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Motivation for Discretization

No reason not to try quantizing discrete spacetime.
May even be certain advantages
e.g., natural cut off (minimum length)

finite number of variables

At the Planck scale, spacetime may be discrete anyway,
with rapidly changing topologies
(spacetime foam, Wheeler)



Canonical Formulations

ADM (Arnowitt, Deser, Misner) Formalism \ N \
(continuum classical canonical formalism) ]

Introducing a time-slicing of space-
time, by introducing a sequence of
space like hypersurfaces.

Nadt

Wheeler DeWitt Equation (continuum guantum canonical)

Discrete Wheeler DeWitt Equation (discrete guantum canonical)

The lack of covariance of the canonical ADM approach has not gone away, and 1s
therefore still part of the present formalism.



Continuum Quantum Canonical
Formulation

Energy constraint H |¥) = 0
Wheeler De Witt Eq. in d+1 dim.
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Regge Lattice Discretization:
Regge 1961

In constructing a discrete Hamiltonian for gravity one has to decide what
degrees of freedom one should retain on the lattice.

- Use geometric Regge lattice discretization for gravity, with
edge lengths suitably defined on a random lattice as the primary
dynamical variables.

Degrees of freedom for edges and metric tensor are both D(D+1)/2 in D dimensions.
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Regge Formulation:
Constituents

Curved space(time)s are piece-wise linear.

Flat building blocks are D-dim. Simplices @ pgint (0 —simplex) in 0-dim
Line (1 —simplex) in 1-dim
Triangle (2 —simplex) in 2-dim
Tetrahedron (3 —simplex) in 3-dim

all “flat”

Deficit angle - Curvature (defined at a hinge®-? ] e
at a vertex for 2-dim, N B TS
at an edge for 3-dim, — |
at a triangle for 4-dim) w.=~ W {
Floure 421 Misner, Thorne, Wheeler
5(h)=2m = 0(0,h) 0 5
ocDh

sum over dihedral angles 6 extends over all
simplices o meeting on hinge 4.




d + /- Dimensional
Discrete Wheeler DeWitt equation

52
0gij () Ogm (x

91 (@)
ﬁ gij(0) = 3 <lgi+l8j_li2j)

{ (167G)* Gij (I*) alf—;z — Vg (%) <(d)R (1*) — 2>\) } U [*] =0 Discrete

{— (167G)* Gijpa () 7 Vg (z) (<d>R (x) — 2 A) } Vg (z)] =0 Continuum

Kinetic term Curvature term  Cosmological constant term

Both equations are defined at each “point” in space.

Discrete WDW eq.: one eq. for each simplex



Kinetic Term
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Only involves the variables within one simplex.

Curvature Term
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g : coordination number

Involves the variables of the neighbor simplices of a simplex.




Discrete WDW eqgns in 2+ 1 dim.

Y[/4] is a function of the whole simplicial geometry
(overall geometry of the manifold), due to the built-in
diffeomorphism invariance.

Y[/°] depends collectively on all the edge lengths in the
lattice.

Therefore even though we have one equation for each
simplex, there should be one wave function that satisfies
all the equations for each simplices in one configuration.



Exact Solution for A Single Triangle
(2+1 dim.)
A single triangle:

e Curvature term is absent in this configuration.

* as a starting point for the strong coupling expansion in 1/G.

* should show the physical nature of the wavefunction solution deep in the
strong coupling regime.
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Normalization constant fixed by the
standard rule of quantum mechanics:
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Significance of Single Triangle Solution
(2+1 dim.)

nontrivial result Ula, b, c| =V [AA]

Since a discretization of space-time breaks the diffeomorphism
invariance, it raises the question of whether and in what form

part of the diffeomorphism symmetry can still be realized at the
discrete level.

The solution only depends on geometry
i.e., spatial diffeomorphism is retained.



Problem Set-up (2+1 dim.)

In principle, any solution of the Wheeler-DeWitt equation
corresponds to a possible guantum state of the universe.

The boundary conditions on the wavefunction will act to restrict the
class of possible solutions;

in ordinary quantum mechanics, they are determined by the
physical context of the problem and some set of external
conditions.

In our analytical calculations, we used spherical boundary
conditions for the spatial manifold,

further, regular polyhedra approximations to a 2-sphere.



Problem Set-up (2+1 dim.)

The 1dea: @ >
t
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(More precisely @ , further more 4} @ )

tetrahedron octahedron icosahedron



With Curvature, and Equilateral
(2+1 dim.)

Equilateral (edges fluctuating together)

r = G Aot nt—§
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- _ };l(ﬂ; 5’7) < Coulomb wave function
Regular solution:  W(x) = 7
mn—l— 5

2> Y(x) = NJ”(nx) (without curvature)
X




Curvature and Euler Characteristics
(2+1 dim.)

in 2 dimensions /d% VIR = 4wy (Gauss Bonnet theorem)

x . Euler characteristics of the manifold [X = 2 (sphere)
X — O (torus)

On a discrete manifold in two dimensions

X = Ng — N1 + No N : number of simplices of dimension i
N, : sites (vertices )
N, : edges
N, : faces
2T
p= YITX
VAG

f’s dependence on boundary conditions becomes explicit.



Key Results (2+1 dim.)
so far from tetra, octa, and icosahedra

-The solution is in totally a generalized form, ¥(z)
i.e., W[ topology, total area, number of triangles]

- The solution only depends on the geometric quantities such as
total areasin 2 + / dimensions.
(does not just depend on quantities like edge lengths which are
not diffeomorphism invariant)




Key Quantities Associated with
Phase Transitions

-Universal Exponent v v' = — 8/(G,) cutoff-independent quantity

3,
-Averages <V >~ o In Zjqs
62
-Fluctuations XV~ gz I L

A divergence or non-analyticity in Z, as
caused for example by a phase transition,
is expected to show up in these local
averages as well.



Scaling Assumption

Correlation length is givenby & ~ |g — gc| ™"
e.g., Parisi, Cardy

A divergence of correlation length signals the presence of transition
1

and leads to the appearance of singularity in free energy. F' ~ v InZ

Scaling Assumption: Fsing ~ ¢ therefore Fun, ~ |g— go|%
P g

1 0 _dv
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For g close to the critical point g ., the correlation length saturates to its maximum value § ~ L

knowing L ~ +/Na ~ +/n

(Fluctuation)

XA

n-dependence of )y provides a way to estimate the exponent v directly.



Numerically Computed y,
(2+1 dim.)

Fi(B,z)

]
"t 2

Using U(r) =
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x4 diverges as g = (0 signaling phase transition




Analytical Expression (2+1 dim.)

U(z) = Fl(ﬁaf)
"2

Coulomb wave function
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with more terms linear in f appearing in higher orders of J

Including infinite orders of S means including infinitely many orders
of Bessel functions in the expansion, therefore means obtaining
exact coulomb wave function.



Analytical Asymptotic Result
Critical Exponent v
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Conclusions (2+1 dim.)

= 1—61 — 0.5454... for 2 + [ dimension, Lorenzian

* Does not seem to depend on Euler characteristic ¥, and
therefore on the boundary conditions.

e Compare with the numerically exact Euclidean three-
dimensional quantum gravity result obtained in Hamber and
Williams Phys. Rev. D47, 510 (1993), v ~ 0.59(2). The exponent v is
expected to represent a universal quantity, independent of
short distance regularization details. Therefore, it should apply
to both the Lorentzian and Euclidean formulation, and our
results are consistent with this conclusion.

* Gc =2 0, indicating that weak coupling is not present at all.



Discrete
Wheeler DeWitt equations
in 3 + / dimensions

Building blocks are tetrahedra.




Regular Triangulations
(3 + I dim.)

Regular triangulations of 3-sphere

5 cell (g =3)
5 tetrahedra glued together
“Hyper-tetrahedron”

16 cell (g = 4)
16 tetrahedra glued together
“Hyper-octahedron”

600 cell (g = 5)
600 tetrahedra glued together
“Hyper-icosahedron”

Schlegel diagrams



Discrete Wheeler DeWitt Equation
(3 + 1 dim.)
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Differential eq. (3 + / dim.)
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q,: flat (i.e., R = 0)

So far we have not been able to find the general solution for the above differential eq.
but probably still some type of Bessel function or hypergeometric function.



Simplified Differential eq.
(3 + 1 dim.)

In the limit of the small curvature and the large volume,
Further, set c,, = 0 and keeps only the leading term 1n ¢,
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F: confluent hypergeometric function of first kind

Check: a function of geometric invariants " and R only.



Probability as a function of G
(3 + 1 dim.)

art N3 = 10

g = \/a 20 -1.0

For strong coupling, different curvature scales are equally important.

Very small probability at R ~ 0 for small G, so no sensible continuum limit.



Still work in progress
(3 + 1 dim.)



