiffi
~#

p
AtotÞ3=2

: (91)

The wave function normalization factor is given by

N ¼
ffiffiffiffiffiffi
15

p
~#1=4: (92)

Equivalent forms of the above wave function are

!ðAtotÞ ¼ N
1

23=2#ð52Þ

( expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1ð2; 4; 4i

ffiffiffiffi
~#

p
AtotÞ

¼ N
#
' cosð2

ffiffiffiffi
~#

p
AtotÞ

2
ffiffiffiffiffiffiffi
2$

p
~#A2

tot

þ sinð2
ffiffiffiffi
~#

p
AtotÞ

4
ffiffiffiffiffiffiffi
2$

p
~#3=2A3

tot

$
:

(93)

These can be expanded for small Atot or small x to
give

! ¼ N

ffiffiffi
2

p

3
ffiffiffiffi
$

p
#
1' x2

10
þ x4

280
þOðx6Þ

$
: (94)

We note here again that both Bessel functions of the
first (J) and second (Y) kind, in principle, give
solutions for this case, as well as the two corre-
sponding Hankel (H) functions. Nevertheless, only
the solution associated with the Bessel J function is
regular near the origin.

(b) Equilateral case with curvature term (" ¼ 0)
Next, we include the effects of the curvature term.
Since here the deficit angle % ¼ 2$=3 at each ver-
tex, the curvature contribution for each equilateral
triangle is & # 2$3 # 3 ¼ 2$&. For the octahedron, one
has in Eq. (40)

&octa ¼ 2 # 1
4
: (95)

With the curvature term, one finds

!ðAtotÞ ’ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

4$&octaffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"

¼ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

2$ffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"
: (96)

Note that in this case one had to include a factor
Atot=ð4A"Þ, which in the octahedron case equals
two.

(c) Large area in the strong coupling limit (" ! 0)
In the limit of large areas, the two independent
solutions reduce to

!$x!1 expð)ixÞ $ expð)2i
ffiffiffiffi
~#

p
AtotÞ (97)

to all orders in ". In other words, to Oð"nÞ with
n ! 1, as for the tetrahedron case. Note also that
in the strong coupling limit, the two independent

WHEELER-DEWITT EQUATION IN 2þ 1 DIMENSIONS PHYSICAL REVIEW D 86, 084010 (2012)

084010-11

!!! (without!curvature,!for!strong!coupling)!

Regular!soluQon:!



so that for λ0 = 1 (in units of the UV cutoff, or, equivalently, in units of the fundamental lattice

spacing) one has λ̃ = 1/64πG. One can now re-write the Wheeler-DeWitt equation so that the

kinetic term (the term involving the Laplacian) has unit coefficient, and write Eq. (15) as

{

−∆ +
2λ

(16πG)2
√
g − 1

(16πG)2
√
g R

}

Ψ = 0 . (44)

Since λ = 8πG in this system of units with λ0 = 1, one obtains 2λ/(16πG)2 = 1/16πG. At

this point one can compare the three terms appearing in the Wheeler-DeWitt equation. In the

strong coupling limit (G→∞) the kinetic term is the most dominant one, followed by the volume

(cosmological constant) term, and finally by the curvature term. One concludes that, in a first

approximation, the curvature R term can be neglected compared to the other two terms in this

limit.

Two further notational simplifications will be done in the following. The first one is introduced

in order to avoid lots of factors of 16π in many of the subsequent formulas. Consequently from now

on we shall write G as a short hand for 16πG,

16πG −→ G . (45)

In this notation one then has λ = G/2 and λ̃ = 1/4G. A second notational choice will be dictated

later on by the structure of the wavefunction solutions, which will commonly involve factors of
√
G.

For this reason we will define the coupling g as

g ≡
√
G , (46)

so that λ̃ = 1/
(

4 g2
)

. The latter g should not be confused with the square root of the determinant

of the metric.

Later on it will turn out convenient to define a parameter β for the triangulations of the sphere,

defined as

β ≡ 2π
√

λ̃G2
. (47)

Factors of 2π arise here because we are looking at various triangulations of the two-sphere. In

general for a two-dimensional closed manifold with arbitrary topology one has by the Gauss-Bonnet

theorem
∫

d2x
√
g R = 4π χ (48)

with χ is the Euler characteristic of the manifold. The latter is related to the genus g (the number

of handles) via χ = 2 − 2g. On a discrete manifold in two dimensions one has the equivalent

16

 χ :!!!!Euler!characterisQcs!of!the!manifold!

form χ = N0 −N1 + N2, where Ni is the number of simplices of dimension i. Thus for a general

two-dimensional manifold it will become useful later to define

β =
χπ
√

λ̃G2
. (49)

Equivalently, using
√

λ̃G2 =
1

2
√
G

·G2 = 1
2 G

3/2 (50)

and, making use of the coupling g, one has simply

β =
4π

g3
(51)

for the sphere, and

β =
2π χ

g3
(52)

in the more general case.

8 Outline of the General Method for 2 + 1 Dimensions

It should be clear from the previous discussion that in the strong coupling limit (large G) on can, at

first, neglect the curvature term, which can then be included at a later stage. This will simplify the

problem quite a bit, as it is the curvature term that introduces an interactions between neighboring

simplices. This is evident from the lattice Wheeler-DeWitt equation, where the deficit angles enter

the curvature term.

The general procedure will be as follows. First a solution will be found for equilateral edge

lengths s. Later this solution will be extended to see whether it is consistent to higher order in the

weak field expansion. Consequently we shall write for the squared edge lenths

l2ij = s (1 + εhij) , (53)

with ε a small expansion parameter. Therefore, for example, in Eq. (37) one has a = s(1 + εha),

b = s(1 + εhb) and c = s(1 + εhc). The resulting solution for the wavefunctions will then be given

by a suitable power series in the h variables.

To lowest order in h a solution to the Wheeler-DeWitt equation is readily found using the

standard power series (or Frobenius) method, appropriate for the study of quantum mechanical

wave equations. In this method, one first obtains the correct asymptotic behavior of the solution

for small and large arguments, and later constructs a full solution by writing the remainder as a
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]The!soluQon!is!in!totally!a!generalized!form,!!!!

regular solution close to the origin is not affected by the presence of the β (curvature) term. In

other words, the wavefunction solution Ψ(x) in Eq. (141) is still well behaved for small areas, and

therefore leads to a perfectly acceptable, normalizable solution.

Furthermore, the combination and properties of arguments in the confluent hypergeometric

function in Eq. (141), allows one to write it as a Coulomb wave function

Cl(η) ρ
l+1 · e− i ρ

1F1 (l + 1− i η, 2 l + 2, 2 i ρ) = Fl(η, ρ) , (149)

where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [28, 29]. The latter is a

solution of the radial differential equation

d2 Fl

d ρ2
+

[

1 − 2 η

ρ
− l(l + 1)

ρ2

]

Fl = 0 , (150)

with the actual radial wavefunction then given by Rl(r) = Fl(kr)/r. After comparing the above

equation with Eq. (141) one then identifies ρ = x, l = n− 1
2 and η = β. Thus l = N∆/4− 1 where

N∆ is the number of triangles on the lattice. The proportionality constant Cl in Eq. (149) is given

by

Cl(η) ≡
2l e−

π η
2 |Γ(l + 1 + i η)|
Γ(2l + 2)

. (151)

One then has immediately, from Eq. (141), an equivalent representation for the regular wavefunction

as

Ψ(x) #
[

C
n− 1

2
(β)

]−1 Fl(β, x)

xn+
1
2

, (152)

again up to an overall wavefunction normalization constant Ñ (n,β). Again we note that the

irregular Coulomb wavefunction [usually denoted by Gl(η, ρ)] is singular for small r, and will not

be considered here. Further relevant properties of the Coulomb wave function can be found in

[28, 29, 30, 31, 32].

The known asymptotics of Coulomb wavefunction [30, 31, 32] allows one to derive the following

result for the wavefunction Ψ for large x

Ψ(x) # Ñ 1

C
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4
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with phase

σn = argΓ(n+ 1
2 + iβ) (154)

and from Eq. (151)

C
n−

1
2
(β) ≡

2n−
1
2 e−

π β
2 |Γ(n+ 1

2 + iβ)|
Γ(2n+ 1)

. (155)

34

= 

In the limit of small area, the regular solution approaches a constant and the discussion, and

solution, is rather similar to the previous cases. Here one finds

Ψ ! 1 − 4
15 λ̃A

2
tot + 8

285 λ̃
2A4

tot + . . . , (125)

up to terms of O(ε2).

8.6 Summary of Results

Here we will summarize the results obtained previously for the various finite lattices we considered

so far (tetrahedron, octahedron, icosaheadron, and regularly triangulated torus).

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

It is rather remarkable that all of the previous cases (except the single triangle) can be described

by one single set of interpolating functions, where the interpolating variable is related to the overall

lattice size (the number of triangles).

For equilateral triangles and in the absence of curvature, the wave function Ψ(x) for all previous

cases is described by the following equation

Ψ′′ +
2n+ 1

x
Ψ′ + Ψ = 0 (126)

with parameter n given by

n = 1
4 (N∆ − 2) (127)

where N∆ ≡ N2 is the total number of triangles. Thus

N∆ = 4(n + 1
2) (128)

and consequently

ntetrahedron = 1
4 (4− 2) =

1

2
,

noctahedron = 1
4 (8− 2) =

3

2
,

nicosahedron = 1
4 (20− 2) =

9

2
,

ntorus = 1
4 (13− 2) =

11

4
. (129)

Note that for a single triangle one has n = 1
2 as well, but the definition of the scaled area is different

in that case.
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and leads therefore to a wavefunction that is not normalizable.

We record here the small x (small area) behavior of the normalized wavefunction in Eq. (131)

Ψ(x) ∼ N
(

1
2

)n

Γ(n+ 1)
, (138)

and the corresponding large x (large area) behavior

Ψ(x) ∼ N
√

2

π

1

xn+
1
2

cos
(

x− nπ

2
− π

4

)

, (139)

both of which reflect well known properties of the Bessel functions Jn(x).

(b) Equilateral Case with Curvature Term (ε = 0)

When the curvature term is included in the Wheeler-DeWitt equation, still in the limit of

equilateral triangles, one obtains the following interpolating differential equation

Ψ′′ +
2n+ 1

x
Ψ′ − 2β

x
Ψ + Ψ = 0 , (140)

which now describes the radial wavefunction for a quantum particle in D = 2n + 2 dimensions,

with a repulsive Coulomb potential proportional to 2β.

The non-singular, normalizable solution is now given by

Ψ(x) # e− i x
1F1

(

n+ 1
2 − iβ, 2n+ 1, 2 i x

)

, (141)

up to an overall wavefunction normalization constant Ñ (n,β). The normalization constant can be

evaluated analytically, but has a rather unwieldy form, and will not be recorded here.

Notice that the imaginary part (β) of the first argument in the confluent hypergeometric function

of Eq. (141) depends on the topology, but does not depend on the number of triangles. Note also

that, in spite of appearances, the above wavefunction is still real for nonzero β.

In view of he previous discussion the parameter n increases as more triangles are included in

the simplicial geometry. For the regulat triangulations of the sphere the total deficit angle (the sum

of the deficit angles in a given simplicial geometry) is always 4π, so even if one writes for the wave

functional Ψ[Atot, δtot], the curvature contribution
∑

h δh is a constant and does not contribute in

any significant way.

The general asymptotic behavior of the solution Ψ(x) is easily determined from Eq. (140). For

small x one has

Ψ(x) ∼ xα (142)
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regular solution close to the origin is not affected by the presence of the β (curvature) term. In
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where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [28, 29]. The latter is a
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again up to an overall wavefunction normalization constant Ñ (n,β). Again we note that the

irregular Coulomb wavefunction [usually denoted by Gl(η, ρ)] is singular for small r, and will not

be considered here. Further relevant properties of the Coulomb wave function can be found in

[28, 29, 30, 31, 32].

The known asymptotics of Coulomb wavefunction [30, 31, 32] allows one to derive the following

result for the wavefunction Ψ for large x
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"!!Coulomb!wave!funcQon!
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and then expand the solution in " for small s. To
zeroth order in ", we had the solution!$ JnðxÞ=xn
with x ¼ 2

ffiffiffiffi
~#

p
Atot and n ¼ 1=2. This gives in

Eq. (85) !0 ¼ 0, !2 ¼ ' 2
3
~# and !4 ¼ 2

15
~#2. To

linear order [Oð"Þ] one finds, though, that terms
appear which cannot be expressed in the form of
Eq. (85). But one also finds that, while these terms
are nonzero if one uses the Hamiltonian density
(the Hamiltonian contribution from just a single
triangle), if one uses the sum of such triangle
Hamiltonians, then the resulting solution is symme-
trized, and the corrections to Eq. (85) are found to be
of order Oð"2Þ. Then, the wave function for small
area is of the form

!$ 1' 2

3
~#A2

tot þ
2

15
~#2A4

tot þ . . . (86)

up to terms Oð"2Þ.

C. Octahedron

The discussion of the octahedron proceeds in a way that
is similar to what was done before for the tetrahedron. In
the case of the octahedron, one has 8 triangles, 12 edges
and 6 vertices, with 4 neighboring triangles per vertex.
Again we will now discuss the various cases individually.

(a) Equilateral case in the strong coupling limit (" ¼ 0)
Again, we look first at the case " ¼ 0 in Eq. (52),
deep in the strong coupling region and without the
curvature term. Following Eq. (53) we define the
scaled area variable as

x ¼ 2
ffiffiffiffi
~#

p
Atot ¼ 8( 2

ffiffiffiffi
~#

p
A" (87)

and it is found that the solution is a function of this
variable only. For equilateral triangles the wave
function ! needs to satisfy

!00 þ 4

x
!0 þ! ¼ 0: (88)

The correct solution can be written in the form

!ðxÞ ¼ N
JnðxÞ
xn

(89)

with

n ¼ 3

2
(90)

so that

!ðxÞ ¼ N
J3=2ð2
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~#

p
AtotÞ

ð2
ffiffiffiffi
~#

p
AtotÞ3=2

: (91)

The wave function normalization factor is given by

N ¼
ffiffiffiffiffiffi
15

p
~#1=4: (92)

Equivalent forms of the above wave function are

!ðAtotÞ ¼ N
1

23=2#ð52Þ
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~#

p
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¼ N
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2
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4
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$
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(93)

These can be expanded for small Atot or small x to
give

! ¼ N

ffiffiffi
2

p

3
ffiffiffiffi
$

p
#
1' x2

10
þ x4

280
þOðx6Þ

$
: (94)

We note here again that both Bessel functions of the
first (J) and second (Y) kind, in principle, give
solutions for this case, as well as the two corre-
sponding Hankel (H) functions. Nevertheless, only
the solution associated with the Bessel J function is
regular near the origin.

(b) Equilateral case with curvature term (" ¼ 0)
Next, we include the effects of the curvature term.
Since here the deficit angle % ¼ 2$=3 at each ver-
tex, the curvature contribution for each equilateral
triangle is & # 2$3 # 3 ¼ 2$&. For the octahedron, one
has in Eq. (40)

&octa ¼ 2 # 1
4
: (95)

With the curvature term, one finds

!ðAtotÞ ’ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

4$&octaffiffiffiffi
~#

p
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"

¼ expð'2i
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(
!
2' i

2$ffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"
: (96)

Note that in this case one had to include a factor
Atot=ð4A"Þ, which in the octahedron case equals
two.

(c) Large area in the strong coupling limit (" ! 0)
In the limit of large areas, the two independent
solutions reduce to

!$x!1 expð)ixÞ $ expð)2i
ffiffiffiffi
~#

p
AtotÞ (97)

to all orders in ". In other words, to Oð"nÞ with
n ! 1, as for the tetrahedron case. Note also that
in the strong coupling limit, the two independent
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(Fluctuation)!

Scaling!AssumpQon(

A divergence of correlation length signals the presence of transition!
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and leads to the appearance of singularity in free energy.!
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part of the free energy, Fsing ∼ ξ−d in the vicinity of a critical point (for more detailed discussion see

for example [19, 31, 32]). The preceding argument then implies, via scaling, that a determination

of α provides a direct estimate for the correlation length exponent ν defined in Eq. (183). Note

that based on the results so far one would be inclined to conclude that for 2+ 1 gravity the critical

point gc → 0 as n→∞. Eq. (182) can then be re-written either as

χA ∼
g→gc

ξα/ν (184)

or, in a finite volume with linear lattice dimensions L ∼ N1/d
0 ∼

√
N∆ ∼

√
n (since N∆ = 4n + 2),

as

χA ∼
g→gc

Lα/ν ∼ n1/ν−3/2 , (185)

since, for a very large box and g very close to the critical point gc, the correlation length saturates

to its maximum value ξ ∼ L. Hence the volume- or n-dependence of χ provides a clear and direct

way to estimate the critical correlation length exponent ν defined in Eq. (183).

9 Results for Arbitrary Euler Characteristic χ

The results of the previous sections refer to regular triangulations of the sphere (χ = 2) and the

torus (χ = 0) in 2 + 1 dimensions. It would seem that one has enough information at this point

to reconstruct the same type of answers for arbitrary χ. In particular one has for the parameter β

[see Eqs. (48) and (51)]

β =
2πχ

g3
, (186)

relevant for the wave functions in Eqs. (135) or (147). For the average total area one then finds,

using the wave function expansion in Eq. (161),
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In the large n limit one obtains for the average area of a single triangle
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and for the average total area
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!n]dependence!of!χ!provides!a!way!to!esQmate!the!exponent!ν!directly.!

For g close to the critical point gc, the correlation length saturates to its maximum value ξ ~ L.!

Correlation length is given by!

knowing !

)e.g.,!Parisi,!Cardy!
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Scaling!AssumpQon:!!!!!!!!!!!!!!!!!!!!!!!!therefore!

Average!

FluctuaQon!
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Scaling!AssumpQon)
A!divergence!of!correlaQon!length!signals!the!presence!of!transiQon!
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!and!leads!to!the!appearance!of!singularity!in!free!energy!
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(definiQon!of!ν)))

)e.g.,!Parisi,!Cardy!

�(h) = 2⇡ �
X

��h

✓ (�, h) (24)

I

latt

�
l

2
�
= �0

X

simplices �

V

(d)
�

�
X

hinges h

�

h

V

(d�2)
h

(25)

g

i j

(�) = e

i

· e
j

(26)

< A� >=

g

2

p
2⇡n


1� 5

16n

+O
✓

1

n

2

◆�
+

(⇡ � 2)�

2n g

2


1 +

1

4n (⇡ � 2)

+ · · ·
�

(27)

< A

tot

> ⇠
r

2n

⇡

g +

2 (⇡ � 2) �

g

2
+ · · · (28)

�

A

=

✓
1� 2

⇡

◆
g

2

4

+O
✓
1

n

◆
+

1

2

(4� ⇡)

r
2

n⇡

�

g

+ · · · (29)

J

l+ 1
2
(x) +

2 l + 3

l + 1

⌘ J l+3
2

(x) +

2 l + 6

l + 1

⌘

2
J

l+ 5
2
(x) + · · · (30)

g

3
c

=

4 (⇡ � 2)

p
2⇡p

n

(31)

g

c

' 2.25

1

n

1/6
(32)

F ⇠ 1

V

lnZ (33)

F

sing

⇠ ⇠

�d

(34)

< O >⇠ 1

V

@

@ g

lnZ (35)

� ⇠ 1

V

@

2

@g

2
lnZ (36)

3

�(h) = 2⇡ �
X

��h

✓ (�, h) (24)

I

latt

�
l

2
�
= �0

X

simplices �

V

(d)
�

�
X

hinges h

�

h

V

(d�2)
h

(25)

g

i j

(�) = e

i

· e
j

(26)

< A� >=

g

2

p
2⇡n


1� 5

16n

+O
✓

1

n

2

◆�
+

(⇡ � 2)�

2n g

2


1 +

1

4n (⇡ � 2)

+ · · ·
�

(27)

< A

tot

> ⇠
r

2n

⇡

g +

2 (⇡ � 2) �

g

2
+ · · · (28)

�

A

=

✓
1� 2

⇡

◆
g

2

4

+O
✓
1

n

◆
+

1

2

(4� ⇡)

r
2

n⇡

�

g

+ · · · (29)

J

l+ 1
2
(x) +

2 l + 3

l + 1

⌘ J l+3
2

(x) +

2 l + 6

l + 1

⌘

2
J

l+ 5
2
(x) + · · · (30)

g

3
c

=

4 (⇡ � 2)

p
2⇡p

n

(31)

g

c

' 2.25

1

n

1/6
(32)

F ⇠ 1

V

lnZ (33)

F

sing

⇠ ⇠

�d

(34)

< O >⇠ 1

V

@

@ g

lnZ (35)

� ⇠ 1

V

@

2

@g

2
lnZ (36)

3

�(h) = 2⇡ �
X

��h

✓ (�, h) (24)

I

latt

�
l

2
�
= �0

X

simplices �

V

(d)
�

�
X

hinges h

�

h

V

(d�2)
h

(25)

g

i j

(�) = e

i

· e
j

(26)

< A� >=

g

2

p
2⇡n


1� 5

16n

+O
✓

1

n

2

◆�
+

(⇡ � 2)�

2n g

2


1 +

1

4n (⇡ � 2)

+ · · ·
�

(27)

< A

tot

> ⇠
r

2n

⇡

g +

2 (⇡ � 2) �

g

2
+ · · · (28)

�

A

=

✓
1� 2

⇡

◆
g

2

4

+O
✓
1

n

◆
+

1

2

(4� ⇡)

r
2

n⇡

�

g

+ · · · (29)

J

l+ 1
2
(x) +

2 l + 3

l + 1

⌘ J l+3
2

(x) +

2 l + 6

l + 1

⌘

2
J

l+ 5
2
(x) + · · · (30)

g

3
c

=

4 (⇡ � 2)

p
2⇡p

n

(31)

g

c

' 2.25

1

n

1/6
(32)

F ⇠ 1

V

lnZ (33)

F

sing

⇠ ⇠

�d

(34)

< O >⇠ 1

V

@

@ g

lnZ (35)

� ⇠ 1

V

@

2

@g

2
lnZ (36)

3

�(h) = 2⇡ �
X

��h

✓ (�, h) (24)

I

latt

�
l

2
�
= �0

X

simplices �

V

(d)
�

�
X

hinges h

�

h

V

(d�2)
h

(25)

g

i j

(�) = e

i

· e
j

(26)

< A� >=

g

2

p
2⇡n


1� 5

16n

+O
✓

1

n

2

◆�
+

(⇡ � 2)�

2n g

2


1 +

1

4n (⇡ � 2)

+ · · ·
�

(27)

< A

tot

> ⇠
r

2n

⇡

g +

2 (⇡ � 2) �

g

2
+ · · · (28)

�

A

=

✓
1� 2

⇡

◆
g

2

4

+O
✓
1

n

◆
+

1

2

(4� ⇡)

r
2

n⇡

�

g

+ · · · (29)

J

l+ 1
2
(x) +

2 l + 3

l + 1

⌘ J l+3
2

(x) +

2 l + 6

l + 1

⌘

2
J

l+ 5
2
(x) + · · · (30)

g

3
c

=

4 (⇡ � 2)

p
2⇡p

n

(31)

g

c

' 2.25

1

n

1/6
(32)

F ⇠ 1

V

lnZ (33)

F

sing

⇠ ⇠

�d

(34)

< O >⇠ 1

V

@

@ g

lnZ (35)

� ⇠ 1

V

@

2

@g

2
lnZ (36)

3

Scaling!AssumpQon:!!!!!!!!!!!!!!!!!!!!!!!!therefore!

Average!

FluctuaQon!

�(h) = 2⇡ �
X

��h

✓ (�, h) (24)

I

latt

�
l

2
�
= �0

X

simplices �

V

(d)
�

�
X

hinges h

�

h

V

(d�2)
h

(25)

g

i j

(�) = e

i

· e
j

(26)

< A� >=

g

2

p
2⇡n


1� 5

16n

+O
✓

1

n

2

◆�
+

(⇡ � 2)�

2n g

2


1 +

1

4n (⇡ � 2)

+ · · ·
�

(27)

< A

tot

> ⇠
r

2n

⇡

g +

2 (⇡ � 2) �

g

2
+ · · · (28)

�

A

=

✓
1� 2

⇡

◆
g

2

4

+O
✓
1

n

◆
+

1

2

(4� ⇡)

r
2

n⇡

�

g

+ · · · (29)

J

l+ 1
2
(x) +

2 l + 3

l + 1

⌘ J l+3
2

(x) +

2 l + 6

l + 1

⌘

2
J

l+ 5
2
(x) + · · · (30)

g

3
c

=

4 (⇡ � 2)

p
2⇡p

n

(31)

g

c

' 2.25

1

n

1/6
(32)

⇠ ⇠ |g � g

c

|�⌫

(33)

F = � 1

V

lnZ (34)

F

sing

⇠ ⇠

�d

(35)

F

sing

⇠ |g � g

c

|d ⌫ (36)

F

sing

⇠ ⇠

�d ⇠ |g � g

c

|d ⌫ (37)

< O >⇠ 1

V

@

@ g

lnZ (38)

� ⇠ 1

V

@

2

@g

2
lnZ (39)

3

�(h) = 2⇡ �
X

��h

✓ (�, h) (24)

I

latt

�
l

2
�
= �0

X

simplices �

V

(d)
�

�
X

hinges h

�

h

V

(d�2)
h

(25)

g

i j

(�) = e

i

· e
j

(26)

< A� >=

g

2

p
2⇡n


1� 5

16n

+O
✓

1

n

2

◆�
+

(⇡ � 2)�

2n g

2


1 +

1

4n (⇡ � 2)

+ · · ·
�

(27)

< A

tot

> ⇠
r

2n

⇡

g +

2 (⇡ � 2) �

g

2
+ · · · (28)

�

A

=

✓
1� 2

⇡

◆
g

2

4

+O
✓
1

n

◆
+

1

2

(4� ⇡)

r
2

n⇡

�

g

+ · · · (29)

J

l+ 1
2
(x) +

2 l + 3

l + 1

⌘ J l+3
2

(x) +

2 l + 6

l + 1

⌘

2
J

l+ 5
2
(x) + · · · (30)

g

3
c

=

4 (⇡ � 2)

p
2⇡p

n

(31)

g

c

' 2.25

1

n

1/6
(32)

⇠ ⇠ |g � g

c

|�⌫

(33)

F = � 1

V

lnZ (34)

F

sing

⇠ ⇠

�d

(35)

F

sing

⇠ |g � g

c

|d ⌫ (36)

F

sing

⇠ ⇠

�d ⇠ |g � g

c

|d ⌫ (37)

< O >⇠ 1

V

@

@ g

lnZ (38)

⇠ |g � g

c

|d ⌫�1
(39)

� ⇠ 1

V

@

2

@g

2
lnZ (40)

⇠ |g � g

c

|d ⌫�2
(41)

⇠ |g � g

c

|3 ⌫�2
(42)

3

�(h) = 2⇡ �
X

��h

✓ (�, h) (24)

I

latt

�
l

2
�
= �0

X

simplices �

V

(d)
�

�
X

hinges h

�

h

V

(d�2)
h

(25)

g

i j

(�) = e

i

· e
j

(26)

< A� >=

g

2

p
2⇡n


1� 5

16n

+O
✓

1

n

2

◆�
+

(⇡ � 2)�

2n g

2


1 +

1

4n (⇡ � 2)

+ · · ·
�

(27)

< A

tot

> ⇠
r

2n

⇡

g +

2 (⇡ � 2) �

g

2
+ · · · (28)

�

A

=

✓
1� 2

⇡

◆
g

2

4

+O
✓
1

n

◆
+

1

2

(4� ⇡)

r
2

n⇡

�

g

+ · · · (29)

J

l+ 1
2
(x) +

2 l + 3

l + 1

⌘ J l+3
2

(x) +

2 l + 6

l + 1

⌘

2
J

l+ 5
2
(x) + · · · (30)

g

3
c

=

4 (⇡ � 2)

p
2⇡p

n

(31)

g

c

' 2.25

1

n

1/6
(32)

⇠ ⇠ |g � g

c

|�⌫

(33)

F = � 1

V

lnZ (34)

F

sing

⇠ ⇠

�d

(35)

F

sing

⇠ |g � g

c

|d ⌫ (36)

F

sing

⇠ ⇠

�d ⇠ |g � g

c

|d ⌫ (37)

< O >⇠ 1

V

@

@ g

lnZ (38)

⇠ |g � g

c

|d ⌫�1
(39)

� ⇠ 1

V

@

2

@g

2
lnZ (40)

⇠ |g � g

c

|d ⌫�2
(41)

⇠ |g � g

c

|3 ⌫�2
(42)

3

Scaling!AssumpQon)
A!divergence!of!correlaQon!length!signals!the!presence!of!transiQon!

�(h) = 2⇡ �
X

��h

✓ (�, h) (24)

I

latt

�
l

2
�
= �0

X

simplices �

V

(d)
�

�
X

hinges h

�

h

V

(d�2)
h

(25)

g

i j

(�) = e

i

· e
j

(26)

< A� >=

g

2

p
2⇡n


1� 5

16n

+O
✓

1

n

2

◆�
+

(⇡ � 2)�

2n g

2


1 +

1

4n (⇡ � 2)

+ · · ·
�

(27)

< A

tot

> ⇠
r

2n

⇡

g +

2 (⇡ � 2) �

g

2
+ · · · (28)

�

A

=

✓
1� 2

⇡

◆
g

2

4

+O
✓
1

n

◆
+

1

2

(4� ⇡)

r
2

n⇡

�

g

+ · · · (29)

J

l+ 1
2
(x) +

2 l + 3

l + 1

⌘ J l+3
2

(x) +

2 l + 6

l + 1

⌘

2
J

l+ 5
2
(x) + · · · (30)

g

3
c

=

4 (⇡ � 2)

p
2⇡p

n

(31)

g

c

' 2.25

1

n

1/6
(32)

⇠ ⇠ |g � g

c

|�⌫

(33)

F = � 1

V

lnZ (34)

F

sing

⇠ ⇠

�d

(35)

< O >⇠ 1

V

@

@ g

lnZ (36)

� ⇠ 1

V

@

2

@g

2
lnZ (37)

3

!and!leads!to!the!appearance!of!singularity!in!free!energy!

⇠ g

2


⇡ � 2

4 ⇡

+O
✓
1

n

◆�
(76)

�

A

|
�=0 = (77)

< A4 > =

< A

tot

>

N4
=

< A

tot

>

4n+ 2

(78)

< A

tot

> =

r
2 n

⇡

g +

2 (⇡ � 2) �

⇡

+O
✓
1

n

◆
(79)

� =

2 ⇡ �

g

3
(80)

F

l

(�, x) =

2

l+1

p
⇡

�

✓
l +

3

2

◆
C

l

(�) x

r
⇡

2 x

( 1X

k=l

b

k

(�) J

k+ 1
2
(x)

)
(81)

�! (82)

⇠ ⇠

2 � d ⌫
⌫

(83)

6

(definiQon!of!ν)))



0.0 0.5 1.0 1.5 2.0g0

2

4

6

8

10

ΧA

Icosahedron

Octahedron

Figure 7: Area fluctuation χA vs. g =
√
G for the octahedron and icosahedron, computed from

Eq. (172). Note the divergence for small g.

According to the sum rule of Eq. (179) a divergence in the curvature fluctuation

χR ∼ < (
∑

h

δhlh)
2 > − <

∑

h

δhlh >2 (180)

for the three-dimensional (Euclidean) theory generally implies a corresponding divergence in the

volume fluctuation

χV ∼ < (
∑

h

Vh)
2 > − <

∑

h

Vh >2 (181)

for the same theory. In our case a divergence is expected in 2 + 1 dimensions of the form

χA ∼
g→gc

|g − gc|−α (182)

with exponent α ≡ 1− δ = 2− 3ν, where δ is the universal curvature exponent defined previously

in Eq. (170), and ν the correlation length exponent. The latter is defined in the usual way [31, 32]

through

ξ ∼
g→gc

|g − gc|−ν , (183)

where ξ is the invariant gravitational correlation length. The scaling relations among various

exponents (ν, δ,α) are rather immediate consequences of the scaling assumption for the singular

already been taken. This results in two lattices spacings, one for the time and one for the space directions, denoted
here respectively by at and a, with the first lattice spacing already sent to zero. It is then relatively straightforward
to relate volumes between the two formulations, such as V ! atA. Relating curvatures (for example, 2R in the 2 + 1
theory vs. the Ricci scalar R in the original three-dimensional theory) in the two formulations is obviously less easy,
due to the presence of derivatives along the time direction.
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and that the curvature fluctuation diverges in the same limit. From the sum rule in Eq. (169) one

then deduces that the average volume in the Euclidean theory has a singularity of the type

<
∑

T

VT > = V0 − V1 |g − gc|δ (171)

with the same exponent δ " 0.77. The latter is related by standard universality and scaling

arguments [31, 32, 33] (see [19] for details specific to the gravity case) to the correlation length

exponent ν by ν = (1 + δ)/d in d dimensions. To compare to the Lorentzian theory discussed

in this paper, one notes that the three-dimensional Euclidean theory corresponds to the (2 + 1)-

dimensional Wheeler-DeWitt theory, so that the average volume in the above discussion should be

taken to correspond to an average area in our case. 6 To conclude, the results for the average

area suggest the existence of a phase transition in the Lorentzian theory located at g = 0. In the

next sections we will present further test of this hypothesis, based on physical observables that can

establish directly and un-ambiguously the location of the phase transition point.

8 Area Fluctuation, Fixed Point and Critical Exponent

Another quantity that can be obtained readily from the wave function Ψ is the fluctuation in the

total area

χA =
1

N∆

{

< (Atot)
2 > − < Atot >

2
}

. (172)

The latter is related to the fluctuations in the individual triangles by

χA = N∆
{

< A2
∆ > − < A∆ >2

}

(173)

with the usual definition of averages, such as the one given in Eq. (154).

Generally for a field φ(x) with renormalized mass m and correlation length ξ = m−1, wave

function renormalization constant Z, and (Euclidean) propagator

< φ(x)φ(0) > =

∫

ddp

(2π)d
e−ip·x Z

p2 +m2
, (174)

one has for Φ ≡
∫

x φ(x)

< Φ2 > =

∫

x,y
< φ(x)φ(y) > = V

∫

x
< φ(x)φ(0) > = V

Z

m2
= V Z ξ2 . (175)

6 It should be noted that in the case of the lattice Wheeler-DeWitt equation of Eqs. (20) and (21), and generally in
any lattice Hamiltonian continuous-time formulation, the lattice continuum limit along the time direction has already
been taken. This is due to the fact that one can view the resulting 2 + 1 theory as originating from one where there
exist initially two lattices spacings, at and a. The first one is relevant for the time direction, and the second one for
the spatial directions. In the present lattice formulation the limit at → 0 has already been taken; the only limit left
is a → 0, which requires the existence of an ultraviolet fixed point of the renormalization group.
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regular solution close to the origin is not affected by the presence of the β (curvature) term. In

other words, the wavefunction solution Ψ(x) in Eq. (141) is still well behaved for small areas, and

therefore leads to a perfectly acceptable, normalizable solution.

Furthermore, the combination and properties of arguments in the confluent hypergeometric

function in Eq. (141), allows one to write it as a Coulomb wave function

Cl(η) ρ
l+1 · e− i ρ

1F1 (l + 1− i η, 2 l + 2, 2 i ρ) = Fl(η, ρ) , (149)

where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [28, 29]. The latter is a

solution of the radial differential equation

d2 Fl

d ρ2
+

[

1 − 2 η

ρ
− l(l + 1)

ρ2

]

Fl = 0 , (150)

with the actual radial wavefunction then given by Rl(r) = Fl(kr)/r. After comparing the above

equation with Eq. (141) one then identifies ρ = x, l = n− 1
2 and η = β. Thus l = N∆/4− 1 where

N∆ is the number of triangles on the lattice. The proportionality constant Cl in Eq. (149) is given

by

Cl(η) ≡
2l e−

π η
2 |Γ(l + 1 + i η)|
Γ(2l + 2)

. (151)

One then has immediately, from Eq. (141), an equivalent representation for the regular wavefunction

as

Ψ(x) #
[

C
n− 1

2
(β)

]−1 Fl(β, x)

xn+
1
2

, (152)

again up to an overall wavefunction normalization constant Ñ (n,β). Again we note that the

irregular Coulomb wavefunction [usually denoted by Gl(η, ρ)] is singular for small r, and will not

be considered here. Further relevant properties of the Coulomb wave function can be found in

[28, 29, 30, 31, 32].

The known asymptotics of Coulomb wavefunction [30, 31, 32] allows one to derive the following

result for the wavefunction Ψ for large x

Ψ(x) # Ñ 1

C
n−

1
2
(β)xn+

1
2

sin

[

x− β ln 2x− (2n − 1)π

4
+ σn

]

(153)

with phase

σn = argΓ(n+ 1
2 + iβ) (154)

and from Eq. (151)

C
n−

1
2
(β) ≡

2n−
1
2 e−

π β
2 |Γ(n+ 1

2 + iβ)|
Γ(2n+ 1)

. (155)
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= 

In the limit of small area, the regular solution approaches a constant and the discussion, and

solution, is rather similar to the previous cases. Here one finds

Ψ ! 1 − 4
15 λ̃A

2
tot + 8

285 λ̃
2A4

tot + . . . , (125)

up to terms of O(ε2).

8.6 Summary of Results

Here we will summarize the results obtained previously for the various finite lattices we considered

so far (tetrahedron, octahedron, icosaheadron, and regularly triangulated torus).

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

It is rather remarkable that all of the previous cases (except the single triangle) can be described

by one single set of interpolating functions, where the interpolating variable is related to the overall

lattice size (the number of triangles).

For equilateral triangles and in the absence of curvature, the wave function Ψ(x) for all previous

cases is described by the following equation

Ψ′′ +
2n+ 1

x
Ψ′ + Ψ = 0 (126)

with parameter n given by

n = 1
4 (N∆ − 2) (127)

where N∆ ≡ N2 is the total number of triangles. Thus

N∆ = 4(n + 1
2) (128)

and consequently

ntetrahedron = 1
4 (4− 2) =

1

2
,

noctahedron = 1
4 (8− 2) =

3

2
,

nicosahedron = 1
4 (20− 2) =

9

2
,

ntorus = 1
4 (13− 2) =

11

4
. (129)

Note that for a single triangle one has n = 1
2 as well, but the definition of the scaled area is different

in that case.
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and leads therefore to a wavefunction that is not normalizable.

We record here the small x (small area) behavior of the normalized wavefunction in Eq. (131)

Ψ(x) ∼ N
(

1
2

)n

Γ(n+ 1)
, (138)

and the corresponding large x (large area) behavior

Ψ(x) ∼ N
√

2

π

1

xn+
1
2

cos
(

x− nπ

2
− π

4

)

, (139)

both of which reflect well known properties of the Bessel functions Jn(x).

(b) Equilateral Case with Curvature Term (ε = 0)

When the curvature term is included in the Wheeler-DeWitt equation, still in the limit of

equilateral triangles, one obtains the following interpolating differential equation

Ψ′′ +
2n+ 1

x
Ψ′ − 2β

x
Ψ + Ψ = 0 , (140)

which now describes the radial wavefunction for a quantum particle in D = 2n + 2 dimensions,

with a repulsive Coulomb potential proportional to 2β.

The non-singular, normalizable solution is now given by

Ψ(x) # e− i x
1F1

(

n+ 1
2 − iβ, 2n+ 1, 2 i x

)

, (141)

up to an overall wavefunction normalization constant Ñ (n,β). The normalization constant can be

evaluated analytically, but has a rather unwieldy form, and will not be recorded here.

Notice that the imaginary part (β) of the first argument in the confluent hypergeometric function

of Eq. (141) depends on the topology, but does not depend on the number of triangles. Note also

that, in spite of appearances, the above wavefunction is still real for nonzero β.

In view of he previous discussion the parameter n increases as more triangles are included in

the simplicial geometry. For the regulat triangulations of the sphere the total deficit angle (the sum

of the deficit angles in a given simplicial geometry) is always 4π, so even if one writes for the wave

functional Ψ[Atot, δtot], the curvature contribution
∑

h δh is a constant and does not contribute in

any significant way.

The general asymptotic behavior of the solution Ψ(x) is easily determined from Eq. (140). For

small x one has

Ψ(x) ∼ xα (142)
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regular solution close to the origin is not affected by the presence of the β (curvature) term. In

other words, the wavefunction solution Ψ(x) in Eq. (141) is still well behaved for small areas, and

therefore leads to a perfectly acceptable, normalizable solution.

Furthermore, the combination and properties of arguments in the confluent hypergeometric

function in Eq. (141), allows one to write it as a Coulomb wave function

Cl(η) ρ
l+1 · e− i ρ

1F1 (l + 1− i η, 2 l + 2, 2 i ρ) = Fl(η, ρ) , (149)

where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [28, 29]. The latter is a

solution of the radial differential equation

d2 Fl

d ρ2
+

[

1 − 2 η

ρ
− l(l + 1)

ρ2

]

Fl = 0 , (150)

with the actual radial wavefunction then given by Rl(r) = Fl(kr)/r. After comparing the above

equation with Eq. (141) one then identifies ρ = x, l = n− 1
2 and η = β. Thus l = N∆/4− 1 where

N∆ is the number of triangles on the lattice. The proportionality constant Cl in Eq. (149) is given

by

Cl(η) ≡
2l e−

π η
2 |Γ(l + 1 + i η)|
Γ(2l + 2)

. (151)

One then has immediately, from Eq. (141), an equivalent representation for the regular wavefunction

as

Ψ(x) #
[

C
n− 1

2
(β)

]−1 Fl(β, x)

xn+
1
2

, (152)

again up to an overall wavefunction normalization constant Ñ (n,β). Again we note that the

irregular Coulomb wavefunction [usually denoted by Gl(η, ρ)] is singular for small r, and will not

be considered here. Further relevant properties of the Coulomb wave function can be found in

[28, 29, 30, 31, 32].

The known asymptotics of Coulomb wavefunction [30, 31, 32] allows one to derive the following

result for the wavefunction Ψ for large x

Ψ(x) # Ñ 1

C
n−

1
2
(β)xn+

1
2

sin

[

x− β ln 2x− (2n − 1)π

4
+ σn

]

(153)

with phase

σn = argΓ(n+ 1
2 + iβ) (154)

and from Eq. (151)

C
n−

1
2
(β) ≡

2n−
1
2 e−

π β
2 |Γ(n+ 1

2 + iβ)|
Γ(2n+ 1)

. (155)
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"

A"

"
!0
#
1þ !2

!X

"

A"

"
2

þ !4

!X

"

A"

"
4
þ # # #

$
(85)

and then expand the solution in " for small s. To
zeroth order in ", we had the solution!$ JnðxÞ=xn
with x ¼ 2

ffiffiffiffi
~#

p
Atot and n ¼ 1=2. This gives in

Eq. (85) !0 ¼ 0, !2 ¼ ' 2
3
~# and !4 ¼ 2

15
~#2. To

linear order [Oð"Þ] one finds, though, that terms
appear which cannot be expressed in the form of
Eq. (85). But one also finds that, while these terms
are nonzero if one uses the Hamiltonian density
(the Hamiltonian contribution from just a single
triangle), if one uses the sum of such triangle
Hamiltonians, then the resulting solution is symme-
trized, and the corrections to Eq. (85) are found to be
of order Oð"2Þ. Then, the wave function for small
area is of the form

!$ 1' 2

3
~#A2

tot þ
2

15
~#2A4

tot þ . . . (86)

up to terms Oð"2Þ.

C. Octahedron

The discussion of the octahedron proceeds in a way that
is similar to what was done before for the tetrahedron. In
the case of the octahedron, one has 8 triangles, 12 edges
and 6 vertices, with 4 neighboring triangles per vertex.
Again we will now discuss the various cases individually.

(a) Equilateral case in the strong coupling limit (" ¼ 0)
Again, we look first at the case " ¼ 0 in Eq. (52),
deep in the strong coupling region and without the
curvature term. Following Eq. (53) we define the
scaled area variable as

x ¼ 2
ffiffiffiffi
~#

p
Atot ¼ 8( 2

ffiffiffiffi
~#

p
A" (87)

and it is found that the solution is a function of this
variable only. For equilateral triangles the wave
function ! needs to satisfy

!00 þ 4

x
!0 þ! ¼ 0: (88)

The correct solution can be written in the form

!ðxÞ ¼ N
JnðxÞ
xn

(89)

with

n ¼ 3

2
(90)

so that

!ðxÞ ¼ N
J3=2ð2

ffiffiffiffi
~#

p
AtotÞ

ð2
ffiffiffiffi
~#

p
AtotÞ3=2

: (91)

The wave function normalization factor is given by

N ¼
ffiffiffiffiffiffi
15

p
~#1=4: (92)

Equivalent forms of the above wave function are

!ðAtotÞ ¼ N
1

23=2#ð52Þ

( expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1ð2; 4; 4i

ffiffiffiffi
~#

p
AtotÞ

¼ N
#
' cosð2

ffiffiffiffi
~#

p
AtotÞ

2
ffiffiffiffiffiffiffi
2$

p
~#A2

tot

þ sinð2
ffiffiffiffi
~#

p
AtotÞ

4
ffiffiffiffiffiffiffi
2$

p
~#3=2A3

tot

$
:

(93)

These can be expanded for small Atot or small x to
give

! ¼ N

ffiffiffi
2

p

3
ffiffiffiffi
$

p
#
1' x2

10
þ x4

280
þOðx6Þ

$
: (94)

We note here again that both Bessel functions of the
first (J) and second (Y) kind, in principle, give
solutions for this case, as well as the two corre-
sponding Hankel (H) functions. Nevertheless, only
the solution associated with the Bessel J function is
regular near the origin.

(b) Equilateral case with curvature term (" ¼ 0)
Next, we include the effects of the curvature term.
Since here the deficit angle % ¼ 2$=3 at each ver-
tex, the curvature contribution for each equilateral
triangle is & # 2$3 # 3 ¼ 2$&. For the octahedron, one
has in Eq. (40)

&octa ¼ 2 # 1
4
: (95)

With the curvature term, one finds

!ðAtotÞ ’ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

4$&octaffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"

¼ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

2$ffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"
: (96)

Note that in this case one had to include a factor
Atot=ð4A"Þ, which in the octahedron case equals
two.

(c) Large area in the strong coupling limit (" ! 0)
In the limit of large areas, the two independent
solutions reduce to

!$x!1 expð)ixÞ $ expð)2i
ffiffiffiffi
~#

p
AtotÞ (97)

to all orders in ". In other words, to Oð"nÞ with
n ! 1, as for the tetrahedron case. Note also that
in the strong coupling limit, the two independent
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regular solution close to the origin is not affected by the presence of the β (curvature) term. In

other words, the wavefunction solution Ψ(x) in Eq. (141) is still well behaved for small areas, and

therefore leads to a perfectly acceptable, normalizable solution.
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where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [28, 29]. The latter is a

solution of the radial differential equation
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ρ2

]

Fl = 0 , (150)

with the actual radial wavefunction then given by Rl(r) = Fl(kr)/r. After comparing the above

equation with Eq. (141) one then identifies ρ = x, l = n− 1
2 and η = β. Thus l = N∆/4− 1 where

N∆ is the number of triangles on the lattice. The proportionality constant Cl in Eq. (149) is given

by
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One then has immediately, from Eq. (141), an equivalent representation for the regular wavefunction

as
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again up to an overall wavefunction normalization constant Ñ (n,β). Again we note that the

irregular Coulomb wavefunction [usually denoted by Gl(η, ρ)] is singular for small r, and will not

be considered here. Further relevant properties of the Coulomb wave function can be found in

[28, 29, 30, 31, 32].

The known asymptotics of Coulomb wavefunction [30, 31, 32] allows one to derive the following

result for the wavefunction Ψ for large x

Ψ(x) # Ñ 1
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sin
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with phase

σn = argΓ(n+ 1
2 + iβ) (154)

and from Eq. (151)
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In the limit of small area, the regular solution approaches a constant and the discussion, and

solution, is rather similar to the previous cases. Here one finds
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up to terms of O(ε2).

8.6 Summary of Results

Here we will summarize the results obtained previously for the various finite lattices we considered

so far (tetrahedron, octahedron, icosaheadron, and regularly triangulated torus).

(a) Equilateral Case in the Strong Coupling Limit (ε = 0)

It is rather remarkable that all of the previous cases (except the single triangle) can be described

by one single set of interpolating functions, where the interpolating variable is related to the overall

lattice size (the number of triangles).

For equilateral triangles and in the absence of curvature, the wave function Ψ(x) for all previous

cases is described by the following equation

Ψ′′ +
2n+ 1

x
Ψ′ + Ψ = 0 (126)

with parameter n given by

n = 1
4 (N∆ − 2) (127)

where N∆ ≡ N2 is the total number of triangles. Thus

N∆ = 4(n + 1
2) (128)

and consequently

ntetrahedron = 1
4 (4− 2) =

1

2
,

noctahedron = 1
4 (8− 2) =

3

2
,

nicosahedron = 1
4 (20− 2) =

9

2
,

ntorus = 1
4 (13− 2) =

11

4
. (129)

Note that for a single triangle one has n = 1
2 as well, but the definition of the scaled area is different

in that case.
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and leads therefore to a wavefunction that is not normalizable.

We record here the small x (small area) behavior of the normalized wavefunction in Eq. (131)

Ψ(x) ∼ N
(

1
2

)n

Γ(n+ 1)
, (138)

and the corresponding large x (large area) behavior

Ψ(x) ∼ N
√

2

π

1

xn+
1
2

cos
(

x− nπ

2
− π

4

)

, (139)

both of which reflect well known properties of the Bessel functions Jn(x).

(b) Equilateral Case with Curvature Term (ε = 0)

When the curvature term is included in the Wheeler-DeWitt equation, still in the limit of

equilateral triangles, one obtains the following interpolating differential equation

Ψ′′ +
2n+ 1

x
Ψ′ − 2β

x
Ψ + Ψ = 0 , (140)

which now describes the radial wavefunction for a quantum particle in D = 2n + 2 dimensions,

with a repulsive Coulomb potential proportional to 2β.

The non-singular, normalizable solution is now given by

Ψ(x) # e− i x
1F1

(

n+ 1
2 − iβ, 2n+ 1, 2 i x

)

, (141)

up to an overall wavefunction normalization constant Ñ (n,β). The normalization constant can be

evaluated analytically, but has a rather unwieldy form, and will not be recorded here.

Notice that the imaginary part (β) of the first argument in the confluent hypergeometric function

of Eq. (141) depends on the topology, but does not depend on the number of triangles. Note also

that, in spite of appearances, the above wavefunction is still real for nonzero β.

In view of he previous discussion the parameter n increases as more triangles are included in

the simplicial geometry. For the regulat triangulations of the sphere the total deficit angle (the sum

of the deficit angles in a given simplicial geometry) is always 4π, so even if one writes for the wave

functional Ψ[Atot, δtot], the curvature contribution
∑

h δh is a constant and does not contribute in

any significant way.

The general asymptotic behavior of the solution Ψ(x) is easily determined from Eq. (140). For

small x one has

Ψ(x) ∼ xα (142)
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regular solution close to the origin is not affected by the presence of the β (curvature) term. In

other words, the wavefunction solution Ψ(x) in Eq. (141) is still well behaved for small areas, and

therefore leads to a perfectly acceptable, normalizable solution.

Furthermore, the combination and properties of arguments in the confluent hypergeometric

function in Eq. (141), allows one to write it as a Coulomb wave function

Cl(η) ρ
l+1 · e− i ρ

1F1 (l + 1− i η, 2 l + 2, 2 i ρ) = Fl(η, ρ) , (149)

where Fl(η, ρ) denotes the regular Coulomb wave function that arises in the solution of the quantum

mechanical three-dimensional Coulomb problem in spherical coordinates [28, 29]. The latter is a

solution of the radial differential equation

d2 Fl

d ρ2
+

[

1 − 2 η

ρ
− l(l + 1)

ρ2

]

Fl = 0 , (150)

with the actual radial wavefunction then given by Rl(r) = Fl(kr)/r. After comparing the above

equation with Eq. (141) one then identifies ρ = x, l = n− 1
2 and η = β. Thus l = N∆/4− 1 where

N∆ is the number of triangles on the lattice. The proportionality constant Cl in Eq. (149) is given

by

Cl(η) ≡
2l e−

π η
2 |Γ(l + 1 + i η)|
Γ(2l + 2)

. (151)

One then has immediately, from Eq. (141), an equivalent representation for the regular wavefunction

as

Ψ(x) #
[

C
n− 1

2
(β)

]−1 Fl(β, x)

xn+
1
2

, (152)

again up to an overall wavefunction normalization constant Ñ (n,β). Again we note that the

irregular Coulomb wavefunction [usually denoted by Gl(η, ρ)] is singular for small r, and will not

be considered here. Further relevant properties of the Coulomb wave function can be found in

[28, 29, 30, 31, 32].

The known asymptotics of Coulomb wavefunction [30, 31, 32] allows one to derive the following

result for the wavefunction Ψ for large x

Ψ(x) # Ñ 1

C
n−

1
2
(β)xn+

1
2

sin

[

x− β ln 2x− (2n − 1)π

4
+ σn

]

(153)

with phase

σn = argΓ(n+ 1
2 + iβ) (154)

and from Eq. (151)

C
n−

1
2
(β) ≡

2n−
1
2 e−

π β
2 |Γ(n+ 1

2 + iβ)|
Γ(2n+ 1)

. (155)
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"!!Coulomb!wave!funcQon!

! ¼
!Y

"

A"

"
!0
#
1þ !2

!X

"

A"

"
2

þ !4

!X

"

A"

"
4
þ # # #

$
(85)

and then expand the solution in " for small s. To
zeroth order in ", we had the solution!$ JnðxÞ=xn
with x ¼ 2

ffiffiffiffi
~#

p
Atot and n ¼ 1=2. This gives in

Eq. (85) !0 ¼ 0, !2 ¼ ' 2
3
~# and !4 ¼ 2

15
~#2. To

linear order [Oð"Þ] one finds, though, that terms
appear which cannot be expressed in the form of
Eq. (85). But one also finds that, while these terms
are nonzero if one uses the Hamiltonian density
(the Hamiltonian contribution from just a single
triangle), if one uses the sum of such triangle
Hamiltonians, then the resulting solution is symme-
trized, and the corrections to Eq. (85) are found to be
of order Oð"2Þ. Then, the wave function for small
area is of the form

!$ 1' 2

3
~#A2

tot þ
2

15
~#2A4

tot þ . . . (86)

up to terms Oð"2Þ.

C. Octahedron

The discussion of the octahedron proceeds in a way that
is similar to what was done before for the tetrahedron. In
the case of the octahedron, one has 8 triangles, 12 edges
and 6 vertices, with 4 neighboring triangles per vertex.
Again we will now discuss the various cases individually.

(a) Equilateral case in the strong coupling limit (" ¼ 0)
Again, we look first at the case " ¼ 0 in Eq. (52),
deep in the strong coupling region and without the
curvature term. Following Eq. (53) we define the
scaled area variable as

x ¼ 2
ffiffiffiffi
~#

p
Atot ¼ 8( 2

ffiffiffiffi
~#

p
A" (87)

and it is found that the solution is a function of this
variable only. For equilateral triangles the wave
function ! needs to satisfy

!00 þ 4

x
!0 þ! ¼ 0: (88)

The correct solution can be written in the form

!ðxÞ ¼ N
JnðxÞ
xn

(89)

with

n ¼ 3

2
(90)

so that

!ðxÞ ¼ N
J3=2ð2

ffiffiffiffi
~#

p
AtotÞ

ð2
ffiffiffiffi
~#

p
AtotÞ3=2

: (91)

The wave function normalization factor is given by

N ¼
ffiffiffiffiffiffi
15

p
~#1=4: (92)

Equivalent forms of the above wave function are

!ðAtotÞ ¼ N
1

23=2#ð52Þ

( expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1ð2; 4; 4i

ffiffiffiffi
~#

p
AtotÞ

¼ N
#
' cosð2

ffiffiffiffi
~#

p
AtotÞ

2
ffiffiffiffiffiffiffi
2$

p
~#A2

tot

þ sinð2
ffiffiffiffi
~#

p
AtotÞ

4
ffiffiffiffiffiffiffi
2$

p
~#3=2A3

tot

$
:

(93)

These can be expanded for small Atot or small x to
give

! ¼ N

ffiffiffi
2

p

3
ffiffiffiffi
$

p
#
1' x2

10
þ x4

280
þOðx6Þ

$
: (94)

We note here again that both Bessel functions of the
first (J) and second (Y) kind, in principle, give
solutions for this case, as well as the two corre-
sponding Hankel (H) functions. Nevertheless, only
the solution associated with the Bessel J function is
regular near the origin.

(b) Equilateral case with curvature term (" ¼ 0)
Next, we include the effects of the curvature term.
Since here the deficit angle % ¼ 2$=3 at each ver-
tex, the curvature contribution for each equilateral
triangle is & # 2$3 # 3 ¼ 2$&. For the octahedron, one
has in Eq. (40)

&octa ¼ 2 # 1
4
: (95)

With the curvature term, one finds

!ðAtotÞ ’ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

4$&octaffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"

¼ expð'2i
ffiffiffiffi
~#

p
AtotÞ1F1

(
!
2' i

2$ffiffiffiffi
~#

p
G2

; 4; 4i
ffiffiffiffi
~#

p
Atot

"
: (96)

Note that in this case one had to include a factor
Atot=ð4A"Þ, which in the octahedron case equals
two.

(c) Large area in the strong coupling limit (" ! 0)
In the limit of large areas, the two independent
solutions reduce to

!$x!1 expð)ixÞ $ expð)2i
ffiffiffiffi
~#

p
AtotÞ (97)

to all orders in ". In other words, to Oð"nÞ with
n ! 1, as for the tetrahedron case. Note also that
in the strong coupling limit, the two independent
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Regular!soluQon:!

Including!infinite!orders!of!β!means!including!infinitely!many!orders!
of!Bessel!funcQons!in!the!expansion,!therefore!means!obtaining!
exact!coulomb!wave!funcQon.)



For the area fluctuation defined in Eq. (173) one finds in the same large n limit

χA =

(

1− 2

π

)

g2

4
+ O

(

1

n

)

+ (4− π)
√

2

nπ

χ

g
+ · · · . (190)

Again note that the fluctuation appears to diverge as g → 0, which implies that this is the more

interesting limit, so from now on we will focus specifically on this limit. It is clear from the analytic

expression for < Atot > in Eqs. (187) or (188) that as n → ∞ the gravitational coupling g(n), to

this order in the Bessel expansion, has to scale like

g(n) ∼ 1√
n
, (191)

so that the expression for < Atot > scales like n or N∆, with the expression for < A∆ > staying

finite.

The result of Eq. (190) for χA then implies

χA ∼
1

g
√
n
∼ n0 (192)

in the same limit n → ∞. In view of Eqs. (187) and (185) with n ∼ N∆ ∼ L2, this would imply

2/ν − 3 = 0, and thus for the universal critical exponent ν itself ν = 2
3 = 0.666 to first order

(m = 1) in the Bessel function expansion of Eq. (161) and ν = 17
10 = 0.588 to the next order

(m = 2) in the same expansion.

With some additional work one can in fact completely determine the asymptotic behavior of

various averages for small β (large g) and large n. First one notes that when m Bessel functions

are included in the expansion for the wave function given in Eq. (161), beyond the leading order

one at strong coupling, one obtains a wave function which contains powers of β up to βm. For a

given fixed m one then finds for the average area per triangle the following asymptotic result

< A∆ > ∼ 1

g3m−1 n
m+1

2

, (193)

up to terms which contain higher powers of 1/n (making these less relevant in the limit n → ∞),

and also up to terms which are less singular in g for small g. The requirement that the average

area per triangle be finite as n → ∞ then requires that the coupling g itself should scale with n

according to

g(n) ∼ 1

n
m+1

2(3m−1)

. (194)

For the area fluctuation itself one then computes in the same limit

χA ∼
1

g3m−2 n
m
2

, (195)
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are included in the expansion for the wave function given in Eq. (161), beyond the leading order

one at strong coupling, one obtains a wave function which contains powers of β up to βm. For a

given fixed m one then finds for the average area per triangle the following asymptotic result

< A∆ > ∼ 1
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up to terms which contain higher powers of 1/n (making these less relevant in the limit n → ∞),

and also up to terms which are less singular in g for small g. The requirement that the average

area per triangle be finite as n → ∞ then requires that the coupling g itself should scale with n

according to

g(n) ∼ 1

n
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For the area fluctuation itself one then computes in the same limit
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1

g3m−2 n
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again to leading order in 1/n and 1/g. The requirement that g(n) scale according to Eq. (194) then

implies from Eq. (195) that the area fluctuation diverges in the limit n→∞ as

χA(n) ∼ n
m−1
3m−1 . (196)

By comparing with Eqs. (184) and (185) one obtains immediately for the exponent

α

ν
=

2m− 2

3m− 1
, (197)

and therefore from the scaling relation α = 2− 3 ν finally

ν =
6m− 2

11m − 5
. (198)

One can now take the limit m→∞ [infinite number of Bessel functions retained in the expansion of

Eq. (161)], which leads to the exact result for the correlation length exponent of 2 + 1 dimensional

quantum gravity

ν =
6

11
= 0.5454... . (199)

The derivation shows that the exponent ν does not seem to depend on the Euler characteristic

χ, and therefore on the boundary conditions.8 Furthermore one can compare the above value

for ν with the (numerically exact) Euclidean three-dimensional quantum gravity result obtained

over twenty years ago in [24], namely ν % 0.59(2). The exponent ν is expected to represent a

universal quantity, independent of short-distance regularization details, and therefore characteristic

of gravity’s universal scaling properties on distances much larger than the lattice cutoff. As such,

it should apply equally to both the Lorentzian and the Euclidean formulation, and our results are

consistent with this conclusion. Moreover, in 3 + 1 dimensions the exponent ν is a key physical

quantity as it determines the power for the running of the gravitational constant G [38], and for the

Euclidean theory it is known [30] that the universal scaling exponent is consistent with ν = 1/3.

From Eq. (199) one obtains the fractal dimension for a gravitational path in 2 + 1 dimensions

ν−1 = dF =
11

6
= 1.8333... (200)

This is slightly smaller than the value for a free scalar field dF = 2, corresponding to the Brownian

motion (or Wiener path) value. It is closer to the value expected for a dilute branched polymer in

the same dimension [35, 36], and the best match at this point seems to be the O(n) vector model

for n = −1. The exact value ν = 6/11 for 2 + 1 gravity would then suggests a connection between

8One might wonder if the value for ν is affected by the choice of normalization in Eqs. (56) and (155). It is easy to
check that at least the inclusion of a weight factor Am, with m integer, does not change the result given in Eq. (199).
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Then!in!turn!!

For the area fluctuation defined in Eq. (173) one finds in the same large n limit

χA =

(

1− 2

π

)

g2

4
+ O

(

1

n

)

+ (4− π)
√

2

nπ

χ

g
+ · · · . (190)

Again note that the fluctuation appears to diverge as g → 0, which implies that this is the more

interesting limit, so from now on we will focus specifically on this limit. It is clear from the analytic

expression for < Atot > in Eqs. (187) or (188) that as n → ∞ the gravitational coupling g(n), to

this order in the Bessel expansion, has to scale like

g(n) ∼ 1√
n
, (191)

so that the expression for < Atot > scales like n or N∆, with the expression for < A∆ > staying

finite.

The result of Eq. (190) for χA then implies

χA ∼
1

g
√
n
∼ n0 (192)

in the same limit n → ∞. In view of Eqs. (187) and (185) with n ∼ N∆ ∼ L2, this would imply

2/ν − 3 = 0, and thus for the universal critical exponent ν itself ν = 2
3 = 0.666 to first order

(m = 1) in the Bessel function expansion of Eq. (161) and ν = 17
10 = 0.588 to the next order

(m = 2) in the same expansion.

With some additional work one can in fact completely determine the asymptotic behavior of

various averages for small β (large g) and large n. First one notes that when m Bessel functions

are included in the expansion for the wave function given in Eq. (161), beyond the leading order

one at strong coupling, one obtains a wave function which contains powers of β up to βm. For a

given fixed m one then finds for the average area per triangle the following asymptotic result

< A∆ > ∼ 1

g3m−1 n
m+1

2

, (193)

up to terms which contain higher powers of 1/n (making these less relevant in the limit n → ∞),

and also up to terms which are less singular in g for small g. The requirement that the average

area per triangle be finite as n → ∞ then requires that the coupling g itself should scale with n

according to

g(n) ∼ 1

n
m+1

2(3m−1)

. (194)

For the area fluctuation itself one then computes in the same limit

χA ∼
1

g3m−2 n
m
2

, (195)
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•  Does! not! seem! to! depend! on! Euler! characterisQc! χ,! and!
therefore!on!the!boundary!condiQons.!

!

•  Compare! with! the! numerically! exact! Euclidean! three]
dimensional! quantum! gravity! result! obtained! in! Hamber  and 
Williams  Phys.  Rev.  D47,  510  (1993),!ν!~ 0.59(2).!The!exponent!ν! is!
expected! to! represent! a! universal! quanQty,! independent! of!
short!distance!regularizaQon!details.!!Therefore,!it!should!apply!
to! both! the! Lorentzian! and! Euclidean! formulaQon,! and! our!
results!are!consistent!with!this!conclusion.!

!

•  Gc !  0,!indicaQng!that!weak!coupling!is!not!present!at!all.!

Conclusions!!!(2+1 dim.) 

again to leading order in 1/n and 1/g. The requirement that g(n) scale according to Eq. (194) then

implies from Eq. (195) that the area fluctuation diverges in the limit n→∞ as

χA(n) ∼ n
m−1
3m−1 . (196)

By comparing with Eqs. (184) and (185) one obtains immediately for the exponent

α

ν
=

2m− 2

3m− 1
, (197)

and therefore from the scaling relation α = 2− 3 ν finally

ν =
6m− 2

11m − 5
. (198)

One can now take the limit m→∞ [infinite number of Bessel functions retained in the expansion of

Eq. (161)], which leads to the exact result for the correlation length exponent of 2 + 1 dimensional

quantum gravity

ν =
6

11
= 0.5454... . (199)

The derivation shows that the exponent ν does not seem to depend on the Euler characteristic

χ, and therefore on the boundary conditions.8 Furthermore one can compare the above value

for ν with the (numerically exact) Euclidean three-dimensional quantum gravity result obtained

over twenty years ago in [24], namely ν % 0.59(2). The exponent ν is expected to represent a

universal quantity, independent of short-distance regularization details, and therefore characteristic

of gravity’s universal scaling properties on distances much larger than the lattice cutoff. As such,

it should apply equally to both the Lorentzian and the Euclidean formulation, and our results are

consistent with this conclusion. Moreover, in 3 + 1 dimensions the exponent ν is a key physical

quantity as it determines the power for the running of the gravitational constant G [38], and for the

Euclidean theory it is known [30] that the universal scaling exponent is consistent with ν = 1/3.

From Eq. (199) one obtains the fractal dimension for a gravitational path in 2 + 1 dimensions

ν−1 = dF =
11

6
= 1.8333... (200)

This is slightly smaller than the value for a free scalar field dF = 2, corresponding to the Brownian

motion (or Wiener path) value. It is closer to the value expected for a dilute branched polymer in

the same dimension [35, 36], and the best match at this point seems to be the O(n) vector model

for n = −1. The exact value ν = 6/11 for 2 + 1 gravity would then suggests a connection between

8One might wonder if the value for ν is affected by the choice of normalization in Eqs. (56) and (155). It is easy to
check that at least the inclusion of a weight factor Am, with m integer, does not change the result given in Eq. (199).
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Discrete 	


Wheeler!DeWiN!equaQons!

in 3 + 1 dimensions 

V2ð!Þ ¼
!
1

d!

"
2
detgijðl2ð!ÞÞ (49)

to quadratic order in the metric (on the right-hand side), or
in the squared edge lengths belonging to that simplex (on
the left-hand side), one finds the identity

1

Vðl2Þ
X

ij

@2V2ðl2Þ
@l2i @l

2
j

"l2i"l
2
j ¼

1

d!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
½gijgkl"gij"gkl

% gijgkl"gjk"gli&: (50)

The right-hand side of this equation contains precisely the
expression appearing in the continuum supermetric of
Eq. (26) (for a specific choice of the parameter !# ¼ %2),
while the left-hand side contains the sought-for lattice
supermetric. One is therefore led to the identification

Gijðl2Þ ¼ %d!
X

!

1

Vð!Þ
@2V2ð!Þ
@l2i @l

2
j

: (51)

It should be noted that in spite of the appearance of a sum
over simplices !, Gijðl2Þ is quite local (in correspondence
with the continuum, where it is ultralocal), since the de-
rivatives on the right-hand side vanish when the squared
edge lengths in question are not part of the same simplex.
The sum over ! therefore only extends over those few
tetrahedra which contain either the i or the j edge.

At this point, one is finally ready to write a lattice analog
of the Wheeler-DeWitt equation for pure gravity, which
reads
$
%ð16$GÞ2Gijðl2Þ

@2

@l2i @l
2
j

%
ffiffiffiffiffiffiffiffiffiffi
gðl2Þ

q
½3Rðl2Þ % 2%&

%

'"½l2& ¼ 0; (52)

with Gijðl2Þ the inverse of the matrix Gijðl2Þ given above.
The range of the summation over i and j and the appro-
priate expression for the scalar curvature, in this equation,
are discussed below and made explicit in Eq. (53).

It should be emphasized that, just like there is one local
equation for each spatial point x in the continuum, here too
there is only one local (or semilocal, since strictly speaking
more than one lattice vertex is involved) equation that
needs to be specified at each simplex, or simplices, with
Gij defined in accordance with the definition in Eq. (51).
On the other hand, and again in close analogy with the

continuum expression, the wave function"½l2& depends of
course collectively on all the edge lengths in the lattice.
The latter should therefore be regarded as a function of the
whole simplicial geometry, whatever its nature might be,
just like the continuum wave function "½gij& will be a
function(al) of all metric variables, or more specifically of
the overall geometry of the manifold, due to the built-in
diffeomorphism invariance. On the side, we note here that
the lattice supermetric is dimensionful, Gij ( l4%d and
Gij ( ld%4 in d spacetime dimensions, so it might be useful
and convenient from now on to explicitly introduce a
lattice spacing a (or a momentum cutoff # ¼ 1=a) and
express all dimensionful quantities (G, %, li) in terms of
this fundamental lattice spacing.
As noted, Eqs. (31) or (52) both express a constraint

equation at each ‘‘point’’ in space. Here, we will elaborate
a bit more on this point. On the lattice, points in space are
replaced by a set of edge labels i, with a few edges
clustered around each vertex, in a way that depends on
the dimensionality and the local lattice coordination num-
ber. To be more specific, the first term in Eq. (52) contains
derivatives with respect to edges i and j connected by a
matrix element Gij which is nonzero only if i and j are
close to each other, essentially nearest neighbor. One
would therefore expect that the first term could be repre-
sented by just a sum of edge contributions, all from within
one (d% 1)-simplex! (a tetrahedron in three dimensions).
The second term containing 3Rðl2Þ in Eq. (52) is also local
in the edge lengths: it only involves a handful of edge
lengths which enter into the definition of areas, volumes,
and angles around the point x, and follows from the fact
that the local curvature at the original point x is completely
determined by the values of the edge lengths clustered
around i and j. Apart from some geometric factors, it
describes, through a deficit angle "h, the parallel transport
of a vector around an elementary dual lattice loop. It should
therefore be adequate to represent this second term by a
sum over contributions over all (d% 3)-dimensional
hinges (edges in 3þ 1 dimensions) h attached to the
simplex !, giving therefore in three dimensions

$
%ð16$GÞ2

X

i;j*!

Gijð!Þ
@2

@l2i @l
2
j

% 2n!h
X

h*!

lh"h þ 2%V!

%
"½l2& ¼ 0: (53)

Here, "h is the deficit angle at the hinge h, lh the corre-

sponding edge length, V! ¼
ffiffiffiffiffiffiffiffiffiffi
gð!Þ

p
the volume of the

simplex (tetrahedron in three spatial dimensions) labeled
by !. Gijð!Þ is obtained either from Eq. (51), or from the
lattice transcription of Eq. (23),

Gij;klð!Þ ¼ 1
2g

%1=2ð!Þ½gikð!Þgjlð!Þ þ gilð!Þgjkð!Þ
% gijð!Þgklð!Þ&; (54)

0
1

2

l02

l01

l12

3

l03

l23

l13

FIG. 3. A tetrahedron with labels.
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Building!blocks!are!tetrahedra.!

C. Solution of the triangle problem in 2þ 1 dimensions

In this section, we will consider the solution of the
Wheeler-DeWitt equation for a single triangle. The present
calculation is a necessary starting point and should provide
a basic stepping stone for the strong-coupling expansion in
1=G. In addition, it will show the physical nature of the
wave-function solution deep in the strong-coupling re-
gime. Note that for 1=G ! 0 the coupling term between
different simplices, which is due to the curvature term,
disappears and one ends up with a completely decoupled
problem, where the edge lengths in each simplex fluctuate
independently. This is of course quite analogous to what
happens in gauge theories on the lattice at strong coupling,
the chromoelectric field fluctuates independently on each
link, giving rise to short-range correlations, a mass gap,
and confinement. Here, it is this single-simplex probability
amplitude that we will set out to compute.

As in the Euclidean lattice theory of gravity, it will be
convenient to factor out an overall scale from the problem,
and set the (unscaled) cosmological constant equal to one

[23] (see Table II). Recall that the Euclidean path integral
weight contains a factor PðVÞ / expð$!0VÞ where
V ¼ R ffiffiffi

g
p

is the total volume on the lattice. The choice
!0 ¼ 1 then fixes this overall scale once and for all. Since
!0 ¼ 2!=16"G, one then has ! ¼ 8"G in this system of
units. In the following, we will also find it rather conve-
nient to introduce the scaled coupling ~!,

~! & !

2

"
1

16"G

#
2
; (77)

so that for !0 ¼ 1 (in units of the UV cutoff, or of the
fundamental lattice spacing) one has ~! ¼ 1=64"G.
Moreover, it will often turn out to be desirable to avoid

large numbers of factors of 16"’s by the replacement,
which we will follow from now on in this section, of
16"G ! G. Then, ~! ¼ 1=4G is the natural expansion
parameter. Note that the coupling ~! has dimensions of
length to the minus four, or inverse area squared, in
2þ 1 dimension, and length to the minus six, or inverse
volume squared, in 3þ 1 dimensions.
Now, from Eq. (63), the Wheeler-DeWitt equation for a

single triangle and constant curvature density R reads

$
ð16"GÞ24A!

"
@2

@a@b
þ @2

@b@c
þ @2

@c@a

#

þ ð2!$ RÞA!

%
"½s( ¼ 0; (78)

where a, b, c are the three squared edge lengths for the
given triangle, and A! is the area of the same triangle.
In the following, we will take for simplicity R ¼ 0.
Equivalently, one needs to solve

$
@2

@a@b
þ @2

@b@c
þ @2

@c@a
þ ~!

%
"½a; b; c( ¼ 0: (79)

If one sets

"½s( ¼ #½A!(; (80)

then one can show that

@2

@a@b
" ¼ 1

ð16A!Þ2
ðbþ c$ aÞðaþ c$ bÞ

)
"
d2#

dA2
!

$ 1

A!

d#

dA!

#
þ 1

16A!

d#

dA!
: (81)

Summing the partial derivatives leads to the equation

A!
d2#

dA2
!

þ 2
d#

dA!
þ 16~!A!# ¼ 0: (82)

Solutions to the above equation are given by

FIG. 5. A small section of a suitable spatial lattice for quantum
gravity in 3þ 1 dimensions.

FIG. 4. A small section of a suitable spatial lattice for quantum
gravity in 2þ 1 dimensions.
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5 cell (q = 3)  
5!tetrahedra!glued!together!!
“Hyper]tetrahedron”!!!

16 cell (q = 4)  
16!tetrahedra!glued!together!!
“Hyper]octahedron”!

600 cell (q = 5)  
600!tetrahedra!glued!together!!
“Hyper]icosahedron”!

Regular triangulations of 3-sphere 

Regular!TriangulaQons!
(3 + 1 dim.) 

Schlegel diagrams 



Discrete Wheeler DeWitt Equation!
(3 + 1 dim.) 

R
tot

=
12
p
s

q

✓
2⇡ � q cos�1

✓
1

3

◆◆
N3 (38)

where we defined

R
tot

⌘ 2
X

h⇢
P

�

�
h

l
h

 !
Z p

g R . (39)

Therefore one writes

q = q0

0

@1� R
tot

R
tot

+ 24⇡
p
s

q0
N3

1

A (40)

and

q�1 = q�1
0 +

R
tot

24⇡
p
s N3

. (41)

The above expressions are exact and not expanded with small R
tot

. where q = q0 corresponds to

when R
tot

= 0, namely,

q0 =
2⇡

cos�1
�
1
3

� = 5.1043 . (42)

(Therefore the solutions that are in the form of the Bessel functions when assuming  (V
tot

),

seems not to be correct. One needs to assume  (V
tot

, R
tot

) even in the absence of explicit curvature

term in the Wheeler DeWitt equation. See the later section.)

7 Average Volumes and Average Lattice Spacings

Using the wave function for the finite equilateral edge lengths given in Eq. (37), where n is given in

Eq. (36), and where we assumed  (V
tot

) only, one can calculate the average volume for a general

configuration,

< V
�

>=
1

N3

R1
0 dV

tot

| (V
tot

) |2 V
totR1

0 dV
tot

| (V
tot

) |2 . (43)

We obtain

< V
�

>=
2�

3
2�2n �

�
n� 1

2

�
�
�
2n+ 1

2

�
q G

� (n)3
p
� N3

. (44)

For a single tetrahedron,

< V
�

>=
31185⇡G

262144
p
2
p
�
⇠ 0.264266Gp

�
. (45)

which agrees with the previous paper. For 5 cell,

< V
�

>=
3 �

�
77
18

�
�
�
181
18

�
G

10240 2
1
18 �

�
43
9

�3 p
�
⇠ 0.193542Gp

�
. (46)

Similarly or 16 cell,

< V
�

>⇠ 0.120383Gp
�

, (47)

6

with R0 a characteristic scale for the total, integrated curvature. Thus R0 ∼ 1/(g − gc) with Gc,

and therefore gc =
√
Gc, given in Eq. (119). Therefore at the critical point fluctuations in the

curvature become unbounded, just as is the case for the fluctuations in a scalar field when the

renormalized mass approaches zero. 5

At this stage one can start to compare with the results obtained previously without the explicit

curvature term in the Wheeler-DeWitt equation, Eqs. (94) and (95). The main change is that here

one would be led to identify

x =
4
√
2λ

q0G
Vtot +

(

a20
36
√
2π

·
√
2λ

G
− 6

q0
· 1

G
√
2λ

)

Rtot , (122)

so that the Bessel function argument x [see Eq. (94)] now contains a new contribution, of opposite

sign, in the curvature term. Its origin can be traced back to the new curvature contribution c1

in Eq. (116), which in turn arises because of the explicit curvature term now present in the full

Wheeler-DeWitt equation. On the other hand, as is already clear from the result for c2 in Eq. (116),

the index n of the Bessel function solution in Eqs. (91) and (92) is left unchanged,

n =
11 + 9 q0

4 q20
N3 −

1

2
+

22 + 9 q0
96π q0 a0

Rtot + O
(

R2
tot

)

, (123)

with again an average lattice spacing a0 defined as before.

But there is a better way to derive correctly the modified form of the wave function. From

the asymptotic solution for the wave function of Eq. (115) it is possible to first obtain a partial

differential equation for ψ(Rtot, Vtot). The equation reads (in the following we shall write Rtot as R

and Vtot as V to avoid unnecessary clutter)

∂2ψ

∂V 2
+ cV

∂ ψ

∂ V
+ cR

∂ ψ

∂R
+ cV R

∂2 ψ

∂ V ∂ R
+ cRR

∂2 ψ

∂ R2
+ cλ ψ + ccurv ψ = 0 . (124)

5 It is tempting to try to extract a critical exponent from the result of Eq. (121). In analogy to the wave
functional for a free scalar field with mass m, and thus correlation length ξ = 1/m, one would obtain for the
correlation length exponent ν (with ν defined by ξ ∼ |g − gc|

−ν) from the above wave function the semi-classical

estimate ν = 1
2 . In the 2 + ε perturbative expansion for pure gravity one finds in the vicinity of the UV fixed point

ν−1 = (d− 2)+ 3
5 (d− 2)2 +O((d− 2)3) [33, 34, 35]. The above lowest order lattice result would then agree only with

the leading, semi-classical term.
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with R0 a characteristic scale for the total, integrated curvature. Thus R0 ∼ 1/(g − gc) with Gc,

and therefore gc =
√
Gc, given in Eq. (119). Therefore at the critical point fluctuations in the

curvature become unbounded, just as is the case for the fluctuations in a scalar field when the

renormalized mass approaches zero. 5

At this stage one can start to compare with the results obtained previously without the explicit

curvature term in the Wheeler-DeWitt equation, Eqs. (94) and (95). The main change is that here

one would be led to identify

x =
4
√
2λ

q0G
Vtot +

(

a20
36
√
2π

·
√
2λ

G
− 6

q0
· 1

G
√
2λ

)

Rtot , (122)

so that the Bessel function argument x [see Eq. (94)] now contains a new contribution, of opposite

sign, in the curvature term. Its origin can be traced back to the new curvature contribution c1

in Eq. (116), which in turn arises because of the explicit curvature term now present in the full

Wheeler-DeWitt equation. On the other hand, as is already clear from the result for c2 in Eq. (116),

the index n of the Bessel function solution in Eqs. (91) and (92) is left unchanged,

n =
11 + 9 q0

4 q20
N3 −

1

2
+

22 + 9 q0
96π q0 a0

Rtot + O
(

R2
tot

)

, (123)

with again an average lattice spacing a0 defined as before.

But there is a better way to derive correctly the modified form of the wave function. From

the asymptotic solution for the wave function of Eq. (115) it is possible to first obtain a partial

differential equation for ψ(Rtot, Vtot). The equation reads (in the following we shall write Rtot as R

and Vtot as V to avoid unnecessary clutter)

∂2ψ

∂V 2
+ cV

∂ ψ

∂ V
+ cR

∂ ψ

∂R
+ cV R

∂2 ψ

∂ V ∂ R
+ cRR

∂2 ψ

∂ R2
+ cλ ψ + ccurv ψ = 0 . (124)

5 It is tempting to try to extract a critical exponent from the result of Eq. (121). In analogy to the wave
functional for a free scalar field with mass m, and thus correlation length ξ = 1/m, one would obtain for the
correlation length exponent ν (with ν defined by ξ ∼ |g − gc|

−ν) from the above wave function the semi-classical

estimate ν = 1
2 . In the 2 + ε perturbative expansion for pure gravity one finds in the vicinity of the UV fixed point

ν−1 = (d− 2)+ 3
5 (d− 2)2 +O((d− 2)3) [33, 34, 35]. The above lowest order lattice result would then agree only with

the leading, semi-classical term.
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The coefficients in the above equation are given by

cV =
11 + 9 q

2 q2
· N3

V
=

11 + 9 q0
2 q20

· N3

V
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22 + 9 q0
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√
2 31/3 π q0

· N
1/3
3 R

V 4/3
+ O(R2)

cR = −2
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R

V 2
+

11 + 9 q0
6 q20

· N3 R

V 2
+ O(R2)

cV R =
2

3

R

V
+ O(R2)

cRR =
2

9

R2

V 2

cλ =
32λ

q2 G2
=

32

G2 q20
+

4
√
2λ

3 31/3 π q0 G
· R

N2/3
3 V 1/3

+ O(R2)

ccurv = − 16

G2 q2
· R
V

= − 16

G2 q20
· R
V

+ O(R2) . (125)

Note that in the small curvature, large volume limit [this is the limit in which, after all, Eq. (115)

was derived] one can safely set the coefficients cR and cRR to zero. It is then easy to check that

the solution in Eq. (115) satisfies Eqs. (124) and (125), up to terms of order 1/V 2. Also note that

here, and in Eqs. (112), (113), (114) and (115), we take the large volume limit V → ∞, treating

the number of tetrahedra N3 as a large, fixed parameter. A differential equation in the variable V

only can be derived as well (with coefficients that are functions of R), but then one finds that the

required coefficients are not real, which makes this approach less appealing.

In the limit R→ 0 Eq. (124) reduces to

∂2ψ

∂V 2
+

11 + 9 q0
2 q20

· N3

V
· ∂ ψ
∂ V

+
32λ

G2 q20
ψ = 0 , (126)

which is essentially Eq. (84) in the same limit, with solution given previously in Eq. (91).

8 Nature of the Wave Function Solution ψ

In this section we discuss some basic physical properties that can be extracted from the wave

function solution ψ(V,R). So far we have not been able to find a general solution to the fundamental

Eq. (124), but one might suspect that the solution is still close to a Bessel or hypergeometric

function, possibly with arguments “shifted” according to Eqs. (122) and (123), as was the case in

2 + 1 dimensions. As a consequence, some physically motivated approximations will be necessary

in the following discussion. Let us discuss here in detail one possible approach. If one sets the

troublesome coefficient cV R = 0 in Eq. (124), and keeps only the leading term in cV , then the

relevant differential equation becomes

∂2ψ

∂V 2
+ cV

∂ ψ

∂ V
+ cλ ψ + ccurv ψ = 0 , (127)
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In the limit of the small curvature and the large volume,  

Finally, here again the third argument z is purely imaginary and simply proportional to the total

volume. From the above solution

z = i
8
√
2λ

q0G

∫

d3x
√
g , (133)

whereas in 2 + 1 dimensions

z = i
2
√
2λ

G

∫

d2x
√
g . (134)

Nevertheless we find also some important additional differences with the 2+1 result, most notably

the various gamma-function coefficients involving the curvature R, which are entirely absent in the

lower dimensional case, as well as the fact that the critical (UV fixed) point is located at some

finite Gc here [see Eq. (119)], whereas it is exactly at Gc = 0 in 2 + 1 dimensions [2].

Let us now continue here with a discussion of the main properties of the wave function in

Eq. (128). First let us introduce some additional notational simplification. By using the coupling

g [see Sec. (4) and Eq. (36)] one can make the above expression for ψ slightly more transparent

ψ(V, R) " e
− 4 i V

q0 g ·
Γ
(

(11+9 q0)N3

4 q20
+ 2 iR

q0 g3

)

Γ
(

1− (11+9 q0)N3

4 q20
+ 2 i R

q0 g3

)

× 1F1

(

(11 + 9 q0)N3

4 q20
− 2 iR

q0 g3
,
(11 + 9 q0)N3

2 q20
,
8 i V

q0 g

)

. (135)

We remind the reader that, by virtue of Eq. (51), in all the above expressions q0 is just a numerical

constant, q0 ≡ 2π/ cos−1(13) = 5.1043. Note that for weak coupling the curvature terms become

more important due to the 1/g3 coefficient. The resulting probability distribution |ψ(V,R)|2 is

shown, for some illustrative cases, in Figures 3,4 and 5.

One important proviso should be be stated here first. We recall that having obtained an (exact

or approximate) expression for the wave function does not lead immediately to a complete solution

of the problem. This should be evident, for example, from the general expression for the average

of a generic quantum operator O(g)

〈O(g)〉 ≡ 〈Ψ|O|Ψ〉
〈Ψ|Ψ〉

=

∫

dµ[g] · O(gij) · |Ψ[gij ] |2
∫

dµ[g] · |Ψ[gij ] |2
, (136)

where dµ[g] is the appropriate (DeWitt) functional measure over the three-metric gij . Because of

the general coordinate invariance of the state functional, the inner products shown above clearly

contain an infinte redundancy due to the geometrical indinstinguishability of 3-metrics which differ

only by a coordinate transformation [7]. Nevertheless this divergence is of no essence here, since it

cancels out between the numerator and the denominator.
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of the two phases. In view of the non-trivial and generally complex arguments of both the gamma

function and the confluent hypergeometric function, the analytic properties of the wave function,

and therefore of the probability distribution, are quite rich in features, at least for the more general

and physically relevant case of non-zero curvature.

One first notes that for strong enough coupling g the distribution in curvature is fairly flat

around R = 0, giving rise to large fluctuation in the latter (see Figure 3). On the other hand, for

weak enough coupling g the probability distribution in curvature is such that values around R = 0

are almost excluded, since they are associated with a very small probability. Furthermore, unless

the volume V is very small, the probability distribution is also generally markedly larger towards

positive curvatures (see Figure 4).

In order to explore specifically the curvature (R) dependence of the probability distribution, it

would be desirable to factor out or remove the dependence of the wave function ψ(V,R) on the total

volume V . To achieve this, one can employ a mean-field-type prescription, and replace the total

volume V by its average 〈V 〉. After all, the probability distribution in the volume is well behaved

at large G [see Sec. (6)], and does not exhibit any marked change in behavior for intermediate

G [as can be inferred, for example, from the asymptotic form of the wave function in Eq. (115)].

Consequently we will now make the replacement in ψ(V,R)

V −→ 〈 V 〉 ≡ N3 〈 Vσ 〉 = 0.2643
G√
λ

= 0.3738 g , (139)

obtained by inserting the result of Eq. (64). This replacement then makes it possible to plot the

wave function of Eq. (135) squared as a function of the coupling g and the total curvature R only

(in the following we use again N3 = 10 for illustrative purposes); see Figure 5. One then notes

that for strong enough gravitational coupling g =
√
G the probability distribution is again fairly

flat around R = 0, giving rise to large fluctuations in the curvature. On the other hand, for weak

enough coupling g one observes that curvatures close to zero have near vanishing probability. The

distributions shown suggest therefore a clearly pathological ground state for weak enough coupling

g < gc [or G < Gc, see Eq. (119)], with no sensible four-dimensional continuum limit.

At this point some preliminary conclusions, based on the behavior of the wave function discussed

previously in Sec. (7) and the shape shown in Figures 3,4 and 5, are as follows. For large enough

G > Gc, but nevertheless close to the critical point, the flatness in the curvature probability

distribution implies that different curvature scales are all equally important. The corresponding

gravitational correlation length is finite in this region as long as G > Gc, and expected to diverge

at the critical point, thus presumably signaling the presence of a massless excitation at Gc [see
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