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Semiclassical limit (Ponzano-Regge ’68)

edge length

The Regge action (’61)
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Finite-dim reps,  e.g.:

- Spinor rep (Weyl)

- Vector rep

- ...

Non-Unitary Non-Hermitian Generator of Boosts

Infinite-dim reps,  e.g.:

- Field Theoretical rep

Unitary but reducible

decompose in irreducible blocks

 

 



          = Unitary Irreducible Representations of 
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Casimirs on

ref: Ruhl ’70

Hermitian Generators

Time-like vector

Rotations

Boosts

Algebra
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Little group that preserves the time-like vector

is also a rep of SU(2), but reducible

e.g.:

O.N.  basis of 

diagonalize simultaneously
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Lorentz intertwiners from SU(2) intertwiners
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Map

with

SU(2) intertwiners

EPRL:  SL(2,C) intertwiners from SU(2) intetwiners

,

(Engle-Pereira-Rovelli-Livine NPB ’08)

e.g.: N=4, 
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Geometry and action 
from invariants of 
the Lorentz group

Semiclassical limit: 



Spin-foam path integral

E. Bianchi

  Aim:       provide a realization of the path-integral over geometries 
                  for 4d Lorentzian gravity

*  Action?  Measure?  Boundary conditions? 
    How to compute it beyond perturbation theory?

spin foam invariant of the 
Lorentz group SO(1,3)

cf.  Wigner {6j}-symbol

  Spinfoams:    covariant formulation of loop quantum gravity

Lecture 1:   Path integral and the spinfoam amplitude



Spacetime manifold and the notion of  2d-foam

E. Bianchi

         = Spacetime = 4d Manifold of trivial topology

Lecture 1:   Path integral and the spinfoam amplitude



Spacetime manifold and the notion of  2d-foam

E. Bianchi

         = Spacetime = 4d Manifold of trivial topology

         =  Topological decomposition of         in cells

Lecture 1:   Path integral and the spinfoam amplitude



Spacetime manifold and the notion of  2d-foam

E. Bianchi

         = Spacetime = 4d Manifold of trivial topology

4-cells         =  4-ball

        = 3-cells

       = 2-cells

         =  Topological decomposition of         in cells

Lecture 1:   Path integral and the spinfoam amplitude



Spacetime manifold and the notion of  2d-foam

E. Bianchi

         = Spacetime = 4d Manifold of trivial topology

4-cells         =  4-ball

        = 3-cells

       = 2-cells

         =  Topological decomposition of         in cells

Lecture 1:   Path integral and the spinfoam amplitude



Spacetime manifold and the notion of  2d-foam

E. Bianchi

         = Spacetime = 4d Manifold of trivial topology

4-cells         =  4-ball

        = 3-cells

       = 2-cells

         =  Topological decomposition of         in cells

Lecture 1:   Path integral and the spinfoam amplitude



Spacetime manifold and the notion of  2d-foam

E. Bianchi

         = Spacetime = 4d Manifold of trivial topology

4-cells         =  4-ball

        = 3-cells

       = 2-cells

         =  Topological decomposition of         in cells

Lecture 1:   Path integral and the spinfoam amplitude



Spacetime manifold and the notion of  2d-foam

E. Bianchi

         = Spacetime = 4d Manifold of trivial topology

*  The manifold                               is non simply-connected,  non-trivial   

4-cells         =  4-ball

        = 3-cells

       = 2-cells

         =  Topological decomposition of         in cells

   Set            = 2-skeleton of              =  2d-foam

Lecture 1:   Path integral and the spinfoam amplitude



Spacetime manifold and the notion of  2d-foam

E. Bianchi

         = Spacetime = 4d Manifold of trivial topology

*  The manifold                               is non simply-connected,  non-trivial   

     non-contractible loops around   
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  Gravity:   Einstein-Cartan action + Holst term � 2 R = Barbero-Immirzi parameter

  Topological Field Theory:   BF action   BIJ = two-form field

Gravity as a Topological Theory with constrained B-field:                

Constraint                                      unfreezes 

*

Gravity  and  Topological field theory
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  Topological Field Theory:   BF action BIJ = two-form field

Constraint imposed on                                     - everywhere on M General Relativity

S[B,!] =

Z
1

2
✏IJKLB

IJ ^ FKL(!) +
1

�
BIJ ^ F IJ(!)
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  Topological Field Theory:   BF action BIJ = two-form field

Constraint imposed on                                     - everywhere on M General Relativity

- on a 2d-foam in M Spin Foam action

2d-foam allows to unfreeze a finite number of gravitational degrees of freedom:

  - quantization straightforward

  - perspective:   General Relativity as Effective field theory description

S[B,!] =

Z
1

2
✏IJKLB

IJ ^ FKL(!) +
1

�
BIJ ^ F IJ(!)
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The Spin-Foam partition function for 4d Lorentzian Quantum Gravity

4-cells      

3-cells

2-cells

Cellular decomposition of Dual 2-complex

vertex

edge

face
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The Spin-Foam partition function:  semiclassical results

(Theorem)

Semiclassical limit:

  vertex amplitude

  2-complex
(evidence)

cf.  Ponzano-Regge ’68
     {6j} and 3d Quantum Gravity

Barrett-Dowdall-Fairbairn-Hellmann-

Gomes-Pereira JMP’09

Conrady-Freidel PRD’09

EB-Magliaro-Perini PRD’10

Magliaro-Perini CQG’11

Bahr-Dittrich-Hellmann-Kaminsky ’12

piecewise-flat metric on

Lecture 1:   Path integral and the spinfoam amplitude



Finite number of gravitational d.o.f., completely captured  by Wilson loops
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The microscopic degrees of freedom

The 2d-foam unfreezes a finite number of local gravitational degrees of freedom:
                     everywhere, except on the 2d-foam

Diff-invariant truncation of General Relativity. Full quantum theory via completion.
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From Feynman Lectures:

cf.  Aharonov-Bohm effect
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The microscopic degrees of freedom

d.o.f.  =  flux-tube excitation of a topologically invariant vacuum
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Recovering a classical geometry from singular configurations
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FIG. 7.2. A torus with two non-contractible loops A and B.

FIG. 7.3. A beam of particles passes through a grid of tubes, with a flux through each tube.

The field strength vanishes, i.e.

For a loop around x = 0, we have

global phase ^ 0 .

A non-vanishing local phase will affect the classical equation of motion. The
Berry phase for the spin is an example of local phase (see Section 2.3). In contrast,
a global phase will not affect the classical equation of motion. However, a global
phase will affect the quantum properties of the particle.

Problem 7.1.1.
Deflecting without touching Although a global phase does not produce any classical
force, it can still deflect a moving particle. Consider the set-up in Fig. 7.3, where a beam
of particles with charge e and momentum k passes through a grid of impenetrable tubes.
Calculate the deflecting angle 0 if there is a flux $ through each tube.

local phase = 0

Appealing scenario for Quantum Gravity:

          No trans-Planckian d.o.f.  because topological (and therefore finite) at small scales

          At larger scales, finitely many d.o.f. which can be described effectively in terms of a local quantum field theory.

wavepacket deflected by an array of solenoids

(Feynman Lectures vol 2. sec. 15-5)
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