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Edge vectors  (triads)

Metric

Area vectors  (Ashtekar electric field)

Metric (inverse, densitized)

e.g.:

*  Area vectors can be used as fundamental variables:
    tetrahedron specified by four vectors 
                                        + closure

Volume



Classical geometry of a tetrahedron in             -   area vectors
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Area vectors

Closure

- area of a face

- angle between two faces

- volume of the tetrahedron

Lecture 2:   Quantum Geometry of a Tetrahedron



The phase space of a tetrahedron                                          (face-areas      fixed)
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Fuction 

Poisson brackets 

Fuctions invariant under rotations 

=  angle between and

Canonical variables

Volume as a function of q and p (equal areas)



The phase space of a tetrahedron                                          (face-areas      fixed)
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Quantization condition:
   orbits of constant volume enclose an integer number 
   of phase-space cells of area 
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   of phase-space cells of area 

0

S(E)

−Emax

2π d

(n +
1
2
)2π

0 E
EmaxEn



Bohr-Sommerfeld quantization of the Volume

E. Bianchi Lecture 2:   Quantum Geometry of a Tetrahedron

[ Bianchi-Haggard, PRL ’11]4

in good agreement both qualitatively and quantitatively
even for small spins. To better appreciate the accuracy
of this agreement, we report some numerical data in the
Table.

The reason for a relation between the two volume
spectra can be traced back to recent developments on
(twisted) discrete geometries in loop gravity [3, 4]. In
particular, the assumption (ii) about the Poisson brack-
ets (1) is the classical version of the non-commutativity
of fluxes of the parallel transported electric field in loop
gravity, and descends from the canonical phase space of
general relativity formulated in Ashtekar’s variables, [10].

The Bohr-Sommerfeld approach taken here provides
a new method for understanding many aspects of the
rich structure of the volume spectrum in loop gravity.
This is important because a deep understanding of the
spectra of geometrical operators provides fertile ground
for developing phenomenological tests of loop gravity.

We briefly describe several results arising from the
Bohr-Sommerfeld quantization: The value of the largest
eigenvalue of the volume in H4 can be explained as the
volume of the largest tetrahedron in P4. Moreover, at
large quantum numbers, the levels of the volume are ob-
served to be equispaced. This fact can be understood
in terms of Bohr’s correspondence principle: the spacing
�V is given by 2�

T , where T is the period of the classical
orbits at large volume.

In loop gravity, the discrete spectra of geometrical ob-
servables provide a physical Planck-scale cut-o⇥ that ren-
ders the theory finite in the ultraviolet [10]. An impor-
tant question is whether there exists a volume gap, that
is a discrete gap, above zero, in the volume spectrum for
all spins. We have investigated this question in P4 and
find that, for a given choice of spins, i.e. of Al, the low-
est non-vanishing level of the Bohr-Sommerfeld volume
spectrum is given by

vmin � c
⇥
~ (A1A2A3A4)

1/4, (12)

where c is 2/3 for odd d and
⇥
2/3 for even d. This

result is obtained by expanding the Jacobi action around
the orbits of longest period. Those phase spaces P4

containing degenerate tetrahedra require special care as
there are orbits of infinite period. Nevertheless, they can
be treated using the analytic expression of S(E) in terms
of elliptic functions. These results will be discussed in
detail in a forthcoming paper.

Bohr-Sommerfeld quantization o⇥ers a completely new
perspective on the discreteness of volume in loop gravity.
We have shown that it is quantitatively accurate, and
that it provides an elementary account of various features
of the spectrum.

Using the semiclassical methods of [9], the eigenvectors
of the volume can be computed in a WKB expansion.
The same method can be applied to other geometrical

Table: Volume spectrum

j1 j2 j3 j4 Loop gravity Bohr-Sommerfeld Accuracy
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1
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0.310 0.252 19%
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2 1 1 0.396 0.344 13%

1
2

1
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3
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3
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0.464 0.406 12%

1
2 1 1 3

2
0.498 0.458 8%

1 1 1 1
0 0 exact

0.620 0.566 9%
1
2

1
2 2 2 0.522 0.458 12%

1
2 1 3

2 2 0.577 0.535 7%

1 1 1 2 0.620 0.598 4%
1
2

3
2

3
2

3
2

0.620 0.598 4%

1 1 3
2

3
2

0 0 exact

0.753 0.707 6%

· · ·

6 6 6 7

1.828 1.795 1.8%

3.204 3.162 1.3%

4.225 4.190 0.8%

5.133 5.105 0.5%

5.989 5.967 0.4%

6.817 6.799 0.3%

operators, as well as to the alternative versions of the
volume operator considered in the literature. When
N > 4, the phase space PN has dimension greater than
two. A preliminary analysis of the case N = 5 indicates
that, while the volume orbits may be chaotic, the dy-
namics can still be practically investigated numerically.
This opens up the intriguing possibility for exploring
quantum chaos in the volume spectrum of loop gravity.

We thank C. Rovelli and R. Littlejohn for useful discus-
sions. The work of E.B. is supported by a Marie Curie
IE-Fellowship. The work of H.M.H. is supported by a
University of California, Berkeley dissertation year fel-
lowship.
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Quantum Geometry in intertwiner space
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Spin:  irreps of SU(2)

Intertwiner:  invariant tensor

Quantum Geometry

- area normals

- area operator

spectrum

- angle operator 
     (Penrose metric)

- Volume operator 

Rovelli-Smolin ’95
Ashtekar-Lewandowski ’95
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Volume spectrum
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ets (1) is the classical version of the non-commutativity
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  Minkowski theorem [1897]

up to rotations, there is a unique convex polyhedron in 
3d Euclidean space having faces with normals

  Kapovich-Millson theorem [1996]

            has naturally the structure of a phase space

    Poisson brackets  
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A major challenge for any theory of quantum gravity is to quantize general relativity while retaining

some part of its geometrical character. We present new evidence for the idea that this can be achieved by

directly quantizing space itself. We compute the Bohr-Sommerfeld volume spectrum of a tetrahedron and

show that it reproduces the quantization of a grain of space found in loop gravity.

DOI: 10.1103/PhysRevLett.107.011301 PACS numbers: 04.60.Nc, 04.60.Pp

At the Planck scale, a quantum behavior of the geometry
of space is expected. Loop gravity provides a specific
realization of this expectation: It predicts a granularity of
space with each grain having a quantum behavior [1]. In
particular, the volume of a grain of space is quantized and
has a discrete spectrum with a rich structure [2].

In this Letter, we present a new independent road to the
granularity of space and the computation of the spectrum
of the volume. The derivation is based solely on semiclas-
sical arguments applied to the simplest model for a grain of
space, a Euclidean tetrahedron, and is closely related to
Regge’s discretization of gravity and to more recent ideas
about general relativity and quantum geometry [3,4]. The
spectrum is computed by applying Bohr-Sommerfeld
quantization to the volume of a tetrahedron seen as an
observable on phase space. The result is accurate for large
quantum numbers.

Our central question is whether this Bohr-Sommerfeld
volume spectrum and the eigenvalues of the volume op-
erator obtained by quantizing general relativity with loop
methods are related. The remarkable quantitative agree-
ment of the two volume spectra presented here supports
this idea. The result is of interest as it lends further credi-
bility to the intricate derivation of the volume spectrum in
loop gravity, showing that it matches with the elementary
semiclassical approach presented here.

We begin by reviewing how convex polyhedra can be
treated as dynamical systems. Then we discuss the Bohr-
Sommerfeld quantization of the volume of a tetrahedron
and conclude comparing our results to those found in loop
gravity.

Two elegant mathematical results are key in what fol-
lows: Consider a convex polyhedron in three-dimensional
Euclidean space. The first result is a theorem of
Minkowski’s that states that the areas Al and the unit nor-
mals ~nl to the faces of the polyhedron fully characterize its

shape [5,6].Wedefine thevectors ~Al ¼ Al ~nl and callPN the
space of shapes of polyhedrawithN faces of given areasAl:

PN ¼
!
~Al; l ¼ 1; . . . ; N j

X

l

~Al ¼ 0; k ~Al k¼ Al

"#
SOð3Þ:

The second is a result of Kapovich and Millson’s that states
that the set PN has naturally the structure of a phase space

[7]. The Poisson brackets between two functions fð ~AlÞ and
gð ~AlÞ on PN are

ff; gg ¼
X

l

~Al $
$
@f

@ ~Al

% @g

@ ~Al

%
: (1)

These brackets arise (via symplectic reduction) from the
rotationally invariant Poisson brackets between functions

fð ~AlÞ on ðS2ÞN . Thus we have that convex polyhedra withN
faces of given areas form a 2ðN & 3Þ-dimensional phase
space [4].
Canonical variables on this phase space can be chosen as

follows: Consider the set of vectors ~pk ¼
Pkþ1

l¼1
~Al, where

k ¼ 1; . . . ; N & 3; we define the coordinate qk as the angle

between the vectors ~pk % ~Akþ1 and ~pk % ~Akþ2 and the
momentum variable pk ¼k ~pk k as the norm of the vector
~pk. From (1), it follows that these are canonically conju-
gate variables: fqk; pk0 g ¼ !kk0 .
In the simplest nontrivial case N ¼ 4, the phase space is

two-dimensional, has the topology of a sphere S2, and
describes the shape of a tetrahedron with faces of given
area (Fig. 1). The coordinate qmeasures the angle between
two opposite edges of the tetrahedron. The conjugate

momentum p ¼k ~A1 þ ~A2 k measures the dihedral angle
between two faces of the tetrahedron. It varies in the
interval ½pmin; pmax), with pmin ¼ maxðjA1 & A2j; jA3 &
A4jÞ and pmax ¼ minðA1 þ A2; A3 þ A4Þ [8].
The volume V of the tetrahedron is a function on this

phase space, P 4, and is given by

V ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHðq; pÞj

q
; (2)

whereHðq; pÞ ¼ ~A1 $ ð ~A2 % ~A3Þ is the triple product of the
normals to its faces.
We derive the spectrum of the volume under the follow-

ing two physical assumptions: (i) The first is that, in a
quantum theory of gravity, the full dynamics induces on a
grain of space—a tetrahedron—the natural rotationally
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Convex Euclidean polyhedra form a phase space

Quantization         Hilbert space of intertwiners = nodes of a spin-network graph

= areas

= unit vectors



cuboid

pentagonal	
  wedge

Haggard PRD’13
ColemanSmith-Muller PRD’13

Volume	
  spectrum	
  with	
  Quantum	
  Chaos	
  behavior

E. Bianchi Lecture 2:   Quantum Geometry of a Tetrahedron

Beyond tetrahedra:  F = 6 , the space of shapes of ... Bianchi-Dona-Speziale PRD’10



E. Bianchi

Outline

Lecture 1:
    Path integral and the Spinfoam amplitude

Lecture 2:
    Quantum geometry in Spinfoams

Lecture 3:
    - gravitons
    - quantum cosmology
    - black hole entropy


