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I. Introduction

Black hole in LQG : Isolated horizon with punctures. [Eugenio’s talk]

Chern Simons theory on the horizon. Edges of spin network thread the horizon.

Punctures contribute area elements to the horizon and construct the microstates accounting

for the entropy.

Area of the horizon is an observable. Statistical analysis for area of the horizon.
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I.Introduction

Microcanonical studies have been done GM, DL, ENP, .. , characterizing the horizon as

A = 8πγl
2
P

∑
P

√
jP (jP + 1),

∑
P

mP = 0.

and counting the number of such configurations

Ω ∼
eλA

√
A
,

and

S ∼ λA−
1

2
logA.

However number of puctures can not be held fixed, horizon can exchange the number of area quanta with
the bulk.

Does this situation corresponds to entropy calculation of a photon gas?
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I. Introduction: Punctures as Quantum hair

Major Class. Quant. Grav. 17 (2000) Ghose and Perez Phys. Rev. Lett. 107 (2011): Punctures as
quantum hair.

Chemical Potential associated with a puncture.

Horizon as a gas of punctures.

Microcanonical analysis suggests Bekenstein-Hawking area law recovered.

Implications for subleading corrections ?
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II. Canonical ensemble analysis

We first fix a graph Γ and calculate the (canonical) partition function as first step

The partition function for this canonical ensemble is given as

ZΓ(β,N) =
∑

{njmj }

N !∏
jmj

njmj !
δp,0 e

−β
∑
jmj

njmj
aj
,

with
N =

∑
j,mj

njmj , and 2
∑
j,mj

njmjmj = p.

We use a suitable representation of the delta function to turn the partition function into

ZΓ(β,N) =
1

2π

∑
{njmj }

N !∏
jmj

njmj !

∫ 2π

0
dke

2ik
∑

jmj
njmj

mj
e
−β

∑
jmj

njmj
aj
.

On simplification,

ZΓ(β,N) =
1

2π

∫ 2π

0
dk

∑
jmj

e
(2ikmj−βaj)


N

If we work with Flux area operator [Barbero, Lewandowski,Vilsenor], the Unitary representation of Area
operator [ Livine], or the semiclassical limit

aj = (j + 1) j ∈ N
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II.Canonical ensemble analysis

In this case

ZΓ(β,N) ≈
1

2π

∫ 2π

0
dk

 1

e2ik − 1

∞∑
l=1

e
−σ(l+1){eik(l+2) − e−ikl}

N

=
1

2π

∫ π
−π

dk

(
2 cos k − e−σ

e2σ − 2eσ cos k + 1
,

)N
,

with
σ = 4πγl

2
pβ,

which can be evaluated in the thermodynamic limit N >> 1.

With a transformation
k = 2 tan

−1
(x/2)

the partition function

ZΓ(β,N) =

∫ ∞
−∞

dx
1

2π(1 + x2/4)

(
2 cos k(x)− e−σ

e2σ − 2eσ cos k(x) + 1

)N
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II. Canonical ensemble analysis

Partition unction is a unimodal symmetric distribution

We would like it to approximate as accurately as possible.
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II.Canonical ensemble analysis: Approximation schemes

Moment generating function for a (Non-normalized) Gaussian with a zero mean

C

∫ ∞
−∞

dxe
− 1

2
x2

σ2 ,

is given by

M(t) = Ce
t2σ2

2

∫ ∞
−∞

dxe
− 1

2
(x−tσ2)2

σ2 .

With the substitution x− tσ2 = x′ we have

M(t) = Ce
t2σ2

2

∫ ∞
−∞

dx
′
e
− 1

2
(x′)2

σ2 ,

= Ce
t2σ2

2
√

2πσ2 = Af(iσ
2
t),

where f(x) = Ce
− 1

2
x2

σ2 and A =
√

2πσ2.

In a non-normalized gaussian distribution (with zero mean), the n− th moment is given by

µn =
C
∫∞
−∞ dxxne

− 1
2
x2

σ2

C
∫∞
−∞ dxe

− 1
2
x2

σ2
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II.Canonical ensemble analysis: Approximation schemes

Now,

M(t) = C

∫ ∞
−∞

dxe
tx
e
− 1

2
x2

σ2

= C

∫ ∞
−∞

dx(1 + tx +
(tx)2

2!
+ ... +

(tx)n

n!
+ ...)e

− 1
2
x2

σ2 .

Thus,

µn =
M(n)(t)|0
M(t)|0

.

Now,

M
(n)

(t)|0 = A(iσ
2
)
n
f

(n)
(iσ

2
t)|0 = A(iσ

2
)
n
f

(n)
(0),

M(t)|0 = Af(iσ
2
t)|0 = Af(0).

Therefore the n− th moment is

µn =
(iσ2)nf(n)(0)

f(0)
.

Variance
For second moment

σ
2

= −σ4 f
′′(0)

f(0)
,

therefore, σ2
= −

f(0)

f ′′(0)
,
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II.Canonical ensemble analysis: Approximation schemes

Kurtosis
The 4-th moment is again obtained as

µ4 =
(iσ2)4f(4)(0)

f(0)
.

Therefore the kurtosis is given by

β2 =
µ4

σ4
=

[
(iσ2)4f(4)(0)

f(0)

]
[
−σ4 f

′′(0)
f(0)

]2 ,

β2 =
µ4

σ4
=
f(0)f(4)(0)

(f ′′(0))2
.

The kurtosis for the distribution becomes

µ4

σ̃4
=
f(x)|0f(4)(x)|0

[f ′′(x)|0]2
=

6[(1− 2eσ)2(eσ − 1)4 + 8e3σ(−1 + 2eσ + e3σ − e2σ)N + 8e6σN2]

[−1 + eσ(4 + eσ(−5 + eσ(2 + 4N)))]2
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II.Canonical ensemble analysis: Approximation schemes

The “excess kurtosis” in the thermodynamic limit vanishes

lim
N→∞

µ4

σ̃4
− 3→ 0.

enabling us to approximate the distribution as gaussian and evaluate the partition function as

ZΓ(β,N) ≈

e−σ
√

2 log 4

N

( 2− e−σ

(eσ − 1)2

)N
.

Corresponding canonical entropy

S = lnZΓ + βA = N [ln z(σ) + σq]−
1

2
lnN + const.,

with q = −∂ log z/∂σ. The entropy is extremized w.r.t. the number of constituents to get

S ≈
σ(q0)A

4πγl2p
−

1

2
ln

(
A

4πγl2pq0

)
+ const.
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II.Canonical ensemble analysis

We recover the B-H area law for the leading order if we take γ = 0.258

Analysis γ
Ghosh et. al. Microcanonical LQG 0.274
Ghosh, Mitra, Phys. Rev. D. 71 (2005)

Ling, Zhang N=1 SUSY LQG 0.247
Ling, Zhang, Phys. Rev. D. 68 (2003)

KL, CV Canonical LQG 0.258
KL & Vaz, Phys. Rev. D. 85 (2012)

Recent proposals suggest fixation of Immirizi parameter is not core to obtaining the area-law when the
problem is posed in terms of local observers [Eugenio’s talk].

We also obtain sub-leading logarithmic corrections with a negative signature.

Next we allow the number of punctures to vary.
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III. Grand-canonical ensemble analysis

The corresponding grand-canonical treatment gives

Ξ(β, α) =
∞∑
N=0

N∑
nj=0

N !∏
j nj !

∏
j

(2j + 1)
nj e
−(8πγβaj−α)nj

The average occupation number of punctures in a state j will be

〈nj〉 = −
1

8πγβ

∂ ln Ξ

∂aj
=
λ(2j + 1)e

−8πγβaj

1− λz
,

and the average quantities will be given by

〈N〉 =
∂ ln Ξ

∂α
=
∑
j

〈nj〉 =
λz

1− λz
.

A = −
∂ ln Ξ

∂β
=

∂

∂β
ln(1− λz) = −N

∂ ln z

∂β
,

where λ(α) = eα is the fugacity, and

z(β) =
∑
j

(2j + 1)e
−8πγβaj .
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III. Grand-canonical ensemble analysis

Using the relation

Ξ =
∑
N

Z
N
e
αN

and using the canonical partition function we get

Ξ(σ, α) =
1

2π

∫ π
−π

dk

1− λ(α)
∑∞
l=1

zl(σ)
(

sin k(l+1)
sin k

) ,

with zl(σ) = e−σ(l+1) and λ(α) = eα.

Again, the partition function can be approximated (saddle-point) in the thermodynamic limit

Ξ(σ, α) ≈
√

2πf(0)σ̃ =
1√

π{1− λz(σ)}{1 + λb(σ)}
,

where

z(σ) =
∞∑
l=1

zl(σ)(l + 1)

b(σ) =
∞∑
l=1

zl(σ)

[
2

3
l
3

+ 2l
2

+
1

3
l− 1

]
.
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III. Grand-canonical ensemble analysis

Large N limit is given by
λz → 1

In this limit the ratio A/N depends on the chemical potential and is constant for isothermal cases : Good
intensive variable to use.

Legendre transform of ln Ξ, which is the entropy, becomes

S(A,N) = ln Ξ + βA− αN = (N + 1) ln(N + 1)−N lnN +Naσ(a) +N ln z(a)

and simplifies, in the limit of large N , to

S(A,N) ≈ lnN +N [aσ(a) + ln z(a)] =
σ(a)

πγ

A

4l2p
+N ln z(a) + lnN.

At some fixed value of the temperature, σ0, or of the chemical potential, α0, we find that a(σ0) = a0
then

N =
A

4πγl2pa0

can be used to eliminate N

S(A) ≈
1

πγ

[
σ0 +

ln z(a0)

a0

]
A

4l2p
+ ln

A

4l2p
+ const.,
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III. Grand-canonical ensemble analysis

Inclusion of the projection constraint and the fluctuation in N , in large N limit gives

S(A) =
1

πγ

[
σ0 +

ln z(a0)

a0

]
A

4l2p
+

1

2
ln

A

4l2p
+ const.

Therefore for isothermal case B-H law is obtained upto fixing the Immirizi parameter.

For zero chemical potential we reocver the same Immirizi parameter. In general it is chemical potential
dependent.

The logarithmic correction has now become positive signature and differs from microcanonical results.

17 Cracow School of Theoretical Physics, LIII Course, 2013 Statistical analysis of puctures for LQGBH



Discussions

The B-H area relation can be achieved for isothermal cases in LQG.

In general, the Immirizi parameter is a function of the temperature/chemical potential.

Canonical/grand-canonical analysis suggests correction to area law, logarithmic in nature but with opposite
signatures.

Differs from microcanonical analysis
Barbero, Vilasenor, Class. Quant. Grav. (2011).

Implications for stability. Energy ensemble in terms of local observers will make the analysis thermal.

Thank you for your attention !
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