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Motivation

* On flat spacetime:

no dimensionfull couplings = scale invariance

Symmetry may be enhanced to full conformal (lorio, O'Ralifeartaigh,
Sachs, Wiesendanger)

* On curved spacetime:
Conformal (Weyl) rescalings, coupling to spacetime curvature

. 2 d_2 p)
L=l0 b+ grg—y R

* How to obtain this non-minimal couplings preserving conformal
covariance?
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Motivation

Various methods have been used:

« BRST covariant algebra for Weyl-gravity (Boulanger)

« Unfolded Dynamics Approach (Shaynkman, Tipunin, Vasiliev)
 Tractor calculus (Gover, Shaukat , Waldron)

 Ambient space techniques (Fefferman, Graham)

 Ricci gauging (lorio, O'Raifeartaigh, Sachs, Wiesendanger)

e Others (Manvelyan, Mkrtchyan, Erdmenger)

* In this talk method based on decoupling of Weyl gauge fields
(related to Weyl geometry)
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Weyl gauge theory

- Gauge transformation of lengths  ds '*=Q*ds”
 Gauge transformations on fields ¢ 'WZQZQW O'=Q"P

o If Q=Q(x) then need to introduce abelian Weyl gauge potential b
b' =b,+0,Q
* Weyl curvature (field strength) B,,= (a b,—0,b )

e Coordinates and derivatives do not transform x''= xM 9, 'u:au

« However Riemannian connection is not Weyl covariant!

rw w
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Weyl gauge theory
« Unique, symmetric torsionfree linear connection = Weyl connection
u U U u u
r,=T.,,—8b,—db,+g,,b
e 1st consequence: Weyl connection is Weyl invariant T f‘}p: 1~“$

» 2nd consequence: cov. derivative V, with f‘;‘, , preserve
Weyl symmetry

* Weyl covariant derlvatlve?
on scalar fields: —W b )b

on tensor fields: D, T= (Vu wb,)T

« Transformation law of cov. Weyl derivatives of any tensor T (indices

suppressed) (DHT)'ZQWDHT T =QYT
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Weyl curvatures

- Riemann-Weyl curvature tensor | D,,D,

ve=r P y°

wv o

u VO

* Ricci-Weyl tensor and scalar r.,,=r,, & r=qg r

uv VO

* Riemann-Weyl and Ricci-Weyl tensors are conf. inv.,
 Ricci-Weyl scalar is conf. cov. with w=-2

* Trivial Weyl gauge field B,,=0
= Weyl curvatures in terms of ordinary spacetime curvatures and
Weyl gauge potential bLL
ruvp(j:Ruvpo-l_gup(vvbo-'-bv bo)_guo(vvbp-l-bvbp)_gvp
+Gvo| Vibo+by by =900 Gvo = Guo Gup | b’
ro=R, +(d=2)b,b +(d=2)V b —(d-2)b’g, +[V-blg,,
r=R+2(d—1)|V-b|—(d—1)(d—2)b’

Vu b0+bub0)+

LIII School of Theoretical Physics, 29.06.2013, Zakopane Lestaw Rachwat



General method

1) Start with generally covariant expression X

2) Weyl covariantize all derivatives in your expression V —D,

3) Impose condition of vanishing Weyl gauge field strength B,,=0
4) Add all possible Weyl covariant terms T with the same welght w

constructed out of Weyl curvatures, Weyl derivatives and original
fields in X X+aT, w(T)=w(X)
2 Weyl derivatives D = one Weyl curvature

5) Expand resulting sum in Weyl gauge potentials — blLL flelds

6) Search for coefficients a_and w, s.t. Weyl potentials decouple and

terms with bu vanish

7) If a solution exists, then X conformally coupled to spacetime
Is given by X +a. T,
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General method

* Linear algebra problem
» Applicable to any expression w/o dimensionful constants
» Works for fields with any spin and in any spacetime dimension

* Found conformal weights w agree with canonical dimensions
of fields as assigned on flat spacetime

« Shows obvious links with more general gravitation-dilaton-conformal
theory (Weyl gauge theory of gravitation)
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Applications

« Scalar field with 4 derivatives L=d¢ 1’ 2%p=0
* Old result from d=4, when w(¢)=0 ,

D2¢+%(VMR)(V”¢)+2Ric”vvuvv¢—§REIc|>:0

* In general dimension 3 new terms must be added

r’ & ric’ ¢ Or|¢ A, $=0
» General result

Ay b= p+A R $+BRic’ ¢+ C|IR| b+ D[V, R|[V ¢+ ERic"V,V, ¢+ F RO

* Dimension-dependent coefficients

_(d—4)(d’-4d’*+16d—16) _ 4-d _ 4-d _ 6-d
a 4(d—1)(d=2)) B_(d—z)2 C_4(0'!—1) D_Z(d—l)
_ 4 _ (d-2)+4 _4-d

=2 T ldn(a—2) T2
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Applications 2

* Abelian gauge field in d=6 with Minkowski spacetime action F V°F
Gauge fields have no conformal weights w(A,)=w(F__ )=0
However ordinary cov. derivatives are not conf. cov.

D,A,=V,A,#V, A,

« Conformally covariant Iagrangian exists

Terms to combine F*UF, F"V V F',

VRY

* In our method we add rF*’F,~ ric, F""F",

 Final conf. coupled lagrangian with weight w=-6 on curved
spacetime
R

FPU(D—E —ZFPU(V V. + p”)Fu
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Summary

« Conformal couplings to curved spacetimes
« Weyl gravitation as a gauge theory with Weyl rescalings
« Weyl curvatures and Weyl geometry

* Decoupling of Weyl gauge potential as an useful method
for finding conformally coupled lagrangians and equations

 Applications to old and new results
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Thank you
for attention!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

